
Minimum clique partition in unit disk graphs

Adrian Dumitrescu1, János Pach2

1 University of Wisconsin–Milwaukee, USA; e-mail: dumitres@uwm.edu.
Supported in part by NSF CAREER grant CCF-0444188. Part of the research by this author
was done at Ecole Polytechnique Fédérale de Lausanne.

2 Ecole Polytechnique Fédérale de Lausanne and City College, New York;
e-mail: pach@cims.nyu.edu. Research partially supported by NSF grant CCF-08-30272, grants
from OTKA, SNF, and PSC-CUNY.

Abstract. The minimum clique partition (MCP) problem is that of partitioning the vertex set
of a given graph into a minimum number of cliques. Given n points in the plane, the corre-
sponding unit disk graph (UDG) has these points as vertices, and edges connecting points at
distance at most 1. MCP in unit disk graphs is known to be NP-hard and several constant factor
approximations are known, including a recent PTAS. We present two improved approximation
algorithms for minimum clique partition in unit disk graphs with a realization:

(I) A polynomial time approximation scheme (PTAS) running in time nO(1/ε2). This improves
on a previous PTAS with nO(1/ε4) running time [23].

(II) A randomized quadratic-time algorithm with approximation ratio 2.16. This improves
on a ratio 3 algorithm with O(n2) running time [7].

Key words. Unit disk graph, clique partition.

1. Introduction

Unit disk graphs (UDGs) can be defined in three equivalent ways, as follows [8]: (i) For n
points in the plane, form a graph with n vertices corresponding to the n points, and an
edge between two vertices if and only if the distance between the two points is at most
1. (ii) For n unit circles in the plane, form a graph with n vertices corresponding to the
n circles, and an edge between two vertices if and only if one of the corresponding circles
contains the other’s center. (iii) For n circles of unit diameter in the plane, form a graph
with n vertices corresponding to the n circles, and an edge between two vertices if and
only if the two circles intersect. If in definition (iii) above, the (interiors of the) circles are
non-overlapping, the unit disk graph is called a unit coin graph, see [7]. The three models
for the above definitions are known as: (i) the proximity model, (ii) the containment model,
and (iii) the intersection model.

Most applications of unit disk graphs arise in wireless network research: usually, two
nodes can directly communicate if they lie in the unit disks placed at each others’ centers.
There is a vast literature on algorithmic problems studied on UDGs, here we mention only
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a few: [1,7,8,11,12,19,21,23]. A recent survey is [2]. The seminal paper by Clark et al. [8]
studies the complexities of several classical graph optimization problems, known to be
NP-complete in general, in the setting of unit disk graphs: coloring, clique, independent
set, vertex cover, domination, independent domination, and connected domination. For
instance, it is shown there [8] that in unit disk graphs a maximum clique can be found
in polynomial time. On the other hand, some closely related problems, such as finding a
proper 3-coloring, remain NP-complete even in this setting [8]. Breu and Kirkpatrick [4]
later showed that the problem of recognizing unit disk graphs is NP-hard, and thereby
answered one of problems left open in [8].

Given a set S of n points in the plane, a partition of S into q sets C1, C2, . . . , Cq is called
a q-clustering, and the individual sets are called its clusters; see [5]. Feder and Greene [13]
have shown that it is NP-hard to find a q-clustering in which the maximum diameter of
the clusters is within a factor of 1.97 of the optimum. Clustering is a broad area in graph
optimization, that is particularly relevant to wireless networks: typically one wants to
find large groups that can mutually communicate with each other. Mutual proximity of
nodes in a cluster is therefore a key criterion, and cliques as clusters describe it the best.
The minimum clique partition (MCP) problem is that of partitioning the vertex set of a
given graph into a minimum number of cliques. For general graphs, MCP is equivalent to
minimum graph coloring of the complement graph, which is known to be inapproximable
within n1−ε, for any ε > 0, unless P=NP [27]. The best known approximation algorithm

for the graph coloring problem is an O(n (log log n)2

(log n)3
)-approximation, due to Halldórsson [16].

