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Abstract. According to Suk’s breakthrough result on the Erdős–Szekeres prob-
lem, any point set in general position in the plane, which has no n elements
that form the vertex set of a convex n-gon, has at most 2n+O(n2/3 log n) points. We
strengthen this theorem in two ways. First, we show that the result generalizes to
convexity structures induced by pseudoline arrangements. Second, we improve
the error term.

A family of n convex bodies in the plane is said to be in convex position if the
convex hull of the union of no n − 1 of its members contains the remaining one.
If any three members are in convex position, we say that the family is in gen-
eral position. Combining our results with a theorem of Dobbins, Holmsen, and
Hubard, we significantly improve the best known upper bounds on the following
two functions, introduced by Bisztriczky and Fejes Tóth and by Pach and Tóth,
respectively. Let c(n) (and c′(n)) denote the smallest positive integer N with the
property that any family of N pairwise disjoint convex bodies in general position
(resp., N convex bodies in general position, any pair of which share at most two
boundary points) has an n-membered subfamily in convex position. We show that

c(n) ≤ c′(n) ≤ 2
n+O

(√
n log n

)
.

1. Introduction

We say that a set of n points in the plane is in convex position if the convex hull
of no n − 1 of them contains the n-th point. If no three elements of the set are
collinear (that is, any three points are in convex position), then the set is said to be
in general position. According to a classical conjecture of Erdős and Szekeres [7],
if P is a set of points in general position in the plane with |P| ≥ 2n−2 + 1, then it
has n elements in convex position. This bound, if true, cannot be improved [8].
In a recent breakthrough, Andrew Suk [19] came close to proving the conjectured
bound.

Theorem 1.1 (Suk, 2017). Given any integer n ≥ 3, let e(n) denote the smallest
number with the property that every family of at least e(n) points in general position
in the plane has n elements in convex position. Then we have

e(n) ≤ 2n+O(n2/3 log n).
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Figure 1. A pseudo-configuration of four points with the convex
hull shaded.

A set of simple continuous curves in the Euclidean plane that start and end “at in-
finity” is called an arrangement of pseudolines if any two of them meet in precisely
one point: at a proper crossing. A pseudo-configuration is a finite set of points P in
the Euclidean plane such that each pair of distinct points p and q in P span a unique
pseudoline, denoted by `(p, q) such that L(P) = {`(p, q) : p, q ∈ P, p , q} form a
pseudoline arrangement and for any p, q ∈ P, p , q we have `(p, q) = `(q, p) and
`(p, q) ∩ P = {p, q}; see [10].

This underlying pseudoline arrangement induces a convexity structure on the
point configuration in a natural way. For any pair of points p, q ∈ P, the bounded
portion of `(p, q) between p and q is called the pseudosegment connecting p and
q. If we delete from the plane all pseudosegments between the elements of P, the
plane is divided into a number of connected components, precisely one of which is
unbounded. The convex hull of the configuration is defined as the complement of
the unbounded region, and is denoted by convP. We say that a subset Q ⊆ P is in
convex position if no point p ∈ Q is in the convex hull of Q \ {p}.1

It turns out that for four points there are only two combinatorially distinct
pseudo-configurations and both can be obtained from straight lines, but for five
or more points there exist pseudo-configurations that are not realizable by straight
lines. Still, the number of possible pseudo-configurations on five points is limited
and we will leave the verification of some simple statements about at most five
points in a pseudo-configuration to the reader.

Many basic theorems of convexity hold in this more general setting. For in-
stance, a set of points is in convex position if and only if every four of its elements
are in convex position [5]. This is Carathéodory’s theorem in the plane.

1Pseudo-configurations also have a purely combinatorial characterization. They can be defined
by several equivalent systems of axioms. Other names for pseudo-configurations that can be found
in the literature are generalized configurations [10], uniform rank 3 acyclic oriented matroids [4],
and CC-systems [13].
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Goodman and Pollack [11] proposed the generalization of the Erdős-Szekeres
problem to pseudo-configurations. The original “cup-cap” proof due to Erdős and
Szekeres [7] readily generalizes to this setting:

Theorem 1.2. Let P be a pseudo-configuration. If |P| ≥ 4k, then P contains a
k-element subset in convex position.

