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Daniel B. Neill (neill@cs.cmu.edu) 

My research has two main goals: to develop new machine learning methods for 

automatic detection of events and other patterns in massive datasets, and to 

apply these methods to improve the quality of public health, safety, and security. 

Customs monitoring: 

detecting patterns of illicit 

container shipments 

Biosurveillance: early 

detection of emerging 

outbreaks of disease 

Law enforcement: 

detection and prediction 

of crime hot-spots 

Our methods could have detected 

the May 2000 Walkerton E. coli 

outbreak two days earlier than the 

first public health response. 

We are able to accurately predict 

emerging clusters of violent crime, a 

week in advance, by detecting clusters of 

more minor “leading indicator” crimes. 
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Daniel B. Neill (neill@cs.cmu.edu) 

My research has two main goals: to develop new machine learning methods for 

automatic detection of events and other patterns in massive datasets, and to 

apply these methods to improve the quality of public health, safety, and security. 

Customs monitoring: 

detecting patterns of illicit 

container shipments 

Biosurveillance: early 

detection of emerging 

outbreaks of disease 

Law enforcement: 

detection and prediction 

of crime hot-spots 

Our methods are currently in use for 

deployed biosurveillance systems in 

Ottawa and Grey-Bruce, Ontario; 

several other projects are underway. 

We collaborate directly with the Chicago 

Police Department, and our “CrimeScan” 

software is in successful, day-to-day 

operational use for predictive policing. 
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Pattern detection by subset scan 
One key insight that underlies much of my work is that pattern 

detection can be viewed as a search over subsets of the data. 

Statistical challenges:  

Which subsets to search? 

Is a given subset anomalous?                            

Which anomalies are relevant? 

Computational challenge:  

How to make this search over 

subsets efficient for massive, 

complex, high-dimensional data? 

New algorithms and data structures make previously 

impossible detection tasks computationally feasible and fast. 

New statistical methods enable more timely and more accurate 

detection by integrating multiple data sources, incorporating spatial 

and temporal information, and using prior knowledge of a domain. 

New machine learning methods enable our systems to 

learn from user feedback, modeling and distinguishing 

between relevant and irrelevant types of anomaly. 
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Multivariate event detection 

Spatial time series data from 

spatial locations si (e.g. zip codes) 

Time series of counts 

ci,m
t for each zip code si 

for each data stream dm. 

d1 = respiratory ED 

d2 = constitutional ED 

d3 = OTC cough/cold 

d4 = OTC anti-fever 

Outbreak detection 

(etc.) 

Main goals:  

Detect any emerging events. 

Pinpoint the affected subset of 

locations and time duration. 

Characterize the event by 

identifying the affected streams. 

Compare hypotheses: 

H1(D, S, W) 

D = subset of streams                           

S = subset of locations                         

W = time duration 

vs. H0: no events occurring 
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Expectation-based scan statistics 
(Kulldorff, 1997; Neill and Moore, 2005) 

We search for spatial regions 

(subsets of locations) where the 

recently observed counts for 

some subset of streams are 

significantly higher than expected. 

Expected 

counts 

Historical 

counts 

Current counts 

(3 day duration) 

We perform time series analysis 

to compute expected counts 

(“baselines”) for each location and 

stream for each recent day. 

We then compare the actual and 

expected counts for each subset 

(D, S, W) under consideration. 
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We find the subsets with highest 

values of a likelihood ratio statistic, 

and compute the p-value of each 

subset by randomization testing. 

Maximum subset 

score = 9.8 

2nd highest 

score = 8.4 

Significant! (p = .013) 

Not significant 

(p = .098) 

… 

F1* = 2.4 F2* = 9.1 F999* = 7.0 To compute p-value 

Compare subset score 

to maximum subset 

scores of simulated 

datasets under H0. 

Expectation-based scan statistics 
(Kulldorff, 1997; Neill and Moore, 2005) 

)| DataPr(

)),,(| DataPr(
),,(F

0

1

H

WSDH
WSD



8 

Likelihood ratio statistics 
For our expectation-based scan statistics, the null hypothesis 

H0 assumes “business as usual”: each count ci,m
t is drawn 

from some parametric distribution with mean bi,m
t.  H1(S) 

assumes a multiplicative increase for the affected subset S. 

