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Abstract. Answering a question of Füredi and Loeb (1994) we show that the maximum
number of pairwise intersecting homothets of a d-dimensional centrally symmetric convex body,
each not containing the others’ centers in their interiors is at most O(3dd log d). We also

show the bound of O(3d
(
2d
d

)
d log d) for arbitrary convex bodies each not containing the others’

centroids, as well as a generalization where the center is an arbitrary point chosen from the
interior. We present exponential lower bounds in all cases.

1. Introduction

A convex body K in the Euclidean d-dimensional space Rd is a compact convex set with non-
empty interior. A (positive) homothet of K is a set of the form λK + v := {λk + v : k ∈ K},
where λ > 0 is the homothety ratio, and v ∈ Rd is a translation vector. We investigate arrange-
ments of homothets of convex bodies. The starting point of our investigations is Problem 4.4
of a paper of Füredi and Loeb [FL94]:

Is it true that for any centrally symmetric body K of dimension d, d ≥ d0, the
number of pairwise intersecting homothetic copies of K which do not contain
each other’s centers is at most 2d?

They observe that for the Euclidean plane, there exist 8 such homothets of the disc [MM92,
HJLM93] (see Fig. 1).

Definition 1. Let K be a convex body and p a point in Rd. We extend a notion of L. Fejes
Tóth by defining a Minkowski arrangement of K with respect to p to be a family {vi + λiK}
(with λi > 0 for all i) of homothets of K with the property that vi+p is not in vj +λj int(K), for
any i 6= j. We denote the largest number of homothets that a pairwise intersecting Minkowski
arrangement of K with respect to p can have by κ(K, p).

Similarly, we define a strict Minkowski arrangement of K with respect to p to be a family
{vi + λiK} of positive homothets of K such that vi + p /∈ vj + λjK, for any i 6= j.

We denote the largest number of homothets that a pairwise intersecting strict Minkowski
arrangement of K with respect to p can have by κ′(K, p). When K is symmetric about the
origin and p = o is the origin, we omit p and write κ(K) and κ′(K).

Thus, the question of Füredi and Loeb may be phrased as: Is it true that κ′(K) ≤ 2d for any
o-symmetric convex body K in Rd with d ≥ d0 for some constant d0?

A negative answer is simply seen as follows. Suppose that we are given a collection {v1, . . . , vm} ⊂
Rd of points such that ‖vi‖K = 1 for all i and ‖vi − vj‖K > 1 for all distinct i, j. The largest such
m is known as the strict Hadwiger number of K, denoted H ′(K). Then {K + vi : i = 1, . . . ,m}
is a strict Minkowski arrangement of translates of K all intersecting in o, hence κ′(K) ≥ H ′(K).
Thus, it is sufficient to find an o-symmetric convex body K with H ′(K) > 2d. In dimension 3
we may take the Euclidean ball B3, for which it is well known that H ′(B3) = 12. For d > 3 we
may use a result of Talata [Tal05, Lemma 3.1] that asserts that H ′(Ck × K) = 2kH ′(K)
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Figure 1. A pairwise intersecting strict Minkowski arrangement of 8 circles
(after Harary et al. [HJLM93])

for any o-symmetric convex body K, where Ck is the k-dimensional cube. In particular,
H ′(B3 × Cd−3) = 3 · 2d−1 for all d ≥ 3. In fact, Talata [Tal05] constructs d-dimensional

o-symmetric convex bodies K such that H ′(K) ≥ 16
35

√
7
d

for all d ≥ 3. The question now
becomes: how large can κ′(K) be? One goal of this paper is to present bounds on κ and κ′.

We recall the definition of some related quantities.

Definition 2. The Hadwiger number (resp., strict Hadwiger number) of K is defined as the
maximum number H(K) (resp., H ′(K)) of non-overlapping (resp., disjoint) translates of K
touching K. When K is o-symmetric, H(K) equals the maximum number of points v1, . . . , vm
such that ‖vi‖K = 1 for all i and ‖vi − vj‖K ≥ 1 for all distinct i, j. In this case, {K} ∪ {K +
vi : i = 1, . . . ,m} is a Minkowski arrangement of translates of K all intersecting in o, hence
κ(K) ≥ H(K) + 1.

If K is o-symmetric, we define the packing number P (K,λ) of K as the maximum number
of points in the normed space with unit ball K, such that the ratio of the maximal distance to
the minimal distance is at most λ. We denote the normed space with unit ball K as N , and
use the notations κ(N ), P (N , λ) , H(N ), . . . in place of κ(K), P (K,λ) , H(K), . . ..