The purpose of this note is to show that Suk’s breakthrough result, Theorem 1.1
carries over to pseudo-configurations. In the process we also improve on the error
term.

Theorem 1.3. Given any n ≥ 3, let b(n) denote the smallest number such that every
pseudo-configuration of size at least b(n) has n members in convex position. Then
we have

b(n) ≤ 2n+O
(√

n log n
)
.

Clearly, b(n) ≥ e(n) holds for all n, thus our results also bounds the function e(n)
defined for the original Erdős-Szekeres problem (cf. Theorem 1.1).

Bisztriczky and G. Fejes Tóth [2, 3] gave another (seemingly unrelated) general-
ization of the Erdős-Szekeres problem in 1989 by replacing point sets with families
of pairwise disjoint convex bodies. They defined n convex bodies to be in convex
position if the convex hull of no n − 1 of them contains the remaining one. If any
three members of a family of convex bodies are in convex position, then the family
is in general position. In their pioneering paper, Bisztriczky and Fejes Tóth proved
that for any n ≥ 3, there exists a smallest integer c(n) with the following property.
If F is a family of pairwise disjoint convex bodies in general position in the plane
with |F | ≥ c(n), then it has n members in convex position. They conjectured that
c(n) = e(n). The first singly-exponential upper bound on c(n) was established by
Pach and Tóth [16]. They extended the statement to families of pairwise noncross-
ing convex bodies, that is, to convex bodies that may intersect, but any pair can
share at most two boundary points [17]. This assumption is necessary.

Theorem 1.4 (Pach–Tóth, 2000). For any integer n ≥ 3, there exists a smallest
number c′(n) with the following property. Any family of at least c′(n) pairwise
noncrossing convex bodies in general position in the plane has n members in convex
position.

Clearly, we have c′(n) ≥ c(n) ≥ e(n) for every n. The original upper bound on
c′(n) was subsequently improved by Hubard, Montejano, Mora, and Suk [12] and
by Fox, Pach, Sudakov, and Suk [9] to 2O(n2 log n), and later by Dobbins, Holmsen,
and Hubard [6] to 4n. More importantly from our point of view, they showed that
there is an intimate relationship between the generalizations of the Erdős-Szekeres
problem to non-crossing convex bodies and to pseudo-configurations. The follow-
ing is the union of Lemmas 2.4 and 2.7 in their paper.

Theorem 1.5 (Dobbins–Holmsen–Hubard, 2014). Let F be a family of pairwise
noncrossing convex bodies in general position in the plane. There exists a pseudo-
configuration P and a bijection ϕ : P → F such that for any subset S ⊆ P which
is in convex position, the subfamily ϕ(S ) is also in convex position.
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It follows from this result that c′(n) ≤ b(n) for all n. (In fact, it was shown in [6]
that c′(n) = b(n) for all n ≥ 3.) In view of this, Theorem 1.3 immediately implies
the following.

Theorem 1.6. Given any n ≥ 3, let c′(n) denote the smallest number such that every
family of at least c′(n) pairwise noncrossing convex bodies in general position in
the plane has n members in convex position. Then we have

c′(n) ≤ 2n+O
(√

n log n
)
.

The rest of this note is organized as follows. After highlighting two auxiliary
results in Section 2, we present the proof of Theorem 1.3 in Section 3.

2. Auxiliary results

To follow Suk’s line of argument, we recall two results needed for the proof: a
combinatorial version of the “cup-cap” theorem (Theorem 2.1) and a variant of a
positive fraction Erdős–Szekeres theorem [1] (Theorem 2.4). For future reference,
we also collect some simple observations on pseudo-configurations in convex po-
sitions (Observations 2.2 and 2.3).