Expectation-based Poisson Expectation-based Gaussian 

H0: ci,m
t ~ Gaussian(bi,m

t, i,m
t) H0: ci,m

t ~ Poisson(bi,m
t) 

H1(S): ci,m
t ~ Poisson(qbi,m

t) H1(S): ci,m
t ~ Gaussian(qbi,m

t, i,m
t) 

Let C = ∑S ci,m
t and B = ∑S bi,m

t. 
Let C’ = ∑S ci,m

t bi,m
t  / ( i,m

t)2  

and B’ = ∑S (bi,m
t)2 / ( i,m

t)2.  

Maximum likelihood: q = C / B. Maximum likelihood: q = C’ / B’. 

F(S) = C log (C/B) + B – C F(S) = (C’)2 / 2B’ + B’/2 – C’ 

Many more possibilities: any single parameter exponential family, or nonparametric. 
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Which regions to search? 
• Typical approach: each search region S is a 

subregion of the search space. 
• Choose some region shape (e.g. circles, rectangles) and 

consider all regions of that shape and varying size. 

• Low power for true events that do not correspond well to 
the chosen set of search regions (e.g. irregular shapes). 

• Alternate approach: each search region S 
represents a distinct subset of the N locations. 
• Find the highest scoring subset, subject to some 

constraints (e.g. spatial proximity, connectivity). 

• For multivariate, also optimize over subsets of the M 
monitored data streams. 

• Exponentially many possible subsets, O(2N x 2M): 
computationally infeasible for naïve search. 



Fast subset scan 
• In certain cases, we can optimize F(S) over the 

exponentially many subsets of locations, while 
evaluating only O(N) rather than O(2N) subsets. 

• Many commonly used scan statistics have the 
property of linear-time subset scanning: 
• Just sort the locations from highest to lowest priority 

according to some function… 

• … then search over groups consisting of the top-k 
highest priority locations, for k = 1..N. 

The highest scoring subset is 

guaranteed to be one of these! 

Sample result: we can find the most anomalous subset 

of Allegheny County zip codes in 0.03 sec vs. 1024 years. 
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Linear-time subset scanning 
• Example: Expectation-Based Poisson statistic 

• Sort data locations si by the ratio of observed to 

expected count, ci / bi.  

• Given the ordering s(1) … s(N), we can prove that the 

top-scoring subset F(S) consists of the locations s(1) … 

s(k) for some k, 1 ≤ k ≤ N. 

• Proof by “inclusion”: if there exists some location sout ∉ S 

with higher priority than some location sin ∈ S, then:                                               

F(S) ≤ max(F(S U {sout}), F(S \ {sin})).  

• Theorem: LTSS holds for convex functions of two 

additive sufficient statistics. 

• Theorem: LTSS holds for all expectation-based 

scan statistics in any separable exponential family. 



Fast Subset Scan for Pattern Detection 

LTSS is a new and powerful tool for exact combinatorial optimization 

(as opposed to approximate techniques such as submodular function 

optimization).  But it only solves the “best unconstrained subset” 

problem, and cannot be used directly for constrained optimization. 

We are currently investigating how LTSS can be extended to the many 

real-world problems with (hard or soft) constraints on our search. 

Proximity constraints    Fast spatial scan (irregular regions) 

Multiple data streams    Fast multivariate scan 

Connectivity constraints   Fast graph scan 

Group self-similarity    Fast generalized subset scan 

 

 

 

 

 

 

Other constraints?  Shape, convexity, temporal consistency… 

Other data types?  Text, tensor data, dynamic graphs, etc. 
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Incorporating spatial proximity 
• Maximize the spatial scan statistic over all 

subsets of the “local neighborhoods” consisting of 

a center location si and its k – 1  nearest 

neighbors, for a fixed neighborhood size k.  

• Naïve search requires O(N · 2k) time and is 

computationally infeasible for k > 25. 

