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Pattern detection by subset scan
One key insight that underlies much of my work is that pattern 
detection can be viewed as a search over subsets of the data.

Statistical challenges: 
Which subsets to search?

Is a given subset anomalous?                            
Which anomalies are relevant?

Computational challenge: 
How to make this search over 
subsets efficient for massive, 

complex, high-dimensional data?

New algorithms and data structures make previously 
impossible detection tasks computationally feasible and fast.

New statistical methods enable more timely and more accurate 
detection by integrating multiple data sources, incorporating spatial
and temporal information, and using prior knowledge of a domain.

New machine learning methods enable our systems to 
learn from user feedback, modeling and distinguishing 

between relevant and irrelevant types of anomaly.
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Multivariate event detection

Spatial time series data from 
spatial locations si (e.g. zip codes)

Time series of counts 
ci,m

t for each zip code si
for each data stream dm.

d1 = respiratory ED
d2 = constitutional ED

d3 = OTC cough/cold

d4 = OTC anti-fever

Outbreak detection

(etc.)

Main goals: 

Detect any emerging events.

Pinpoint the affected subset of 
locations and time duration.

Characterize the event, e.g., by 
identifying the affected streams.

Compare hypotheses:

H1(D, S, W)

D = subset of streams                           
S = subset of locations                         

W = time duration

vs. H0: no events occurring
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Expectation-based scan statistics
(Kulldorff, 1997; Neill and Moore, 2005)

We search for spatial regions 
(subsets of locations) where the 

recently observed counts for 
some subset of streams are 

significantly higher than expected.

Expected 
counts

Historical 
counts

Current counts 
(3 day duration)

We perform time series analysis 
to compute expected counts 

(“baselines”) for each location and 
stream for each recent day.

We then compare the actual and 
expected counts for each subset 
(D, S, W) under consideration.
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We find the subsets with highest 
values of a likelihood ratio statistic, 
and compute the p-value of each 
subset by randomization testing.

Maximum subset 
score = 9.8

2nd highest 
score = 8.4

Significant! (p = .013)

Not significant 
(p = .098)

…
F1* = 2.4 F2* = 9.1 F999* = 7.0To compute p-value

Compare subset score 
to maximum subset 
scores of simulated 
datasets under H0.

Expectation-based scan statistics
(Kulldorff, 1997; Neill and Moore, 2005)
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Likelihood ratio statistics

Expectation-based Poisson Expectation-based Gaussian

H0: ci,m
t ~ Gaussian(bi,m

t, σi,m
t)H0: ci,m

t ~ Poisson(bi,m
t)

H1(S): ci,m
t ~ Poisson(qbi,m

t) H1(S): ci,m
t ~ Gaussian(qbi,m

t, σi,m
t)

Let C = ∑S ci,m
t and B = ∑S bi,m

t. Let C’ = ∑S ci,m
t bi,m

t  / (σi,m
t)2

and B’ = ∑S (bi,m
t)2 / (σi,m

t)2. 

Maximum likelihood: q = C / B. Maximum likelihood: q = C’ / B’.

F(S) = C log (C/B) + B – C F(S) = (C’)2 / 2B’ + B’/2 – C’

Many possibilities: exponential family, nonparametric, Bayesian…

For our expectation-based scan statistics, the null hypothesis 
H0 assumes “business as usual”: each count ci,m

t is drawn 
from some parametric distribution with mean bi,m

t.  H1(S) 
assumes a multiplicative increase for the affected subset S.
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Which regions to search?
Typical approach: “spatial scan” (Kulldorff, 1997)

Each search region S is a sub-region of space.
• Choose some region shape (e.g. circles, rectangles) and 

consider all regions of that shape and varying size.
• Low power for true events that do not correspond well to 

the chosen set of search regions (e.g. irregular shapes).

Our approach: “subset scan” (Neill, 2012)
Each search region S is a subset of locations.

• Find the highest scoring subset, subject to some 
constraints (e.g. spatial proximity, connectivity).

• For multivariate, also optimize over subsets of streams.
• Exponentially many possible subsets, O(2N x 2M): 

computationally infeasible for naïve search.
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Question: Why search over subsets?  
Answer: Simpler approaches can fail.