Supowit has shown that the MCP problem in UDGs is NP-complete [26]. Cerioli et
al. [7] have shown that the problem remains NP-complete even for unit coin graphs.
They also gave a 3-approximation algorithm for MCP in UDGs running in quadratic
time. Recently, Pirwani and Salavatipour [23] have devised a PTAS for MCP in unit disk
graphs, that relies on the separability property of an optimal clique partition (Theorem 1
below), first established by Capoyleas et al. [5] in the early 1990s. The authors of [23]
rediscovered this property, apparently being unaware of the old solution.

Theorem 1. (Capoyleas, Rote and Woeginger [5]). Given a finite point set S in the plane,
there exists an optimal clique partition where the convex hulls of the cliques are non-
overlapping.

Our Results. By refining the ideas used in [5] and [23], in Section 2 we obtain an nO(1/ε2)

(polynomial) time approximation scheme (PTAS) for MCP. This improves on the previ-
ously best algorithm, which has running time nO(1/ε4) [23].

Theorem 2. Given a set of n points in the plane, there exists a PTAS for MCP, which
computes an (1 + ε)-approximation in nO(1/ε2) time.

In Section 3, we revisit the ratio 3 approximation algorithm of Cerioli et al. [7], which
builds on the ideas of Breu [3]. The ratio 3 approximation was the best achievable with
a practical algorithm, running in O(n2) time. Based on their idea, we show that a ran-
domized variant of the algorithm computes a 2.16-approximate solution within about the
same running time.
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Theorem 3. For any 0 < ε, δ < 1, given a set of n points in the plane, there is an
algorithm for MCP, which computes a solution at most 1 + 2/

√
3 + ε times the optimal

with probability at least 1 − δ in O
(

1
ε
· ln 1

δ
· n2

)

time. In particular, a 181
84

-approximate
solution can be computed with probability at least 1 − δ in O(ln 1

δ
· n2) time.

In Section 4, we give a streamlined proof of Theorem 1, which makes our paper self-
contained.

Definitions and notations. We say that a set S of points in the plane is in general position
if no three of its points are collinear. For a point set S, let conv(S) be the convex hull
of S. If there is no danger of confusion, we use the same symbol to sometimes denote a
polygonal region (or, simply, polygon) and its boundary. Given a convex polygon P , let
V (P ) denote its vertex set. For a given set S of input points, let G = G(S) denote the
UDG defined by the set of unit disks centered at the elements of S, and let z = z(S)
denote the minimum number of cliques in a clique partition of G, that is, the size of the
optimal solution of the MCP problem for S (and for G = G(S)). In designing a PTAS for
MCP, since z ≤ n = |S|, we can assume without loss of generality that ε ≥ 1/n.

Two convex polygons A and B in the plane are said to be overlapping if area(A∩B) >
0, and non-overlapping otherwise. Analogously, we say that two cliques in some clique
partition are overlapping or non-overlapping.

2. A faster n
O(1/ε2)-time PTAS

In this section, we prove Theorem 2. First notice that Theorem 1 holds in a slightly
stronger form: there exists an optimal clique partition in which the (convex hulls) of the
cliques are pairwise disjoint, rather than simply non-overlapping. For any two cliques
whose convex hulls share points from S on two of their boundary edges, these points can
be arbitrarily assigned to one of the cliques. By repeatedly applying this operation, one
can obtain a clique partition, where the convex hulls of the cliques are pairwise disjoint.
This operation is not necessary if the points are assumed to be in general position. We
start with two simple facts (the first one is well-known):

Lemma 1. Given two disjoint convex polygons P and Q in the plane, there exists a sep-
arating (tangent) line determined by a pair of vertices in V (P ) ∪ V (Q).

Lemma 2. Let k ≥ 6 be a positive integer. The size of an optimal solution for MCP for
a set of points in a k × k square cell σ is at most 2k2 + 3k.