• For each center, we can search over all subsets 

of its local neighborhood in O(k) time using LTSS, 

thus requiring a total time complexity of O(Nk) + 

O(N log N) for sorting the locations. 

• Variants: fixed radius r, fast multiscan (soft 

constraint: apply a linear penalty on k or r). 
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Evaluation on ED data 
 We injected simulated disease outbreaks of various 

shapes into real-world Emergency Department data. 

 

 

 

 

 We compared the different methods in terms of: 

• Run time 

• Avg. time to outbreak detection vs. false positive rate 

• Proportion of outbreaks detected vs. false positive rate 

• Spatial accuracy (precision, recall, and overlap coeff.) 
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Comparison of run time 

LTSS requires 

<50ms per day 

of data, vs. 

millions of 

years! 

Fast multiscan 

requires less 

than one second 

per day of data. 
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Comparison of detection power 

Average days to detect at 1 false positive/month, vs. 

“circles” (dashed) and “all subsets” (dotted).  Our methods 

detected nearly two days faster than the standard circular 

scan, with fewer than half as many missed outbreaks. 
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Comparison of spatial accuracy 

For elongated or irregular clusters, our methods were able 

to achieve better spatial accuracy (higher precision, recall, 

and overlap coefficient) than the standard circular scan. 

Not surprisingly, the circular scan had better spatial 

accuracy for clusters that were circular in shape. 
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Comparison of spatial accuracy 

For elongated or irregular clusters, our methods were able 

to achieve better spatial accuracy (higher precision, recall, 

and overlap coefficient) than the standard circular scan. 

Not surprisingly, the circular scan had better spatial 

accuracy for clusters that were circular in shape. 

So far, we’ve focused on 

monitoring a single data stream.1 

 

But we can also use LTSS to 

efficiently integrate information 

from many streams!2  

 
1Neill, Journal of the Royal Statistical 

Society (Series B), 2012. 

 
2Neill, McFowland, and Zheng, Statistics in 

Medicine, 2013, in press. 
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Multivariate scan statistics 
The univariate log-likelihood ratio statistic F(C, B)                                                             

is a function of two aggregate sufficient statistics. 

For the expectation-based Poisson (EBP) statistic: 

 F(C, B) = C log (C / B) + B – C, if C > B, and 0 otherwise. 

Subset Aggregation 

multivariate spatial scan 

Kulldorff’s multivariate 

spatial scan 

Assumes independent effects on 

each data stream, each estimated 

separately by maximum likelihood. 

Assumes a constant effect over all 

affected data streams, computed by 

maximum likelihood estimation. 

F(D, S, W) = F(∑ Cm, ∑ Bm) F(D, S, W) = ∑ F(Cm, Bm) 

Sums are taken over all affected data streams dm ∈ D. 

The count Cm and baseline Bm are aggregated over all 

affected spatial locations si ∈ S, for the given stream dm 

and for the most recent W days of data. 



Guaranteed to 

find the highest 

scoring subset! 
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Fast multivariate scans 
How can we efficiently search over all subsets 

of data streams and over all proximity-

constrained subsets of spatial locations? 

Option 1 (fast/naïve, or FN): for each of 

the 2M subsets of streams, aggregate 

counts and apply LTSS to efficiently 

search over subsets of locations. 

For a fixed number of streams, 

FN fast localized scan scales 

linearly (not exponentially)                         

with neighborhood size. 

8 streams: <1 sec/day of data. 

647 days of data, 

8 data streams 
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Fast multivariate scans 

Option 2 (naïve/fast, or NF): 

exhaustively search over spatial 

regions.  For each, perform efficient               

LTSS search over subsets of streams. 

Guaranteed to 

find the highest 

scoring subset! 

For a fixed neighborhood size k, 

NF fast localized scan scales 

linearly (not exponentially)                         

with number of streams. 

For k = 10: <1 sec/day of data 

647 days of 

data, 

neighborhood 

size = 10 

How can we efficiently search over all subsets 

of data streams and over all proximity-

constrained subsets of spatial locations? 
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Fast multivariate scans 

What if we have a large set of search regions and many data streams?   

Option 3 (fast/fast, or FF): 

1. Start with a randomly         

chosen subset of streams. 