Top-down detection approaches Bottom-up detection approaches
Are there any globally interesting 

patterns?  If so, recursively search 
the most interesting sub-partition.

Two examples: bump hunting; 
“cluster then detect”.

Find individually (or locally) 
anomalous data points, and 

optionally, aggregate into clusters.

Two examples: anomaly/outlier 
detection; density-based clustering.

Top-down fails for small-scale 
patterns that are not evident 
from the global aggregates.

Bottom-up fails for subtle patterns that 
are only evident when a group of data 

records are considered collectively.
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Question: Why search over subsets?  
Answer: Simpler approaches can fail.

Top-down detection approaches Bottom-up detection approaches
Are there any globally interesting 

patterns?  If so, recursively search 
the most interesting sub-partition.

Two examples: bump hunting; 
“cluster then detect”.

Find individually (or locally) 
anomalous data points, and 

optionally, aggregate into clusters.

Two examples: anomaly/outlier 
detection; density-based clustering.

Top-down fails for small-scale 
patterns that are not evident 
from the global aggregates.

Bottom-up fails for subtle patterns that 
are only evident when a group of data 

records are considered collectively.

So here’s where we are so far:

Treating pattern detection as a subset 
scan problem is statistically desirable 
for maximizing detection power…

but computationally infeasible
(for exhaustive search at least).



Fast subset scan
• In certain cases, we can optimize F(S) over the 

exponentially many subsets of the data, while 
evaluating only O(N) rather than O(2N) subsets.

• Many commonly used scan statistics have the 
property of linear-time subset scanning:
• Just sort the data records (or spatial locations, etc.) from 

highest to lowest priority according to some function…
• … then search over groups consisting of the top-k 

highest priority records, for k = 1..N.

The highest scoring subset is 
guaranteed to be one of these!

Sample result: we can find the most anomalous subset 
of Allegheny County zip codes in 0.03 sec vs. 1024 years.

11

(Neill, 2012)
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Linear-time subset scanning
• Example: Expectation-Based Poisson statistic

• Sort data locations si by the ratio of observed to 
expected count, ci / bi. 

• Given the ordering s(1) … s(N), we can prove that the 
top-scoring subset F(S) consists of the locations s(1) … 
s(k) for some k, 1 ≤ k ≤ N.

• Key step: if there exists some location sout ∉ S with 
higher priority than some location sin ∈ S, then we can 
show that F(S) ≤ max(F(S U {sout}), F(S \ {sin})). 

• Theorem: LTSS holds for expectation-based scan 
statistics in any exponential family.
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Linear-time subset scanning
•

(Speakman et al., 2016)



Constrained fast subset scanning
LTSS is a new and powerful tool for exact combinatorial optimization 
(as opposed to approximate techniques such as submodular function 

optimization).  But it only solves the “best unconstrained subset” 
problem, and cannot be used directly for constrained optimization.

Many of our recent papers have focused on how LTSS can be extended to 
the many real-world problems with (hard or soft) constraints on our search.

+ Proximity constraints  Fast spatial scan (irregular regions)
+ Multiple data streams  Fast multivariate scan
+ Connectivity constraints  Fast graph scan
+ Group self-similarity  Fast generalized subset scan

14

(Neill, JRSS-B, 2012) (Speakman et al., JCGS, 2015) (McFowland et al., JMLR, 2013)
(Neill et al., Stat. Med., 2013)



Constrained fast subset scanning
LTSS is a new and powerful tool for exact combinatorial optimization 
(as opposed to approximate techniques such as submodular function 

optimization).  But it only solves the “best unconstrained subset” 
problem, and cannot be used directly for constrained optimization.

Many of our recent papers have focused on how LTSS can be extended to 
the many real-world problems with (hard or soft) constraints on our search.

+ Temporal dynamics  Spreading contamination in water supply
+ Hierarchical scanning  Prostate cancer in digital pathology slides
+ Scalable GP regression  Predicting and preventing rat infestations

15
(Speakman et al., ICDM 2013) (Somanchi et al., 

Stat. Med., 2018)
(Flaxman et al., 2015;

Neill et al., in preparation)
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Fast subset scan with spatial 
proximity constraints

• Maximize a likelihood ratio statistic over all subsets of the 
“local neighborhoods” consisting of a center location si and 
its k-1 nearest neighbors, for a fixed neighborhood size k. 