Proof. Cover a k × k grid cell σ by smaller square cells of size 1√
2
× 1√

2
. The number of

smaller cells is at most ⌈k
√

2⌉2 ≤ (k
√

2 + 1)2 ≤ 2k2 + 3k. Since any set of points inside
a 1√

2
× 1√

2
square forms a clique, it follows that an optimal clique partition consists of at

most 2k2 + 3k cliques.

Our PTAS, which follows the same overall structure of the PTAS in [23], is outlined
below. Our improvement in the running time comes from speeding up Step 2.
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Step 1. Partition the region of the plane containing S using a randomly shifted grid
whose cell size is k× k, with k = ⌈16

ε
⌉. If k is large enough, the probability that any fixed

clique in an optimum clique partition is cut by this grid (and therefore belongs to two or
more grid cells) is small, namely O(1/k).

Step 2. Compute an optimal clique partition in each cell σ of the grid and return the
union of these cliques. The expected size of the solution is at most (1 + ǫ)z.

By repeating these two steps in O(ln 1
δ
) independent random trials, the solution is at

most (1 + ǫ)z with probability at least 1 − δ, for any prescribed 0 < δ < 1. (A similar
argument to the same effect is detailed in Section 3, equations (1),(2),(3),(4).)

We now show that Step 2 can be performed in nO(1/ε2) time. For simplicity, we still
use n to denote the number of points of S in a fixed grid cell σ. It suffices to show that
an optimal solution in σ can be computed in nO(1/ε2) time, since the overall running time
is then bounded by the same expression. The details are as follows.

Let σ be a fixed grid cell. Let qmax = 2k2 +3k be the upper bound from Lemma 2. For
q = 1, 2, . . . , qmax, the algorithm checks whether there exists a clique partition of size q for
the points in S ∩ σ. Assume that q is the optimal size. Consider an (unknown) optimal
clique partition with pairwise disjoint cliques C1, . . . , Cq ⊂ S∩σ. Write Cσ = {C1, . . . , Cq}.
Assume that we are given q representative points r1, . . . , rq ∈ S ∩σ, where ri ∈ Ci. Define
the proximity graph X = (R, F ) with vertex set R = {r1, . . . , rq}, where rirj ∈ F if and
only if |rirj | ≤ 2. Two key steps are the following:

Lemma 3. If rirj /∈ F , and p ∈ S ∩ σ satisfies |pri| ≤ 1, then p /∈ Cj.

Proof. Assuming p ∈ Cj yields |prj | ≤ 1. By the triangle inequality, we have |rirj | ≤
|pri| + |prj| ≤ 2, which contradicts the assumption rirj /∈ F in the lemma.

Lemma 4. The maximum degree in X is at most 79.

Proof. Let ri be an arbitrary vertex of X, and let N(ri) be the set of vertices connected
to ri by an edge in X. Note that all cliques in Cσ whose representative points are in
{ri}∪N(ri) are contained in the circle Ω of radius 3 centered at ri. For a short argument,
observe that the axis-aligned square circumscribed around Ω has side length 6, and recall
that Cσ is a minimum clique partition for the points in S∩σ. Cover σ by smaller rectangular
cells of size 3

5
× 4

5
, aligned with σ. The number of smaller cells is at most 10 · 8 = 80.

Since any set of points inside a 3
5
× 4

5
rectangle forms a clique, it follows that Cσ consists

of at most 80 cliques. Hence |N(ri)| ≤ 79, so the maximum degree in X is at most 79, as
claimed.

Note that, by Lemma 1, for any pair of representatives ri, rj ∈ R, there exists a line
separating Ci from Cj, that passes through two points of V (conv(Ci)) ∪ V (conv(Cj)).
In particular, this holds for pairs ri, rj ∈ R, such that rirj ∈ F (that is, edges in the
proximity graph). Refer to Fig. 1.