Transitive colorings. Let S be a finite set with a given linear ordering ≺, and sup-
pose the ordered triples si ≺ s j ≺ sk are partitioned into two parts T1 ∪ T2. This
partition is called a transitive coloring if every s1 ≺ s2 ≺ s3 ≺ s4 in S and i ∈ {1, 2}
satisfy

(s1, s2, s3), (s2, s3, s4) ∈ Ti ⇒ (s1, s2, s4), (s1, s3, s4) ∈ Ti.

Transitive colorings were introduced in [9] and [12]. The following statement can
be proved in precisely the same way as the “cup-cap” theorem; see [14] for an
alternative proof.

Theorem 2.1. [9, 12] Let S be a finite set with a given linear ordering and let
T1 ∪ T2 be a transitive coloring of the triples of S . If

(1) |S | >
(
k + l − 4

k − 2

)
,

then there exists a k-element subset S1 ⊆ S such that every triple of S1 is in T1, or
an l-element subset S2 ⊆ S such that every triple of S2 is in T2.

Convex hulls of pseudo-configurations. Below we collect a few simple observa-
tions on the convexity structure of pseudo-configurations. These statements are
trivial for the usual notion of convexity, and easy to prove in this more general
context.

Observation 2.2. Let P be a pseudo-configuration.
(i) The convex hull is a monotone operation. That is, for any X ⊆ Y ⊆ P, we

have convX ⊆ convY.
(ii) convX is a simply connected closed set, for any X ⊆ P.

(iii) If X ⊆ P is in convex position, then all points of X appear on the boundary
of convX.
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Figure 2. A pseudo-configuration in convex position where the
spikes are shaded.

(iv) Let k ≥ 3, and assume that X = {x1, x2, . . . , xk} ⊆ P is in convex posi-
tion, where the points xi appear on the boundary of convX in this cyclic
order. Then the boundary of convX is the union of the pseudosegments
conv{xi, xi+1} for 1 ≤ i ≤ k. Furthermore, for each i, the pseudoline
`(xi, xi+1) intersects convX in the pseudosegment conv{xi, xi+1}, and (the
rest of) convX lies entirely on one side of `(xi, xi+1). (Indices are under-
stood modulo k.) �

Convex clusterings. Consider the pseudo-configuration described in Observa-
tion 2.2(iv): Let X = {x1, x2, . . . , xk} be a k-element subset of P in convex position,
where k ≥ 3, and suppose that the points xi appear on the boundary of convX in this
cyclic order. We define the i-th spike of X, denoted by Si, to be the open region con-
sisting of the points of the plane separated from the interior of convX by the pseu-
doline `(xi, xi+1), but not separated from convX by `(xi−1, xi) and by `(xi+1, xi+2).
This is a connected region bounded by the pseudosegment conv{xi, xi+1} and by
portions of the pseudolines `(xi−1, xi) and `(xi+1, xi+2). It is either a triangle-like
bounded region or an unbounded region of three sides; see Fig. 2.

Observation 2.3. Let 1 ≤ i ≤ k.
(i) The line `(xi, xi+1) is disjoint from every spike and separates Si from all

other spikes S j ( j , i). In particular, the spikes are pairwise disjoint.
(ii) A point p ∈ P \ X belongs to the spike Si if and only if X′ = X ∪ {p} is

in convex position and p appears on the boundary of convX′ between xi

and xi+1. In particular, whether X ∪ {p} is in convex position is determined
by which region p belongs in the arrangement of pseudolines spanned by
X. �

For the usual notion of convexity in the Euclidean plane, the following statement
was proved by Pór and Valtr [18]. It is a slight strengthening of a result of Pach
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and Solymosi [15] that can be obtained by simple double counting. Since we will
use this statement for pseudo-configurations, to make our paper self-contained, we
translate its proof into this setting.