• Naïve search requires O(N · 2k) time and is 
computationally infeasible for k > 25.

• For each center, we can search over all subsets of its local 
neighborhood in O(k) time using LTSS, thus requiring a 
total time complexity of O(Nk) + O(N log N) for sorting the 
locations.

• In Neill (2012), we show that this approach dramatically 
improves the timeliness and accuracy of outbreak 
detection for irregularly-shaped disease clusters.



Multivariate fast subset scan
(Neill, McFowland, and Zheng, 2013)

Data streams d1..dM
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• The LTSS property allows us to 
efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.
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Multivariate fast subset scan
(Neill, McFowland, and Zheng, 2013)

(Score = 7.5)

Data streams d1..dM
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• The LTSS property allows us to 
efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.
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Multivariate fast subset scan
(Neill, McFowland, and Zheng, 2013)

(Score = 8.1)
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Data streams d1..dM

• The LTSS property allows us to 
efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.

• But it also allows us to efficiently 
optimize over subsets of streams
for a given subset of locations…
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Multivariate fast subset scan
(Neill, McFowland, and Zheng, 2013)

(Score = 9.0)
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• The LTSS property allows us to 
efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.

• But it also allows us to efficiently 
optimize over subsets of streams
for a given subset of locations…

• So we can jointly optimize over 
subsets of streams and locations 
by iterating between these steps!
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Multivariate fast subset scan
• The LTSS property allows us to 

efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.

• But it also allows us to efficiently 
optimize over subsets of streams
for a given subset of locations…

• So we can jointly optimize over 
subsets of streams and locations 
by iterating between these steps!

(Neill, McFowland, and Zheng, 2013)

(Score = 9.3)
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Data streams d1..dM
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Multivariate fast subset scan
(Neill, McFowland, and Zheng, 2013)

(Score = 11.0)
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• The LTSS property allows us to 
efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.

• But it also allows us to efficiently 
optimize over subsets of streams
for a given subset of locations…

• So we can jointly optimize over 
subsets of streams and locations 
by iterating between these steps!

• Converges to local maximum: we 
do multiple random restarts to 
approach the global maximum.

• For general datasets, a similar 
approach* can be used to jointly 
optimize over subsets of data 
records and attributes. *McFowland, Speakman, and Neill, JMLR, 2013
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Multivariate event detection

Spatial time series data from 
spatial locations si (e.g. zip codes)

Time series of counts 
ci,m

t for each zip code si
for each data stream dm.

d1 = respiratory ED
d2 = constitutional ED

d3 = OTC cough/cold

d4 = OTC anti-fever

Outbreak detection

(etc.)

Main goals: 

Detect any emerging events.

Pinpoint the affected subset of 
locations and time duration.

Characterize the event, e.g., by 
identifying the affected streams.

Compare hypotheses:

H1(D, S, W)

D = subset of streams                           
S = subset of locations                         

W = time duration

vs. H0: no events occurring



Multidimensional event detection

Spatial time series data from 
spatial locations si (e.g. zip codes)

Time series of counts 
ci,m

t for each zip code si
for each data stream dm.

d1 = respiratory ED
d2 = constitutional ED

d3 = OTC cough/cold

d4 = OTC anti-fever

(etc.)

Additional goal: identify any differentially affected 
subpopulations P of the monitored population.

Gender (male, female, both)
Age groups (children, adults, elderly)

Ethnic or socio-economic groups
Risk behaviors: e.g. intravenous drug 

use, multiple sexual partners

More generally, assume that we have a set 
of additional discrete-valued attributes 

A1..AJ observed for each individual case.

We identify not only the affected streams, 
locations, and time window, but also a 

subset of values for each attribute.