Assume that we are given: (i) q representative points r1, . . . , rq ∈ S ∩ σ, where ri ∈ Ci;
(ii) the proximity graph X with vertex set R = {r1, . . . , rq}, and (iii) the pairs of vertices
(points in S ∩ σ) incident to each of the separating lines for the edges rirj ∈ F .
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Ci

Fig. 1. A clique partition in cell σ, with pairwise disjoint cliques, drawn as convex polygons.
Lines separating Ci from other cliques Cj , where rirj ∈ F are drawn with dashed lines. Repre-
sentative points in each clique are drawn as (small) filled circles.

Having all the above information, its validity can be verified in O(n2) time, that is, if
it corresponds to a valid clique partition of the points in S ∩ σ: more precisely, for each
representative point ri, the points in S at distance at most 1 from ri, and that lie on
the same side as ri of the separating lines for the pairs Ci, Cj corresponding to the edges
rirj ∈ F , must form a clique.

Our algorithm simply generates all guesses of the above form, as specified by (i), (ii),
and (iii), and checks their validity. If at least one valid clique partition of size q for the
points in S ∩σ, is found, the algorithm terminates, since there is no need to try the larger
values of q. For discussing the time complexity of the algorithm, we take into account the
following elements:

1. There are at most nq choices for the representative points r1, . . . , rq.
2. Since the maximum degree in X is at most 79, the number of edges of X is at most

79q/2 = 39.5q, and the total number of proximity graphs on vertices r1, . . . , rq, is at
most 239.5q log q+O(q).

3. Given a proximity graph X with at most 79q/2 edges, there are at most
(

n
2

)79q/2 ≤ n79q

choices for separating lines, one for each edge of the graph. Observe that each separating
line is determined by two of the n points.

Recall that q ≤ qmax = 2k2 + 3k, where k = O(1
ε
) = O(n). We obtain the following

overall upper bound on the running time:

2O(qmax log qmax) · n80qmax = kO(k2) · n160k2+O(k) = nO(1/ε2).

The proof of Theorem 2 is now complete.

Remark 1. For simplicity of the arguments and of the resulting bounds, we have often
used only rough estimates. For instance, in Lemma 2, one can get a better bound by
using hexagonal cells, and the degree bound in Lemma 4 can also be reduced by a more
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careful argument. The same applies to some of the bounds used in [23]; for example,
in the analysis of Step 1 of the PTAS from [23], for a given clique partition of G, the
probability that a clique is cut by both a vertical and a horizontal line of the grid is only
about O( 1

k2 ) rather than O( 1
k
). So most of the cliques are cut in two rather than four parts

by the randomly shifted grid. The bottom line is that for obtaining a practical PTAS,
many theoretical aspects and implementation details need to be addressed altogether at
the same time.

Remark 2. Capoyleas et al. [5] proposed a different approach for computing a MCP in a
UDG, under the assumption that the number of cliques in the optimal partition is bounded
by a constant. Their proof is based on the following lemma of L. Fejes Tóth [14] (see
also Cassels [6], Heppes [18], Edelsbrunner et al. [10], or [22, p. 23]): Given a collection of
pairwise disjoint closed convex sets C1, . . . , Cq in a square Q, say, there exists a subdivision
of Q into convex pieces with a total number of at most 6q sides such that each piece
contains at most one Ci.

Let C ′
i denote the piece containing Ci in such a subdivision (1 ≤ i ≤ q). Define a graph

G∗ on the vertex set {C ′
1, . . . , C

′
q} by connecting C ′

i and C ′
j with an edge if and only if

they share a boundary segment. In the proof of their Theorem 9, Capoyleas et al. applied
Fejes Tóth’s lemma to the convex hulls Ci of q cliques that form a clique partition, and
suggested that a MCP can be obtained by enumerating all possible planar graphs G∗ on q
vertices and trying all possible connecting lines of the n input points, as potential sides of
the convex polygonal pieces C ′

i. Since it is not at all obvious (to us) whether there exists a
subdivision in which all sides belong to such connecting lines, in our proof of Theorem 2,
we decided to follow a different approach.