Theorem 2.4. Let k ≥ 3 be an integer, and let P be a pseudo-configuration with
|P| = N ≥ 24k. Then there exists a subset X = {x1, x2, . . . , xk} ⊂ P in convex position
such that the sets Pi of all points of P lying in the i-th spike, i = 1, . . . , k, satisfy the
inequality

(2)
k∏

i=1

|Pi| ≥
Nk

28k2 .

Proof. Let P be a pseudo-configuration with |P| = N ≥ 24k. By Theorem 1.2, every
42k-element subset Q ⊆ P contains a 2k-element subset R ⊂ Q in convex position.
Therefore, by double-counting, P has at least(

N
42k

)(
N−2k

42k−2k

) =

(
N
2k

)(
42k

2k

) > ( N
42k

)2k

distinct 2k-element subsets in convex position.
Given a 2k-element subset Y in convex position, we say that a k-element subset

X ⊂ Y supports Y if the points of Y along the boundary of convY alternately belong
to X and Y \ X. Note that Y is supported by two subsets.

Since the number of k-element subsets of P in convex position is at most
(

N
k

)
,

there exists a k-element subset X which supports at least(
N

42k

)2k(
N
k

) >
Nk

28k2

distinct 2k-element subsets in convex position. By Observation 2.3(ii), if X sup-
ports Y , then the points of Y \ X belong to distinct spikes of X, which implies
inequality (2). �

3. Proof of Theorem 1.3

Consider a sufficiently large fixed pseudo-configuration P, let k ≥ 4 be an even
integer, and let X = {x1, x2, . . . , xk} ⊂ P be a k-element subset in convex position
such that its points appear on the boundary of convX in this cyclic order. Suppose
that X meets the requirements of Theorem 2.4. As before, let S1, S2, . . . , Sk denote
the spikes of X and let Pi = P ∩ Si. The indices are taken modulo k.

Vertical and horizontal orderings on Pi. Let p and q be distinct points in Pi. We
write

p ≺v
i q ⇐⇒ conv{xi−1, p, xi+2} ⊂ conv{xi−1, q, xi+2},

p ≺h
i q ⇐⇒ conv{xi−1, q} ∩ conv{xi+2, p} , ∅,

where the superscripts v and h refer to the adjectives “vertical” and “horizontal”,
respectively.

Observation 3.1. Let 1 ≤ i ≤ k.
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(i) Both ≺v
i and ≺h

i are partial orders on Pi.
(ii) Any two distinct elements of Pi are comparable by either ≺v

i or ≺h
i , but not

by both.

Proof. The definition of ≺v
i clearly implies that it is a partial order. To see that the

same is true for ≺h
i , one has to show that if p ≺h

i q ≺h
i r for three points p, q, r ∈ Pi,

then p ≺h
i r. This can be done by checking the few possible pseudo-configurations

of the five points xi−1, xi+2, p, q and r.
To prove (ii), it is sufficient to consider the pseudo-configurations consisting of

only four points: xi−1, xi+2, and two points p and q from Pi. Using the fact that p
and q lie on the same side of `(xi−1xi+2), one can show that out of the four relations
p ≺v

i q, q ≺v
i p, p ≺h

i q, and q ≺h
i p, precisely one will hold. Consider the four open

regions into which the pseudolines `(pxi−1) and `(pxi+2) partition the plane. The
region in which q lies uniquely determines which of the above four relations will
hold. �

For 1 ≤ i ≤ k, let vi denote the length of the longest chain in Pi with respect to
≺v

i , and let hi denote the length of the longest chain in Pi with respect to ≺h
i . By

Observation 3.1 and by (the easy part of) Dilworth’s theorem, we have

(3) |Pi| ≤ vihi.

Further observations concerning points and spikes. As before, the following
observations are trivial for the usual notion of convexity in the Euclidean plane.
Here we show that they also hold for pseudo-configurations.

Observation 3.2. For any pair of distinct points p, q ∈ P, the pseudoline `(p, q)
intersects at most two spikes of X.