Outbreak detection



• Our MD-Scan framework (Neill & Kumar, 2013) 
extends LTSS to the multidimensional case:  
• For each time window and spatial neighborhood 

(center + k-nearest neighbors), we do the following:

1. Start with randomly chosen subsets of locations S, 
streams D, and values Vj for each attribute Aj (j=1..J).

2. Choose an attribute A (randomly or sequentially) and 
use LTSS to find the highest scoring subset of values, 

locations, or streams, conditioned on all other attributes.  
*** Linear rather than exponential in arity of A ***

3. Iterate step 2 until convergence to a local maximum of 
the score function F(D,S,W, {Vj}), and use multiple                     

restarts to approach the global maximum.

Multidimensional subset scan



• We first evaluated the detection performance of 
MD-Scan for detecting simulated disease 
outbreaks injected into real-world Emergency 
Department data from Allegheny County, PA.

• For outbreaks with differential effects by age and 
gender, MD-Scan demonstrated more timely
and more accurate detection, and accurately 
characterized the affected subpopulations.

Evaluation of MD-Scan



1) Identifying affected subpopulations
By the midpoint of the outbreak, MD-Scan is able to correctly 

identify the affected gender and age deciles with high 
probability, without reporting unaffected subpopulations. 

Proportions of correct and incorrect groups reported vs. time since start of outbreak.
Solid lines: affected gender and/or age deciles.  Dashed lines: unaffected.

Blue lines: outbreaks with differential effects by both age and gender (easier).
Red lines: outbreaks with differential effects by age or gender only (harder). 



2) Characterizing affected streams
As compared to the previous state of the art (multivariate linear-

time subset scanning), MD-Scan is better able to characterize the 
affected spatial locations and subset of the monitored streams.

Left: overlap coefficient between true and detected subsets of spatial locations.
Right: Proportions of correct and incorrect streams reported vs. day of outbreak.

Blue lines: outbreaks with differential effects by both age and gender (easier).
Red lines: outbreaks with differential effects by age or gender only (harder).

Green lines: MLTSS, ignoring age and gender information 



3) Timeliness of outbreak detection
MD-Scan achieved significantly more timely detection for 

outbreaks that were sufficiently biased by age and/or gender.

For outbreaks with strong age and 
gender biases, time to detection 

improved from 5.2 to 4.0 days at a 
fixed false positive rate of 1/month.

Smaller biases in age or gender were 
sufficient for significant improvements; even 
when no age/gender signal is present, MD-

Scan performs comparably to MLTSS.



• We first evaluated the detection performance of 
MD-Scan for detecting simulated disease 
outbreaks injected into real-world Emergency 
Department data from Allegheny County, PA.

• For outbreaks with differential effects by age and 
gender, MD-Scan demonstrated more timely
and more accurate detection, and accurately 
characterized the affected subpopulations.

Evaluation of MD-Scan

Nice proof of 
concept…

But what can we learn 
about real patterns of 
interest to public health?



• We analyzed county medical examiner data for 
fatal accidental drug overdoses, 2008-2015.

• ~2000 cases: for each overdose victim, we have 
date, location (zip), age, gender, race, and the 
set of drugs present in their system.

• Reduced to 30 dimensions (age decile, gender, 
race, presence/absence of 27 common drugs) 
plus space and time.

• Clusters discovered by MD-Scan were shared 
with Allegheny County Dept. of Human Services.

Allegheny County Overdose Data



MD-Scan Overdose Results (1)
Fentanyl is a dangerous drug which has 

been a huge problem in western PA.  
It is often mixed with white powder 
heroin, or sold disguised as heroin.

40-100x more 
potent than 
heroin or 
morphine!

January 16-25, 2014: 
14 deaths county-wide 

from fentanyl-laced heroin. 

March 27 to April 21, 2015: 
26 deaths county-wide from 

fentanyl, heroin only present in 11.

Started in the SE suburbs of Pittsburgh, 
including a cluster of 5 cases around 

McKeesport between March 27 and April 8.

Cluster score became significant March 29th

(4 nearby cases, white males ages 20-49) 
and continued to increase through April 20th.

Fentanyl, heroin, and combined deaths 
remained high through end of June (>100).

January 10 to February 7, 2015: 
Cluster of 11 fentanyl-related 

deaths, mainly black males over 
58 years of age, centered in 

Pittsburgh’s downtown Hill District.
Very unusual demographic: 

common dealer / shooting gallery?