It follows from the isodiametric inequality in normed spaces (an immediate corollary to the
Brunn-Minkowski Theorem [Busemann 1947, Mel’nikov 1963]) that

(1) P (N , λ) ≤ (1 + λ)d

for any d-dimensional normed space N . (See Lemma 6 below for a generalization.) Our first
result is an exponential upper bound on κ in the case when K is o-symmetric.

Theorem 3. Let N be a d-dimensional real normed space. Then

κ′(N ) ≤ κ(N ) ≤ P
(
N , 2(1 + 1

d)
)

(d+O(1)) log d = O(3dd log d).

Note that κ(Cd) ≥ H(Cd)+1 = 3d, which shows that Theorem 3 is sharp up to the O(d log d)
factor. Theorem 3 is a special case of Theorem 8 below that also deals with non-symmetric K.
Next consider any convex body K (not necessarily o-symmetric). It is easy to see that κ(K, p)
is infinite if p is not in the interior of K. Moreover, κ′(K, p) is infinite if p /∈ K or, slightly more
generally, if there is a line ` through p such that K ∩ ` ⊆ {p}. We therefore restrict p to be in
the interior of K.
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Definition 4. Let K be a convex body with p in its interior. Define θ(K, p), the measure of
asymmetry of K with respect to p to be θ(K, p) := sup{θ : p −K ⊆ θ(K − p)}. (For a similar
looking quantity, see [Grü63, Section 6.1].) If K contains the origin in the interior, we define
the (asymmetric) norm ‖·‖K : Rd → R by ‖x‖K = inf{λ > 0: x ∈ λK}.

Note that θ(K, o) = sup{‖x‖K / ‖−x‖K : x ∈ bdK}. We will also use the (symmetric) norm
defined by the unit ball K ∩−K. Thus, ‖x‖K∩−K = max{‖x‖K , ‖−x‖K}. We also need a third
symmetric norm.

Definition 5. For any convex body K, define its central symmetral to be 1
2(K − K). If

o ∈ int(K), then P (K,λ) is defined to be the maximum number of points p1, . . . , pm, such that
‖pi − pj‖ 1

2
(K−K) / ‖pi − pj‖K ≤ λ for all distinct i, j = 1, . . . ,m.

If K is o-symmetric, then the norms ‖·‖K , ‖·‖K∩−K , and ‖·‖K∩−K are all identical, and
P (K,λ) coincides with the definition given before.

Lemma 6. For any convex body K with o in its interior and any λ > 0,

P (K,λ) ≤ (λ+ 1)d
vol(1

2(K −K))

vol(K ∩ −K)
.

We also need to generalize the Hadwiger number to the non-symmetric case, in the following
non-standard way.

Definition 7. If o ∈ int(K), define h(K) to be the maximum number of points p1, . . . , pm on
bdK such that ‖pi − pj‖K ≥ 1 for all distinct i, j = 1, . . . ,m. Similarly, we define h′(K) to
be the maximum number of points p1, . . . , pm ∈ bdK such that ‖pi − pj‖K > 1 for all distinct
i, j = 1, . . . ,m.

Note that if K = −K, then h(K) = H(K) and h′(K) = H ′(K) (cf. Definition 2). This is not
necessarily the case if K is not o-symmetric. Generalizing our observation for the symmetric
case above, if p1, . . . , pm ∈ bdK satisfy ‖pi − pj‖K > 1 for all distinct i, j, then the collection
{K−pi : i = 1, . . . ,m} is a pairwise intersecting strict Minkowski arrangement of translates of K,
hence κ′(K, o) ≥ h′(K). Similarly (by adding K to the collection) we have κ(K, o) ≥ h(K) + 1.

Theorem 8. Let K be a convex body in Rd with o ∈ int(K). Then

κ′(K, o) ≤ κ(K, o) ≤ P
(
K, 2(1 + 1

d)
)

(d+O(1)) log θ(K, o)d.

From this theorem and some other well-known results we can easily deduce the following
estimates.

Corollary 9. Let K be a convex body in Rd with p ∈ int(K). Then

κ′(K, p) ≤ κ(K, p) ≤
(

3

2

)d vol(K −K)

vol((K − p) ∩ (p−K))
O(d log θ(K, p)d).

If c is the centroid of K then

κ(K, c) ≤ P
(
K, 2(1 + 1

d)
)

(2d+O(1)) log d ≤ 3d
(

2d

d

)
O(d log d).