Remark 3. Although both our improvements were first reported in 2009 [9], and the
authors of [23] were very well aware of them, they chose not to mention them in their
subsequent versions [24,25]. Moreover, they “adjusted” the running time of their PTAS
to nO(1/ε2) by solely invoking a planarity argument and referring the reader to [5] for more
details. This is exactly what we avoided to do in Section 2.

3. A randomized 2.16-approximation algorithm

In this section we prove Theorem 3. Following [3], a unit disk graph G is called a τ -strip
graph, if all the points lie in a parallel strip of width τ . As shown by Breu in his PhD
thesis, a τ -strip graph for τ ≤

√
3/2 is the complement of a comparability graph, therefore

the minimum clique partition problem can be solved (exactly) in polynomial time on such
strip graphs [3]. Specifically this amounts to coloring the complement G of G, and this
takes O(n2) time [15].

A 3-approximation algorithm for MCP based on this idea is given in [7]: it partitions
the plane (the region containing all the points) into parallel (say, horizontal) strips of
width

√
3/2, then computes an optimal clique partition in each strip, and finally outputs

the union of all the cliques computed. The algorithm runs in O(n2) time. Instead of strips
of an irrational width,

√
3/2, one can use slightly thinner strips, say of width 0.8, and the

same result still holds.
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Here we present and analyze a randomized variant which uses strips of width a =
√

3/2.
The system of strips is determined by placing a horizontal line at a random y-coordinate
uniformly chosen in the interval [0, a). In fact, the strips can be slightly thinner, so that
their width is a rational number, see below.

Proof of Theorem 3. Let ξ = 1 + 1
a
, where a =

√
3/2. Let OPT = C1 ∪ . . . Cz be an

optimal clique partition. Obviously, we have z ≤ n. For 1 ≤ i ≤ z, let Xi be the number
of parts in which Ci is split by the system of horizontal strips, and let bi be the vertical
width of Ci. Obviously bi ≤ 1, and Xi ∈ {1, 2, 3}. Let X be the number of cliques output
by the algorithm. Clearly, X ≤

∑z
i=1 Xi and z ≤ X ≤ 3z. We distinguish two cases:

Case 1: bi ≤ a. Then Xi ∈ {1, 2}, thus E[Xi] ≤ 2 < 1 + 1/a.

Case 2: bi > a. Then Xi ∈ {1, 2, 3}. It is easy to see that

Prob[Xi = 3] =
bi

a
− 1, and Prob[Xi ≤ 2] = 2 − bi

a
,

thus

E[Xi] ≤ 2

(

2 − bi

a

)

+ 3

(

bi

a
− 1

)

= 1 +
bi

a
≤ 1 +

1

a
.

Thus in both cases we have E[Xi] ≤ 1 + 1
a
. It follows immediately by the linearity of

expectation that

E[X] ≤
z

∑

i=1

E[Xi] ≤
(

1 +
1

a

)

z = ξz. (1)

Observe that
(

1 +
ε

3

)

ξ ≤ ξ + ε.

By Markov’s inequality [20], the probability that the solution output by the algorithm
after one round is larger than (ξ + ε)z, is bounded by:

Prob[X ≥ (ξ + ε)z] ≤ Prob[X ≥
(

1 +
ε

3

)

ξz] ≤ Prob[X ≥
(

1 +
ε

3

)

E[X]] ≤ 1

1 + ε
3

. (2)

Since the rounds are independent, it follows that

Prob[X ≥ (ξ + ε)z in j rounds] ≤
(

1

1 + ε
3

)j

. (3)

Recall the standard inequality ln (1 + x) ≥ 0.9x, for 0 ≤ x ≤ 0.1. To make the above
bound smaller than δ, it is enough to choose

j ≥ ln 1
δ

ln
(

1 + ε
3

) , e.g., j =

⌈

ln 1
δ

0.3ε

⌉

. (4)