MD-Scan Overdose Results (2)

From 2013-2015: no M&X overdose 
clusters; 33% and 47% drops in yearly 

methadone and M&X deaths respectively. 

Another set of discovered overdose clusters each 
involved a combination of Methadone and Xanax.

Methadone: an opioid used 
for chronic pain relief and to 
treat heroin addiction, but 

also addictive and risk of OD.

Xanax (alprazolam):
a benzodiazepine 

prescribed for panic 
and anxiety disorders.

The combination produces a strong high but 
can be deadly (~30% of methadone fatal ODs).

From 2008-2012: multiple M&X OD clusters, 
3-7 cases each, localized in space and time.

Why did these deaths cluster, when methadone 
and methadone + other benzo deaths did not?

What factors could explain the dramatic 
reduction in M&X overdose clusters?



MD-Scan Overdose Results (2)
Another set of discovered overdose clusters each 
involved a combination of Methadone and Xanax.

Methadone: an opioid used 
for chronic pain relief and to 
treat heroin addiction, but 

also addictive and risk of OD.

Xanax (alprazolam):
a benzodiazepine 

prescribed for panic 
and anxiety disorders.

Why did these deaths cluster, when methadone 
and methadone + other benzo deaths did not?

What factors could explain the dramatic 
reduction in M&X overdose clusters?

Increased state oversight of methadone 
clinics and prescribing physicians after 
passage of the Methadone Death and 

Incident Review Act (Oct 2012).

Approval of generic suboxone 
(buprenorphine + naloxone) in early 2013 

lowered cost of suboxone treatment as 
an alternative to methadone clinics.



We are using health insurance claims 
data from ~125K individuals to 

identify anomalous patterns of patient 
care that impact health outcomes.

* Correct suboptimal care *
* Identify new best practices *

We are using Medicaid data linked 
to detailed building characteristics 
in order to identify impacts of poor-
quality housing on chronic health. 

Identifying causal effects of treatments and exposures

Key idea: treatment effects may be 
heterogeneous; look for most positively 
and negatively affected subpopulations. 

“Glucocorticoids significantly 
increase hospitalizations following 
treatment in the subpopulation of 
hypertensive, overweight males 

with endocrine disorders.”

“Which housing conditions impact 
which health conditions, for which 
subpopulations, to what extent?”

“Crowded housing is 
associated with increased 
respiratory conditions & 
injuries among Asians 
living in Manhattan.”

Must adjust for known confounders, 
selection into treatment/exposure.

2. Environmental health1. Healthcare treatments



Source:
Julia Angwin, 
Jeff Larson, 
Surya Mattu and
Lauren Kirchner, ProPublica

Another application of MD-Scan: auditing algorithms for fairness.



Motivating questions
• Is the COMPAS algorithm for predicting re-

offending risk fair, or is it biased against some 
subpopulation defined by observed characteristics?
– Black box algorithm.  All we observe is predictions vs. 

gold standard (re-offending) for a sample of individuals
(ProPublica data from Broward County, FL).

– Many possible biases: race, gender, age, past offenses…
– Combinations of factors, e.g., “elderly white females”

• This led us to develop a general approach to 
auditing black box algorithms for fairness or bias.



Broward County data
• Source: ProPublica’s data on criminal defendants in 

Broward County, FL, in 2013-2014
• Outcome: re-arrests (!) assessed through April 2016.
• Score:  COMPAS score from 1 (low risk) to 10 (high risk)

<
>
>
>
>
>

Slide credit: Alexandra Chouldechova



What does it mean to be “fair”?
There are at least three possibilities (and probably more):

1) Group Fairness: The same proportion of each group 
should be classified as “high risk”.

– Doesn’t seem reasonable for COMPAS: observed reoffending 
rates are not constant across groups.  For Broward County, 51% 
of black defendants and 39% of white defendants reoffended.

2) Disparate Impacts: Comparing false positive and false 
negative rates across groups.

– Impacts depend on how predictions are used (particularly if the 
prediction is a probability).  Can we separate fairness of 
prediction from fair decisions using these predictions?



What does it mean to be “fair”?
There are at least three possibilities (and probably more):

1) Group Fairness: The same proportion of each group 
should be classified as “high risk”.