The following is an example of a d-dimensional convex body K for which κ(K, c) ≫ 3d =
κ(Cd). Note that κ(∆, o) = 10, where ∆ is a triangle with centroid o [FT95] (see Fig. 2). A
Cartesian product of d/2 triangles gives a d-dimensional convex body C with centroid o such

that κ(C, o) ≥
√

10
d
.

We prove Theorem 8 and Corollary 9 in Section 2.
When K is o-symmetric, there is a lower bound Ω((2/

√
3)d) on H ′(K) [AdRBV98, Theo-

rem 1], which implies that κ′(K) = Ω((2/
√

3)d). Before the result in [AdRBV98], Bourgain
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Figure 2. A pairwise intersecting Minkowski arrangement of 10 triangles [FT95]

[FL94] showed an exponential lower bound to H ′(K) that depends only on the dimension of
K. (This argument was also independently discovered by Talata [Tal98].) The key tool used
by Bourgain and Talata is the Quotient of Subspace Theorem (or, in short, the QS Theorem)
of Milman [Mil85], which states the following.

Let 1 ≤ k < d, and λ = k/d. Let K be a convex body in Rd. Then there is a projection P of
Rd onto a subspace F and a subspace E of F , and an ellipsoid E in E such that dimE = k and

E ⊆ P (K) ∩ E ⊆ c(λ)E ,
where c(λ) depends only on λ.

In order to obtain a lower bound on κ(K, p) in the non-symmetric case, valid for all reference
points p ∈ Rd, the QS Theorem has to be extended to non-symmetric convex bodies. Such a
non-symmetric QS Theorem can be found in Milman and Pajor [MP00]. However, the centroid
of K plays a special role in their result, as E and F have to be affine subspaces through the
centroid. To bypass this limitation, we prove the following topological result.

Lemma 10 (“Centroid of Projection Lemma”). Let K be a convex body in Rd. Then there is a
(d− 1)-dimensional linear subspace H of Rd such that the centroid of the orthogonal projection
of K onto H is the origin.

Statements similar to this lemma are known (see for instance [Izm14]), and most likely, so
is the lemma itself. However, we did not find a reference where this result is explicitly stated
or where it clearly follows from stated results. In Section 3, we present a proof of Lemma 10,
and show how the following theorem follows from this lemma and the above quoted result of
Milman and Pajor.

Theorem 11. Let K be a convex body and p a point in Rd. Then cd < κ′(K, p) ≤ κ(K, p) for
some universal constant c > 1.

2. Bounding κ from above

Proof of Lemma 6. Let T ⊂ Rd be such that ‖x− y‖K∩−K ≥ 1 for all distinct x, y ∈ T and

‖x− y‖ 1
2

(K−K) ≤ λ. Then {v + 1
2(K ∩ −K) : v ∈ T} is a packing. Let P = T + 1

2(K ∩ −K).

Then vol(P ) = 2−d |T | vol(K ∩ −K) and

P − P = T − T + (K ∩ −K) ⊂ λ

2
(K −K) +

1

2
(K −K) =

λ+ 1

2
(K −K).

By the Brunn-Minkowski inequality, vol(P − P ) ≥ 2d vol(P ), and it follows that

|T | = 2d vol(P )

vol(K ∩ −K)
≤ vol(P − P )

vol(K ∩ −K)
≤

(λ+ 1)d vol(1
2(K −K))

vol(K ∩ −K)
. �

Before we prove Theorem 8, we first show an extension of the so-called “bow-and-arrow”
inequality of [FL94] (Corollary 14) to the case of an asymmetric norm.
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Definition 12. For any non-zero v ∈ Rd write v̂ = 1
‖v‖K

v for the normalization of v with

respect to ‖·‖K .

We will only consider normalizations with respect to ‖·‖K , and never with respect to ‖·‖K∩−K
or ‖·‖ 1

2
(K−K).

Lemma 13. Let K be a convex body in Rd containing o in its interior. Let a, b ∈ Rd such that
‖a‖K ≥ ‖b‖K > 0. Then ∥∥∥â− b̂∥∥∥

K
≥
‖a− b‖K − ‖a‖K + ‖b‖K

‖b‖K
.

Proof.