The resulting running time of the algorithm is O
(

1
ε
· ln 1

δ
· n2

)

, as claimed.
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Using a rational strip width. Note that having strips of width a =
√

3/2 may be
impractical, or may require additional complications, since a /∈ Q. Then one may use
strips of slightly smaller width. First observe that if 0.8 ≤ d ≤ a = 0.866 . . ., and a
system of strips of width d < a is chosen, the same algorithm can be used. Equation (1)
becomes in this case:

E[X] ≤
z

∑

i=1

E[Xi] ≤
(

1 +
1

d

)

z. (5)

We use standard facts from number theory pertaining to approximations of irrational
numbers by continued fractions [17, Chapters X, XI]. Let ξ = 1 + 1

a
, and r = p/q > ξ

be a rational approximation of ξ from above. We will discuss shortly how a suitable such
approximation can be found. The algorithm randomly selects a strip partition, with strips
of width d, where d is the solution of

1 +
1

d
=

p

q
, namely d =

q

p − q
.

Here p and q, thus also d will depend on the given ε > 0, and next we discuss their
selection. It is easy to see that ξ satisfies the quadratic equation

ξ = 2 +
1

6 + 1
ξ

,

thus its continued fraction expansion is periodic [17, pp. 143]:

ξ = [2, 6, 2, 6, 2, 6, . . .] = [2̇, 6̇].

Write
ξt =

pt

qt
, t = 0, 1, 2, . . .

for the convergents in the continued fraction expansion of ξ, obtained by Euclid’s algo-
rithm. For instance, the first four convergents of ξ are:

p0

q0

=
2

1
,

p1

q1

=
13

6
,

p2

q2

=
28

13
,

p3

q3

=
181

84
.

By [17, Theorems 152,153,154,164], the convergents tend in the limit to ξ, and satisfy
∣

∣

∣

∣

pt

qt
− ξ

∣

∣

∣

∣

<
1

q2
t

,

with the odd convergents being strictly greater than ξ, decreasing to ξ in the limit, and
satisfying the recurrence

pt

qt
=

13pt−2 + 2qt−2

6pt−2 + qt−2
, (t odd).

Fix now t > 0 to be the smallest odd positive integer for which q2
t ≥

⌈

3
ε

⌉

, and set
p = pt, and q = qt. For this choice, we can obtain the analogues of (2) and (3). The special
case with ratio 181

84
mentioned in the theorem corresponds to the second odd convergent

(t = 3). It uses strips of width 84
97

, and already gives ε < 10−4. This completes the proof
of Theorem 3.
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4. A short proof of Theorem 1

Let C be a clique partition for point set S. As in [5] (or in [23]), define an appropriate
“potential function”, Ψ , over the cliques in C. The value of Ψ for C equals the sum of the
perimeters of the convex hulls of the cliques in C:

Ψ (C) =
∑

C∈C
per(conv(C)).

Let C be a clique partition minimizing Ψ (C) and assume for contradiction that C has
overlapping cliques. Let C, D ∈ C be a pair of overlapping cliques, and let P = conv(C),
and Q = conv(D). Let I = P ∩ Q, and L = P ∪ Q. By definition, I is a convex polygon
with non-zero area. Let P \Q = {X0, . . . , Xk−1} be the set of connected regions of P \Q
in clockwise order. Similarly, let Q\P = {Y0, . . . , Yk−1} be the set of connected regions of
Q\P in clockwise order, where X0, Y0 are consecutive in this order. Each region Xi, or Yj

is referred to as a petal (of P , or Q, respectively; see Fig. 2(left). Obviously, the number
of petals of P is equal to the number of petals of Q, as in the above labeling. Two petals
Xi and Yj are said to be incompatible if there are vertices xi ∈ C ∩ Xi, and yj ∈ D ∩ Yj,
such that xiyj /∈ E; that is, the vertices of Xi and Yj cannot be members of the same
clique. We also say that two such vertices are incompatible.

r1

b2

b0

r0

b1

r2Y0

X2

Y1

X1

X0
Y2 c

d

a

e

f
b

Fig. 2. (a) Two overlapping cliques. (b) A hypothetical graph H. (c) Illustration to the proof
of Lemma 5: P is shown in solid edges, and Q in dashed edges.