Data streams d1..dM 
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Fast multivariate scans 

What if we have a large set of search regions and many data streams?   

Option 3 (fast/fast, or FF): 

1. Start with a randomly         

chosen subset of streams. 

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams. 

(Score = 7.5) 

Data streams d1..dM 
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Fast multivariate scans 

What if we have a large set of search regions and many data streams?   

Option 3 (fast/fast, or FF): 

1. Start with a randomly         

chosen subset of streams. 

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams. 

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations. 

(Score = 8.1) 
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Data streams d1..dM 
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Fast multivariate scans 

What if we have a large set of search regions and many data streams?   

Option 3 (fast/fast, or FF): 

1. Start with a randomly         

chosen subset of streams. 

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams. 

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations. 

4. Iterate steps 2-3                             

until convergence. (Score = 9.0) 
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Fast multivariate scans 

What if we have a large set of search regions and many data streams?   

Option 3 (fast/fast, or FF): 

1. Start with a randomly         

chosen subset of streams. 

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams. 

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations. 

4. Iterate steps 2-3                             

until convergence. (Score = 9.3) 
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Fast multivariate scans 

What if we have a large set of search regions and many data streams?   

Option 3 (fast/fast, or FF): 

1. Start with a randomly         

chosen subset of streams. 

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams. 

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations. 

4. Iterate steps 2-3                             

until convergence. 

5. Repeat steps 1-4 for                             

50 random restarts. 

(Score = 11.0) 
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Data streams d1..dM 
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Fast multivariate scans 

What if we have a large set of search regions and many data streams?   

Option 3 (fast/fast, or FF): 

1. Start with a randomly         

chosen subset of streams. 

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams. 

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations. 

4. Iterate steps 2-3                             

until convergence. 

5. Repeat steps 1-4 for                             

50 random restarts. 

GOOD NEWS:            

Run time is linear in 

number of locations & 

number of streams. 

BAD NEWS:                                       

Not guaranteed to find 

global maximum of the 

score function. 

MORE GOOD NEWS:            

200x faster than FN for 

16 streams, and >98% 

approximation ratio. 



We observed an interesting tradeoff between the two methods’ 

detection power and ability to characterize the affected streams. 
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SA vs. Kulldorff comparison 
Using our new, fast algorithms, we evaluated the SA and Kulldorff 

multivariate scans on semi-synthetic outbreak detection tasks for 16 

streams of Emergency Department data from Allegheny County, PA. 

For both methods, searching over proximity-constrained subsets of 

locations resulted in 1 to 2 days faster detection, and significantly 

improved spatial accuracy (overlap), as compared to circular scan. 

Kulldorff’s method tended to detect slightly faster than SA:                                 

0.5 days for M = 2 streams, and 0.2 to 0.3 days for larger values of M. 

 But SA was better able to identify the affected subset of streams. 



For the Subset Aggregation scan, we have recently extended our FF 

algorithm to graph/network and tensor data, allowing us to scan over 

connected subsets of locations, related subsets of data streams, and 

subpopulations with different sets of demographic characteristics. 
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Discussion 
The choice between the Subset Aggregation and Kulldorff versions of 

the multivariate spatial scan depends on whether our primary goal is 

early detection or accurate characterization of events. 

Our fast algorithms, based on extensions of linear-time subset 

scanning to the multivariate case, enable either version to be 

computed efficiently, even for many locations and many streams. 

By scanning over all subsets of streams, and over all proximity-

constrained subsets of locations, we can dramatically improve our 

ability to detect and characterize emerging outbreaks of disease. 
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Incorporating connectivity constraints 

Proximity-constrained subset scans may                                                      

return a disconnected subset of the data.   

In some cases this may be undesirable, or we might have 

non-spatial data so proximity constraints cannot be used. 

Example: tracking 

disease spread from 

person-to-person contact. 

Example: identifying a 

connected subset of zip codes 

(Allegheny County, PA) 
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Incorporating connectivity constraints 

Our GraphScan algorithm* can 

efficiently and exactly identify the 

highest-scoring connected subgraph: 

- Can incorporate multiple data streams 

- With or without proximity constraints 

- Graphs with several hundred nodes 

Proximity-constrained subset scans may                                                      

return a disconnected subset of the data.   