– Doesn’t seem reasonable for COMPAS: observed reoffending 
rates are not constant across groups.  For Broward County, 51% 
of black defendants and 39% of white defendants reoffended.

2) Disparate Impacts: Comparing false positive and false 
negative rates across groups.

– Impacts depend on how predictions are used (particularly if the 
prediction is a probability).  Can we separate fairness of 
prediction from fair decisions using these predictions?

3) We focus on unbiasedness of probability estimates.

Individual risk probabilities should be predicted 
accurately, without systematic biases based on any 

observed attributes or combinations of attributes.

 Are there any statistically significant biases?

 Can we automatically correct these systematic 
biases, in order to improve fairness of prediction?



Bias scan
Our goal is to detect and correct any systematic biases in risk 

prediction that a classifier may have (i.e., over-predicting or under-
predicting risk for a specific attribute or combination of attributes).

We developed a new variant of the multidimensional subset scan to 
identify subgroups where classifier predictions are significantly biased.

Search space: subspaces 
defined by a subset of values 
for each attribute (e.g., “white 
and Asian males under 25”)

(Zhang and Neill, 2016)

𝐹𝐹 𝑆𝑆 = max𝑞𝑞 log �
𝑠𝑠𝑖𝑖∈𝑆𝑆
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Bias scan
Our goal is to detect and correct any systematic biases in risk 

prediction that a classifier may have (i.e., over-predicting or under-
predicting risk for a specific attribute or combination of attributes).

We developed a new variant of the multidimensional subset scan to 
identify subgroups where classifier predictions are significantly biased.

Search space: subspaces 
defined by a subset of values 
for each attribute (e.g., “white 
and Asian males under 25”)

(Zhang and Neill, 2016)

For interpretability, we maximize the penalized score 𝐹𝐹 𝑆𝑆 − log ∏ 𝑆𝑆𝑗𝑗 , 
where attributes with no excluded values are ignored. For each conditional 

optimization, we can use the simple penalty, log 𝑆𝑆𝑗𝑗 1 𝑆𝑆𝑗𝑗 < arity 𝐴𝐴𝑗𝑗 . 



Results of bias scan on COMPAS
Start with maximum 

likelihood risk estimates for 
each COMPAS decile score.

Detection result 1: COMPAS 
underestimates the importance of 
prior offenses, overestimating risk 
for 0 priors, and underestimating 

risk for 5 or more priors.

Detection result 2: Even controlling for prior offenses, 
COMPAS still underestimates risk for males under 25, and 

overestimates risk for females who committed misdemeanors.  



Results of bias scan on COMPAS

After controlling for number of prior offenses and for 
membership in the two detected subgroups, there are 

no significant systematic biases in prediction.



Results of bias scan on COMPAS

After controlling for number of prior offenses and for 
membership in the two detected subgroups, there are 

no significant systematic biases in prediction.

The resulting probabilistic classifier has 
greater interpretability (though still based 

partially on a black box) and is less biased 
than the original COMPAS predictions…          

but does this mean it is “fair”?



Discussion: predictive fairness in context

After controlling for number of prior offenses and for 
membership in the two detected subgroups, there are 

no significant systematic biases in prediction.

The resulting probabilistic classifier has 
greater interpretability (though still based 

partially on a black box) and is less biased 
than the original COMPAS predictions…          

but does this mean it is “fair”?

• The method does not account for target variable bias: 
we predict re-offending risk but the gold standard is 
based on re-arrests not re-offenses.
– Big problem with drug possession, weapon possession charges.  

Leads to feedback loops.

• How to avoid disparate impacts when making decisions 
based on even unbiased predictions?



Conclusions
Real-world problems at the societal scale require new computational 

methods to deal with both the size and the complexity of data.

massive
high-dimensional

multiple sources

unstructured text

network structure

Fast subset scanning (with constraints) can serve as a fundamental 
building block for efficient, scalable pattern detection in massive data.

Practical solutions to societal challenges also require an understanding 
of complex data (text, networks, images, streams, …), leading to new 

statistical and algorithmic tools for extracting relevant patterns.
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Thanks for listening!

More details on my web site: 
http://www.cs.nyu.edu/~neill

Or e-mail me at:
daniel.neill@nyu.edu
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