We construct a convex geometric graph H = (B ∪ R, F ) as follows: B and R are sets
of k blue (resp. red) points each, placed equidistantly and alternating on some circle Ω
(i.e., B ∪R is the vertex set of a regular 2k-gon); refer to Fig. 2(middle). The blue points
correspond to the petals of P , while the red points correspond to the petals of Q, and
they are labeled in the same way. A blue and a red point are connected by an edge in F
if their corresponding petals are incompatible.

Lemma 5. H has no isolated vertices.

Proof. For contradiction, assume that bi be a blue isolated vertex (the argument is the
same for red vertices). The corresponding petal Xi of P is compatible with all petals of
Q, thus D̃ = D ∪ (Xi ∩ S) is a clique in G. Obviously C̃ = C \ (Xi ∩ S) is also a clique.
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Observe that C̃∪D̃ = C∪D, that is, C̃ and D̃ cover all the points in C and D. It remains
to show that Ψ (C̃)+Ψ (D̃) < Ψ(C)+Ψ (D), which will contradict the minimality of Ψ (C).

Assume that a and b are the intersection points of P and Q at petal Xi, and that cd
and ef are the common tangents to P and Q for the pairs of petals Xi, Yi and Xi, Yi−1;
see Fig. 2(right). With the notation from the figure, it is enough to check that

b

b′

r′

r

b′

r′

r
b′′

r′′

b

b

r′

b′′r′′

r

Fig. 3. Illustration to the proof of Lemma 6. Blue vertices are drawn as filled circles, red vertices
are drawn as empty circles.

[|ab|] + [|cd| + |de| + |ef |] < [|ad| + |de| + |eb|] + [|ac| + |ab| + |bf |].

This follows immediately from the triangle inequality in ∆apq and ∆bp′q′, namely |cd| <
|ac| + |ad|, and |ef | < |be| + |bf |.

Two disjoint edges of H are said to be anti-parallel if the 4 endpoints have alternating
color around the circle, and parallel otherwise.

Lemma 6. H has no pair of disjoint edges.

Proof. We first show that H has no pair of anti-parallel edges; refer to Fig. 3(left). Assume
that br and b′r′ are two anti-parallel edges. Let X and X ′ be the petals of P corresponding
to b and b′, and Y and Y ′ be the petals of Q corresponding to r and r′. Let x ∈ X, x′ ∈ X ′,
y ∈ Y , y′ ∈ Y ′ be 4 points of S. By the triangle inequality, we have

2 < |xy| + |x′y′| ≤ |xx′| + |yy′| ≤ 2,

a contradiction.
We now show that H has no pair of parallel edges; refer to Fig. 3(middle). Assume

that br and b′r′ are two parallel edges. Since the colors of vertices of H are alternating
along the circle, there exists a blue vertex, say b′′, between r and r′. By Lemma 5, there
exists a red vertex r′′, so that b′′r′′ is an edge of H . It is easy to see that regardless on its
position on the circle, either br and b′′r′′ are anti-parallel, or b′r′ and b′′r′′ are anti-parallel,
contradicting the first part of the proof.

Lemma 7. Every vertex of H has degree one.
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Proof. Assume that b is a blue vertex with (at least) two incident edges br and br′; see
Fig. 3(right). As in the proof of Lemma 6, there exists a blue vertex, say b′′, between r and
r′, and a red vertex r′′, so that b′′r′′ is an edge of H (r′′ could be r or r′). Regardless on its
position on the circle, either br and b′′r′′ are anti-parallel, or br′ and b′′r′′ are anti-parallel,
contradicting Lemma 6.