Proof. Assume for contradiction that `(p, q) intersects three separate spikes Si, S j,
and Sl in this order. By Observation 2.3(i), this line should intersect `(x j, x j+1)
twice, a contradiction. �

Observation 3.3. Let p and q be distinct points of Pi. If p ≺v
i q, then the pseudoline

`(p, q) separates spikes Si−1 and Si+1.

Proof. Since p ∈ conv{xi−1, q, xi+2}, the pseudoline `(p, q) intersects the pseudoseg-
ment conv{xi−1, xi+2}. This implies that `(p, q) has to intersect one of the spikes
Si+2, Si+3, . . . , Si−2. By Observation 3.2, `(p, q) intersects at most two spikes, one of
which is Si. Thus, it cannot intersect Si−1 and Si+1, which implies that Si−1 and Si+1

must be separated by `(p, q). �

Observation 3.4. Let p and q be distinct points of Pi. If p ≺h
i q, then all the spikes

S i+2, S i+3, . . . , S i−2 must lie on the same side of the pseudoline `(p, q).

Proof. All spikes S j with j < {i − 1, i + 1} are on the same side of both pseudolines
`(xi−1, xi) and `(xi+1, xi+2). The angular region determined by these two pseudolines
and containing the above spikes (and the interior of convX) is cut into two parts by
the pseudosegment conv{xi−1, xi+2}, so that Si lies on one side and the spikes S j

with j < {i − 1, i, i + 1} on the other. Our assumption p ≺h
i q implies that the

pseudoline `(p, q) does not intersect the pseudosegment conv{xi−1, xi+2}, so the part
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Figure 3. A left convex chain p1 ≺
v
i p2 ≺

v
i p3 ≺

v
i p4 in Pi with

conv{p1, p2, p3, p4, xi−1} in darker shade.

of the angular region on the other side of this pseudosegment (including all relevant
spikes) is on the same side of `(p, q), as claimed. �

Vertical convex chains. Let C ⊆ Pi be a chain with respect to ≺v
i . If {xi−1} ∪ C is

in convex position, we call C a left convex chain in Pi. If {xi+2} ∪ C is in convex
position, we call C a right convex chain in Pi.

Note that if |C| = 3, then C is either a left convex chain or a right convex
chain, but not both. This can be verified by checking the pseudo-configuration
C∪{xi−1, xi+2}. Moreover, if we have p1 ≺

v
i p2 ≺

v
i p3 ≺

v
i p4 and both {p1, p2, p3} and

{p2, p3, p4} are left (right) convex chains, then {p1, p2, p3, p4} is also a left (right)
convex chain. Therefore, the same holds for both {p1, p2, p4} and {p1, p3, p4}. This
can be verified by checking the pseudo-configuration {p1, p2, p3, p4, xi−1, xi+2}. See
Fig. 3.

Take a chain C ⊆ Pi of maximal size |C| = vi, totally ordered by ≺v
i . Partition

the triples of C into left and right convex chains. In this way, we obtain a transitive
coloring. Letting ai and bi denote the length of the longest left convex chain and
the length of the longest right convex chain in C, respectively, by Theorem 2.1, we
have

(4) vi ≤

(
ai + bi − 2

ai − 1

)
.

Actually, Theorem 2.1 only guarantees the existence of large subsets C1,C2 ⊆ C
such that all triples in C1 are left convex chains and all triples in C2 are right
convex chains. However, using the above observations and the generalization of
Carathéodory’s theorem to pseudo-configurations, it follows that C1 and C2 them-
selves must form a left convex chain and a right convex chain, respectively.

Observation 3.5. If R is a right convex chain in Pi and L is a left convex chain in
Pi+1, then R ∪ L is in convex position.
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Figure 4. Joining a right convex chain R ⊆ Pi and a left convex
chain L ⊆ Pi+1 to form a subset in convex position (convex hull in
darker shade).

Proof. First, note that for any pseudo-configuration P consisting of four points, if a
point p ∈ P lies in the convex hull of P \ {p}, then any pseudoline passing through
p and any other point of P crosses the pseudosegment determined by the other two
points of P.