In some cases this may be undesirable, or we might have 

non-spatial data so proximity constraints cannot be used. 

We can use the LTSS property to rule out subgraphs that are 

provably suboptimal, dramatically reducing our search space. 

*Speakman and Neill, 2009; Speakman et al., 2013 
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Incorporating connectivity constraints 

We can use the LTSS property to rule out subgraphs that are 

provably suboptimal, dramatically reducing our search space. 

We represent groups of subsets 

as strings of 0’s, 1’s, and ?’s. 

Assume that the graph nodes 

are sorted from highest priority 

to lowest priority. 
The above bit string represents 

four possible subsets: {1,4}, 

{1,4,5}, {1,4,6}, and {1,4,5,6}. 

Priority 

Ranking 
1 2 3 4 5 6 

Bit 

String 
1 0 0 1 ? ? 

LTSS property without connectivity constraints: 

“If node x ∈ S  and node y ∉ S, for x > y, 

then subset S cannot be optimal.” 
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Incorporating connectivity constraints 

We can use the LTSS property to rule out subgraphs that are 

provably suboptimal, dramatically reducing our search space. 

We represent groups of subsets 

as strings of 0’s, 1’s, and ?’s. 

Assume that the graph nodes 

are sorted from highest priority 

to lowest priority. 
The above bit string represents 

four possible subsets: {1,4}, 

{1,4,5}, {1,4,6}, and {1,4,5,6}. 

Priority 

Ranking 
1 2 3 4 5 6 

Bit 

String 
1 0 0 1 ? ? 

LTSS property with connectivity constraints: 

“If node x ∈ S  and node y ∉ S, for x > y, 

and S \ {x} and S U {y} are both connected, 

then subset S cannot be optimal.” 

3 2 

1 5 

4 6 
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Incorporating connectivity constraints 

We can use the LTSS property to rule out subgraphs that are 

provably suboptimal, dramatically reducing our search space. 

We represent groups of subsets 

as strings of 0’s, 1’s, and ?’s. 

Assume that the graph nodes 

are sorted from highest priority 

to lowest priority. 
The above bit string represents 

four possible subsets: {1,4}, 

{1,4,5}, {1,4,6}, and {1,4,5,6}. 

Priority 

Ranking 
1 2 3 4 5 6 

Bit 

String 
1 0 0 1 ? ? 

LTSS property with connectivity constraints: 

“If node x ∈ S  and node y ∉ S, for x > y, 

and S \ {x} and S U {y} are both connected, 

then subset S cannot be optimal.” 

3 2 

1 5 

4 6 

X X 

suboptimal 
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Evaluation: run times 
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Evaluation: detection power 
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Extensions of GraphScan 

Q: What if we want to 

allow for events which 

spread dynamically over 

the graph structure? 

A: Based on a new variant 

of the LTSS property, we 

can search for dynamic 

patterns while enforcing 

soft constraints on 

temporal consistency. 

We have applied this 

method for more timely 

detection of contaminants 

spreading through a water 

distribution network.1 

Q: What if the underlying 

graph structure is unknown? 

A: We can accurately learn the 

graph structure from unlabeled 

data, and use the learned 

structure for detection. 

Often, the learned graph 

enables even faster detection 

of events than the true graph!2 

1Speakman and Neill, in preparation. 

2Somanchi and Neill, submitted for publication. 
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Spatial time series data from 

spatial locations si (e.g. zip codes) 

Time series of counts 

ci,m
t for each zip code si 

for each data stream dm. 

d1 = respiratory ED 

d2 = constitutional ED 

d3 = OTC cough/cold 

d4 = OTC anti-fever 

Outbreak detection 

(etc.) 

Main goals:  

Detect any emerging events. 

Pinpoint the affected subset of 

locations and time duration. 

Characterize the event by 

identifying the affected streams. 