‖a− b‖K =
∥∥∥‖a‖K â− ‖b‖K b̂

∥∥∥
K

=
∥∥∥‖b‖K (â− b̂) + (‖a‖K − ‖b‖K)â

∥∥∥
K

≤ ‖b‖K
∥∥∥â− b̂∥∥∥

K
+ ‖a‖K − ‖b‖K . �

Corollary 14. For any two non-zero elements a and b of a normed space,∥∥∥â− b̂∥∥∥ ≥ ‖a− b‖ − |‖a‖ − ‖b‖|‖b‖
.

Proof of Theorem 8. Let the pairwise intersecting Minkowski arrangement be {λiK + vi : i =
1, . . . ,m}. Without loss of generality, λ1 = mini λi = 1 and v1 = o. Given N ∈ N and δ > 0,
we partition the Minkowski arrangement into N subarrangements as follows. Let Ij = {i : λi ∈
[(1 + δ)j−1, (1 + δ)j ]} for each j = 1, . . . , N , and let I∞ = {i : λi ∈ [(1 + δ)N ,∞)}. We bound
the size of each subarrangement {λiK + vi : i ∈ Ij}, j ∈ {1, . . . , N,∞}, separately. Finally, we
choose appropriate values for N and δ.

The next lemma bounds Ij , j 6=∞, in terms of δ and K.

Lemma 15. Let K be a d-dimensional convex body with o ∈ int(K). Let {vi + λiK : i ∈ I} be
a pairwise intersecting Minkowski arrangement of positive homothets of K, with λi ∈ [1, 1 + δ)
for each i ∈ I. Then

|I| ≤ P (K, 2(1 + δ)) .

Proof. Write T = {vi : i ∈ I}. Since any two homothets intersect, ‖vi − vj‖ 1
2

(K−K) ≤ 2(1 + δ).

Since vi /∈ vj + λj int(K), it follows that vi − vj /∈ int(K ∩ −K) for all distinct i, j ∈ I, which
gives that ‖vi − vj‖K∩−K ≥ 1. �

The following lemma is used to bound I∞.

Lemma 16. Let K be a d-dimensional convex body with o ∈ int(K). Let {vi + λiK : i ∈ I} be
a Minkowski arrangement of positive homothets of K with λi ≥ 1, (vi + λiK) ∩ −εK 6= ∅ and
o /∈ vi + λi int(K) for all i ∈ I. Then

|I| ≤ P
(
K,

2

1− ε

)
.

We first consider two homothets in the Minkowski arrangement of the previous lemma.

Lemma 17. Let v1 + λ1K and v2 + λ2K be two positive homothets of K such that λ1, λ2 ≥ 1,
v1 /∈ v2 +λ2 int(K), v2 /∈ v1 +λ1 int(K), o /∈ vi +λi int(K) and (vi +λiK)∩−εK 6= ∅ (i = 1, 2).

Then
∥∥∥ 1
‖−v1‖K

(−v1)− 1
‖−v2‖K

(−v2)
∥∥∥
K∩−K

≥ 1− ε.
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Proof. Since ‖·‖K∩−K is symmetric, we may assume that ‖−v1‖K ≤ ‖−v2‖K . Since (v1+λ1K)∩
−εK 6= ∅, v1 +λ1x = −εy for some x, y ∈ K. Therefore, ‖−v1‖K ≤ λ1 ‖x‖K + ε ‖y‖K ≤ λ1 + ε.
Also, since o /∈ v1 + λ1 int(K), we have that ‖−v1‖K ≥ λ1. Similarly, λ2 ≤ ‖−v2‖K ≤ λ2 + ε.
Since v1 /∈ v2 + λ2 int(K), we obtain that ‖v1 − v2‖K ≥ λ2. We apply Lemma 13 to obtain∥∥−̂v1 − −̂v2

∥∥
K∩−K ≥

∥∥−̂v2 − −̂v1

∥∥
K

≥
‖v1 − v2‖K − ‖−v2‖K + ‖−v1‖K

‖−v1‖K

≥
λ2 − (λ2 + ε) + ‖−v1‖K

‖−v1‖K
= 1− ε

‖−v1‖K
≥ 1− ε

λ1
≥ 1− ε. �

Proof of Lemma 16. For each i ∈ I, let ti = −̂vi. Let T := {ti : i ∈ I}. By Lemma 17,
‖ti − tj‖K∩−K ≥ 1 − ε for all distinct i, j ∈ I. Since T ⊂ K, ‖ti − tj‖ 1

2
(K−K) ≤ 2. It follows

that |I| ≤ P (K, 2/(1− ε)). �

We now finish the proof of Theorem 8. By Lemma 15, for j = 1, . . . , N , |Ij | ≤ P (K, 2(1 + δ)),
and by Lemma 16 applied to I∞ and ε = θ(K, o)(1 + δ)−N ,

|I∞| ≤ P
(
K,

2

1− θ(K, o)(1 + δ)−N

)
.