To prove the observation, it is enough to show that any four points p, q, r, s ∈
R ∪ L are in convex position. If all of them lie in one of R or L, then we are
clearly done. Assume first that r, s ∈ R and p, q ∈ L. By Observation 3.3, the
pseudolines `(p, q) and `(r, s) do not intersect the pseudosegments conv{r, s} ⊂ Si

and conv{p, q} ⊂ Si+1, respectively. Therefore, by the discussion above, the points
p, q, r, s are in convex position.

Now consider the case where p, q, r ∈ L and s ∈ R. Again by Observation 3.3,
none of the pseudolines `(p, q), `(p, r), and `(q, r) intersects the spike Si. Therefore,
xi and s lie in the same open region determined by the arrangement of these three
pseudolines. By the assumption, the set {p, q, r, xi} is in convex position, so by the
last statement of Observation 2.3(ii) {p, q, r, s} is in convex position, as well. The
other case, p ∈ L and q, r, s ∈ R, can be settled in a similar manner. See Fig. 4. �

Horizontal convex chains. Let C ⊆ Pi be a chain with respect to ≺h
i . If

{p, q, r, xi−1, xi+2} is in convex position for any three distinct elements p, q, r of C,
we call C an inner convex chain. If {p, q, r, xi−1, xi+2} is not in convex position for
any three distinct elements p, q, r of C, we call C an outer convex chain.

Note that chains of at most two elements are both inner and outer convex chains
by this definition.

Observation 3.6. Let 1 ≤ i ≤ k.
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Figure 5. An outer convex chain p1 ≺
h
i p2 ≺

h
i p3 ≺

h
i p4 in Pi with

the conv{p1, p2, p3, p4} in darker shade.

(i) The partitioning of the triples in a horizontal chain C (ordered by ≺h
i ) into

inner and outer convex chains is a transitive coloring.
(ii) The inner and outer convex chains in Pi are in convex position.

Proof. Consider a horizontal chain p ≺h
i q ≺h

i r in Pi. By checking the pseudo-
configuration {p, q, r, xi−1, xi+2} we can verify that the following are equivalent:

(p, q, r) is an outer (inner) convex chain.
conv{xi−1, xi+2} and r are separated by (lie on the same side of) `(p, q).
conv{xi−1, xi+2} and p are separated by (lie on the same side of) `(q, r).
conv{xi−1, xi+2} and q lie on the same side of (are separated by) `(p, r).

Now consider a horizontal chain p1 ≺
h
i p2 ≺

h
i p3 ≺

h
i p4. The pseudolines

`(xi−1, p4) and `(xi+2, p1) divide the plane into four quadrants, each containing one
of the pseudosegments conv{p1, p4}, conv{p4, xi+2}, conv{xi+2, xi−1}, conv{xi−1, p1},
in this cyclic order. By the ordering ≺h

i , p2 and p3 are contained in the quadrant con-
taining conv{p1, p4}. Furthermore, the pseudoline `(p2, p3) must cross this quad-
rant, entering the boundary ray containing p1, then meeting p2 before p3 and finally
exiting the boundary ray containing p4. If both (p1, p2, p3) and (p2, p3, p4) are outer
(inner) convex chains, it follows by the observations above that conv{p1, p4} and
conv{xi−1, xi+2} are separated by (lie on the same side of) `(p2, p3). This implies
that conv{xi−1, xi+2} and p4 are separated by (lie on the same side of) `(p1, p2) and
`(p1, p3). Hence, (p1, p2, p4) and (p1, p3, p4) are both outer (inner) convex chains,
which proves part (i). By Carathéodory’s theorem, it suffices to check part (ii) for
inner and outer convex chains p1 ≺

h
i p2 ≺

h
i p3 ≺

h
i p4. However, it follows from

the discussion above that `(p1, p4) does not intersect conv{p2, p3} and that `(p2, p3)
does not intersect conv{p1, p4}. As in the proof of Observation 3.5, we obtain that
{p1, p2, p3, p4} is in convex position. See Fig. 5. �

Letting ci and di denote the length of the longest inner convex chain and the
length of the longest outer convex chain in Pi, respectively, applying Theorem 2.1
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Figure 6. Joining inner convex chains A1 ⊆ P1, A3 ⊆ P3, and A5 ⊆

P5 to form a subset in convex position (convex hull in darker shade).

to the longest horizontal chain in Pi and using Observation 3.6, we obtain

(5) hi ≤

(
ci + di − 2

ci − 1

)
.

Observation 3.7. Suppose that k ≥ 4 is even, and let A1 ⊆ P1, A2 ⊆ P2, . . . ,
Ak ⊆ Pk. If each Ai is an inner convex chain, then A1 ∪ A3 ∪ · · · ∪ Ak−1 is in convex
position, and so is A2 ∪ A4 ∪ · · · ∪ Ak.

Proof. The proof follows in the same way as Observation 3.5, and we repeatedly
use the fact mentioned at the beginning of that proof. It suffices to prove that any
four points p1, p2, p3, p4 ∈ A1 ∪ A3 ∪ · · · ∪ Ak−1 are in convex position. If all the
points lie in one chain, we are done. Consider the case where three points belong
to the same chain, say p1, p2, p3 ∈ Ai1 and p4 ∈ Ai2 with i1 , i2. By Observa-
tion 3.4, xi1−1 and p4 belong to the same open region determined by the pseudo-
lines `(p1, p2), `(p1, p3), `(p2, p3). Therefore, by the last statement of Observation
2.3(ii), the convexity of {p1, p2, p3, xi1−1} implies that {p1, p2, p3, p4} is in convex
position.

If one of the chains contains exactly two of our points, say p1, p2 ∈ Ai, then
neither p1 nor p2 can be in the convex hull of the other three points, as Observa-
tion 3.4 implies that the pseudoline `(p1, p2) does not intersect the pseudosegment
conv{p3, p4}.
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To finish the proof, we need to verify that if one of the chains contains exactly
one of our points, say p1 ∈ Ai, then p1 is not in the convex hull of the other three
points. This follows from the fact that `(xi, xi+1) separates p1 from p2, p3 and
p4. �

Proof of Theorem 1.3. . Let P be a pseudo-configuration, and suppose that P does
not contain n points in convex position. Let k be an even integer to be specified
later, and let X = {x1, x2, . . . , xk} ⊆ P be a subset in convex position whose exis-
tence is guaranteed by Theorem 2.4. Define Pi, vi, hi, ai, bi, ci, di, as above.

By Observation 3.6(ii), we have di < n. By Observation 3.5, we have

(6) bi + ai+1 < n

for all i, and, by Observation 3.7,

(7) c1 + c2 + · · · + ck < 2n.

Combining these with inequalities (2)–(5), we obtain

Nk

28k2 ≤

k∏
i=1

|Pi|

≤

k∏
i=1

vihi

≤

k∏
i=1

(
ai + bi − 2

ai − 1

)(
ci + di − 2

di − 1

)

≤

k∏
i=1

2ai+bidci
i < 2kn+2n log n,

which gives us

N < 2n+
2n log n

k +8k.

Setting k to be the smallest even integer greater than or equal to
√

n log n/2, gives
the estimate

N = O
(
2n+8
√

n log n
)
. �

Remark. With a less wasteful computation, in particular by using the estimate
above in place of Theorem 1.2 in the proof of Theorem 2.4, the constant 8 in the
exponent can be replaced by 4

√
2 + ε.

References

[1] I. Bárány and P. Valtr, A positive fraction Erdős–Szekeres theorem, Discrete Comput. Geom.,
19:335–342, 1998.

[2] T. Bisztriczky and G. Fejes Tóth, A generalization of the Erdős–Szekeres convex n-gon theo-
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