By the three previous lemmas, H consists of a red-blue perfect matching M of k
pairwise crossing segments. Moreover, k must be odd, and this matching is unique: M =
{biri+⌊k/2⌋ : i = 0, . . . , k − 1}, as in Fig. 2(middle). Observe that any halving line of the
2k points in B∪R cuts all edges of M (i.e., all edges of H); take for instance, the halving
line separating b0 from r⌊k/2⌋, and the corresponding chord s of I = P ∩Q connecting the

two intersection points of P and Q, as in Fig. 2(left). Let C̃ and D̃ be be the set of points
of C ∪ D left and respectively right of the cutting line through s. Let P̃ = conv(C̃), and
Q̃ = conv(D̃). Since all edges of H are cut, there is no incompatible pair of vertices in C̃
or in D̃, thus both are cliques. To finish the proof of Theorem 1, it remains to show that
Ψ (C̃) + Ψ (D̃) < Ψ(C) + Ψ (D), which will contradict the minimality of Ψ (C). We make
use of the following simple but useful fact, noted in [5,23]:

per(P ) + per(Q) = per(L) + per(I) ≥ per(P̃ ) + per(Q̃) + per(I) − 2|s|. (6)

Since area(I) > 0, we have per(I) > 2|s|, hence

Ψ (C̃) + Ψ (D̃) = per(P̃ ) + per(Q̃) < per(P ) + per(Q) = Ψ (C) + Ψ (D),

as claimed. It follows that C has no overlapping cliques, and the proof of Theorem 1 is
complete.
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1. C. Ambühl, T. Erlebach, M. Mihalák, and M. Nunkesser: Constant-factor approximation
for minimum-weight (connected) dominating sets in unit disk graphs, in Proc. of APPROX-
RANDOM, vol. 4110 of Lecture Notes in Computer Science, pp. 3–14, Springer, 2006.

2. B. Balasundaram and S. Butenko: Optimization problems in unit-disk graphs, in Encyclo-
pedia of Optimization, pages 2832–2844, (C. Floudas and M. Pardalos, editors), Springer,
2008.

3. H. Breu: Algorithmic Aspects of Constrained Unit Disk Graphs, PhD Thesis, University of
British Columbia, 1996.

4. H. Breu and D. Kirkpatrick: Unit disk graph recognition is NP-hard, Computational Geom-
etry: Theory and Applications, 9(1-2) (1998), 3–24.

5. V. Capolyleas, G. Rote, and G. Woeginger: Geometric clusterings, Journal of Algorithms,
12 (1991), 341–356.

6. J. Cassels: An Introduction to the Geometry of Numbers, Springer, New York, 1959.



12 Adrian Dumitrescu, János Pach

7. M.R. Cerioli, L. Faria, T.O. Ferreira, and F. Protti: On minimum clique partition and maxi-
mum independent set on unit disk graphs and penny graphs: complexity and approximation,
Electronic Notes in Discrete Mathematics, 18 (2004), 73–79.

8. B. Clark, C. Colbourn, and D. Johnson: Unit disk graphs, Discrete Mathematics, 86 (1990),
165–177.

9. A. Dumitrescu and J. Pach: Minimum clique partition in unit disk graphs, preprint, Septem-
ber 8, 2009, arXiv:0909.1552v1.

10. H. Edelsbrunner, A. Robison, and X-J. Shen: Covering convex sets with non-overlapping
polygons, Discrete Mathematics, 81 (1990), 153–164.

11. T. Erlebach, K. Jansen, and E. Seidel: Polynomial-time approximation schemes for geometric
graphs, Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms, (2001), pp.
671–679.

12. T. Erlebach and E. J. Leeuwen: Approximating geometric coverage problems, Proceedings
of the 19th ACM-SIAM Symposium on Discrete Algorithms, (2008), pp. 1267–1276.

13. T. Feder and D. Greene: Optimal algorithms for approximate clustering, Proceedings of the
20th ACM Symposium on Theory of Computing, (1988), pp. 434–444.
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