It follows that

m = N
N∑
j=1

|Ij |+ |I∞| ≤ P (K, 2(1 + δ)) + P

(
K,

2

1− θ(K, o)(1 + δ)−N

)
.

We now choose

N := 1 +

⌈
log θ(K, o)d

log(1 + 1
d)

⌉
= (d+O(1))O(log θ(K, o)d)

and δ = 1/d. Then

N ≥ 1 +
log θ(K, o)d

log(1 + 1
d)

,

which implies that

2

1− θ(K, o)(1 + δ)−N
≤ 2(1 + δ),

hence

m ≤ P
(
K, 2(1 + 1

d)
)

(N + 1) = P
(
K, 2(1 + 1

d)
)

(d+O(1)) log θ(K, o)d. �

Proof of Corollary 9. The first statement follows from Theorem 8 combined with Lemma 6.
If o is the centroid of K, then it is well known (the earliest appearance of this fact may

be in [Min97]) that θ(K, o) ≤ d. Also, by a result of Milman and Pajor [MP00, Corollary 3]
for a convex body K with centroid o, vol(K)/ vol(K ∩ −K) ≤ 2d, which, together with the

Rogers-Shephard inequality [RS57] vol(K −K) ≤
(

2d
d

)
vol(K), gives the second statement. �
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3. Bounding κ′ from below

Proof of Lemma 10. For any unit vector u ∈ Sd−1, let f(u) be the centroid of the orthogonal
projection of K onto u⊥. We need to show that f(u) = o for some u ∈ Sd−1. Suppose

not. Then f̂ : Sd−1 → Sd−1 defined by f̂(u) = f(u)/ ‖f(u)‖2 is a continuous, even mapping

such that 〈u, f(u)〉 = 0 for all u ∈ Sd−1. Since f is even, its degree is even (see for instance
[Hat02, Proposition 2.30]. Also, f(u) 6= −u for all u ∈ Sd−1. It follows that f is homotopic to
the identity map, which has degree 1, a contradiction. �

The non-symmetric version of the QS theorem, due to Milman and Pajor [MP00, Theorem 9],
combined with Lemma 10 yields the following.

Theorem 18. Let 1 ≤ k < d − 1, and λ = k/(d − 1). Let K be a convex body in Rd. Then
there is a projection P of Rd onto a subspace F and a subspace E of F , and an ellipsoid E in
E such that dimE = k and

E ⊆ P (K) ∩ E ⊆ c(λ)E ,
where c(λ) depends only on λ.

Finally, the same proof as the one that yields Theorem 4.3 in [FL94], now yields Theorem 11.

Proof of Theorem 11. We closely follow the proof of the symmetric case (Theorem 4.3) in [FL94].
By Theorem 18, there is a roughly (d/2)-dimensional subspace E, such that for an appropriate

projection P of Rd, we have E ⊆ P (K)∩E ⊆ cE with some universal constant c. By a theorem
of Milman [Mil71] (see also [MS86, Section 4.3]), we can take a C(d/2)-dimensional subspace E′

of E such that E ⊆ P (K) ∩ E ⊆ 1.1E , for a universal constant C > 0. Although this is stated
only for symmetric bodies K in [MS86], the proof obviously works in the non-symmetric case
as well. Now, there are exponentially many points on the relative boundary of K ′ := P (K)∩E′
such that the distance (with respect to the non-symmetric norm on E′ whose unit ball is K ′)
between any two points is at least 1.21. Let X be the set of these points. For every x ∈ X,
choose a point y ∈ bdK such that P (y) = x. These points y form the desired set in Rd. �
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8 M. NASZÓDI, J. PACH, K. J. SWANEPOEL

[MS86] V. D. Milman and G. Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture
Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov.
MR856576

[RS57] C. A. Rogers and G. C. Shephard, The difference body of a convex body, Arch. Math. (Basel) 8
(1957), 220–233.

[Tal05] I. Talata, On Hadwiger numbers of direct products of convex bodies, Combinatorial and computational
geometry, 2005, pp. 517–528. MR2178337 (2006g:52030)

[Tal98] I. Talata, Exponential lower bound for the translative kissing numbers of d-dimensional convex bodies,
Discrete Comput. Geom. 19 (1998), no. 3, Special Issue, 447–455. Dedicated to the memory of Paul
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