Compare hypotheses: 

H1(D, S, W) 

D = subset of streams                           

S = subset of locations                         

W = time duration 

vs. H0: no events occurring 

Multidimensional event detection 
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Multidimensional event detection 

Spatial time series data from 

spatial locations si (e.g. zip codes) 

Time series of counts 

ci,m
t for each zip code si 

for each data stream dm. 

d1 = respiratory ED 

d2 = constitutional ED 

d3 = OTC cough/cold 

d4 = OTC anti-fever 

Outbreak detection 

(etc.) 

Additional goal: identify any differentially affected 

subpopulations P of the monitored population. 

Gender (male, female, both) 

Age groups (children, adults, elderly) 

Ethnic or socio-economic groups 

Risk behaviors: e.g. intravenous drug 

use, multiple sexual partners 

More generally, assume that we have a set 

of additional discrete-valued attributes 

A1..AJ observed for each individual case. 

We identify not only the affected streams, 

locations, and time window, but also a 

subset of values for each attribute. 



• Our MD-Scan approach (Neill and Kumar, 2013) 

extends MLTSS to the multidimensional case:   

• For each time window and spatial neighborhood 

(center + k-nearest neighbors), we do the following: 

 1. Start with randomly chosen subsets of locations S, 

streams D, and values Vj for each attribute Aj (j=1..J). 

2. Choose an attribute (randomly or sequentially) and use 

LTSS to find the highest scoring subset of values, 

locations, or streams, conditioned on all other attributes. 

3. Iterate step 2 until convergence to a local maximum of 

the score function F(D,S,W, {Vj}), and use multiple                     

restarts to approach the global maximum. 

Multidimensional LTSS 



• We compared the detection performance of MD-

Scan to MLTSS for detecting disease outbreaks 

injected into real-world Emergency Department 

data from Allegheny County, PA. 

• For each case, the data included date, zip code, 

prodrome, gender, and age decile. 

• We considered outbreaks with various types and 

amounts of age and gender bias. 

• Shown here: biased toward males, biased toward 

children and the elderly. 

 

Evaluation 



1) Identifying affected subpopulations 

By the midpoint of the outbreak, MD-Scan is able to correctly 

identify the affected gender and age deciles with high 

probability, without reporting unaffected subpopulations.  

(MLTSS simply ignores the age and gender information,                                             

implicitly assuming that all ages and genders are affected.) 



2) Characterizing affected streams 

MD-Scan 

MLTSS 

MD-Scan 
MLTSS 

Affected 

Streams 

Unaffected 

Streams 

As compared to MLTSS, MD-Scan is better able to 

characterize the affected subset of the monitored streams. 

(Counts were injected into three of the eight monitored 

streams- respiratory, diarrhea, and fever.) 



3) Time to detect (1 fp/month) 

MLTSS 

MD-Scan (+ Graph) 

MD-Scan (no Graph) 

At a fixed false positive rate of 1 per month, MD-Scan                                    

achieved faster detection than MLTSS for outbreaks                                              

which were sufficiently biased by age and/or gender. 

(Bias is linearly scaled, from 0 = same age/gender distribution as 

background data to 1 = only males and children/elderly affected.) 
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Current application domains 
Biosurveillance: deployed 

systems in Ottawa, Grey-

Bruce, Sri Lanka, India. 

In progress: deployments 

in Canada for monitoring 

hospital-acquired illness, 

and patterns of harm 

related to drug abuse. 

Crime prediction in Chicago: 

Able to predict about 60% of 

“clustered” violent crimes with 

15% false positive rate; also 

being applied to predicting 

citizen needs via 311 calls. 

Detecting anomalous patterns 

of care in UPMC hospitals: 

Our goal is to find atypical 

treatment conditions that 

improve patient outcomes 

(“best practices”) or harm 

patients (systematic errors, 

improper hygiene, etc.) 

Many more applications: 

Illicit container shipments 

Clusters of water pipe breaks 

Spreading water contamination 

Network intrusion detection 

Economic growth “outbreaks” 

Conflict, violence, human rights 
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Interested? 
 

More details on my web page: 

http://www.cs.cmu.edu/~neill 

 

Or e-mail me at: 

neill@cs.cmu.edu 
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