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a b s t r a c t 

Typical spatial disease surveillance systems associate a single address to each disease case 

reported, usually the residence address. Social network data offers a unique opportunity 

to obtain information on the spatial movements of individuals as well as their disease sta- 

tus as cases or controls. This provides information to identify visit locations with high risk 

of infection, even in regions where no one lives such as parks and entertainment zones. 

We develop two probability models to characterize the high-risk regions. We use a large 

Twitter dataset from Brazilian users to search for spatial clusters through analysis of the 

tweets’ locations and textual content. We apply our models to both real-world and simu- 

lated data, demonstrating the advantage of our models as compared to the usual spatial 

scan statistic for this type of data. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Public health surveillance agencies traditionally use

data sources including Emergency Department chief

complaints, electronic medical records, microbiological

data, and over-the-counter medication sales to identify

emerging spatial clusters of disease. The delay and cost

of obtaining these data has prompted many initiatives to

take advantage of the timely, ready and cheap availability

of health information on the Web. Personal health condi-

tions are a common conversational topic in online social

networks. Such data can provide a continuous and use-

ful source of information for health agencies to perform

real-time surveillance ( Paul and Dredze, 2011; Prieto et al.,

2014 ). The guiding principle in this case is to consider peo-
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ple as sensors and their corresponding messages as an in-

dicator of the occurrence or intensity of the monitoring

aim, such as disease outbreaks ( Chen and Neill, 2014 ). 

Health surveillance systems usually identify high risk

places based only on the residence address or the work-

ing place of diseased individuals. This approach ignores a

multitude of exposures the individuals are daily subject

to and therefore provides little information about the ac-

tual places where people are infected, the truly important

information for disease control. The increasing availabil-

ity of geolocated data in online platforms offers a unique

opportunity: in addition to identifying diseased individu-

als, we can also follow them in time and space as they

move on the map. Incorporating the mobility of individ-

uals into spatial analysis requires the development of new

models that can cope with this type of data in a principled

way and efficient algorithms to deal with the ever growing

amount of data. 

In this work, we give a contribution in this direction.

We exploit geolocated data from online social networks
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/sste
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sste.2018.11.005&domain=pdf
mailto:nalon@dcc.ufmg.br
mailto:assuncao@dcc.ufmg.br
mailto:derickmath@dcc.ufmg.br
mailto:daniel.neill@nyu.edu
mailto:meira@dcc.ufmg.br
https://doi.org/10.1016/j.sste.2018.11.005


164 R.C.S.N.P. Souza, R.M. Assunção and D.M. Oliveira et al. / Spatial and Spatio-temporal Epidemiology 29 (2019) 163–175 

 

to detect geographic clusters of dengue infection. Dengue 

is an infectious disease that is currently a major concern 

for public health officials, particularly in developing coun- 

tries ( Bhatt, 2013 ). We crawled a large collection of GPS- 

annotated data from Twitter. Individuals presenting a per- 

sonal experience with the disease (“cases”) are identified 

based on the sentiment conveyed in the content of their 

messages. We follow them in time and space to build their 

spatial trajectories, i.e., we retrieve a sequence of spatial 

locations that provide an estimate of individuals’ move- 

ments on the map. We also build the trajectories of a 

baseline population (“controls”). Our goal is to contrast ob- 

served mobility patterns for case and control individuals in 

order to detect localized regions with higher risk of being 

infected by dengue. Identifying places where people have 

higher risk of being infected by the disease may be key to 

surveillance, particularly for vector-borne diseases such as 

malaria and dengue, allowing public health officials to fo- 

cus mitigation actions. 

The main contributions of this paper are as follows: 

• We present two probabilistic models to search for spa- 

tial regions of higher risk of infection by dengue disease 

using movement data from social media. 

• We thoroughly describe a methodology designed to 

identify case and control individuals and to extract 

their trajectories from social media data. 

• We present results of applying our models to ge- 

olocated Twitter data considering two large Brazilian 

cities, showing the effectiveness of our methods. 

• We compare our models to the Bernoulli spatial scan 

statistic on simulated data to demonstrate that assign- 

ing individuals to a single spatial position may provide 

misleading conclusions in some situations. 

The remainder of this paper is organized as follows. 

In Section 2 , we revisit the traditional spatial cluster de- 

tection problem and discuss the most common meth- 

ods to solve the problem as well as some extensions. In 

Section 3 we give a background on dengue disease and 

discuss how people’s movement can be an important fac- 

tor when searching for spatial clusters of dengue infec- 

tion. Section 4 presents two models to detect high risk 

regions based on trajectories of case and control popula- 

tions. In Section 5 , we thoroughly describe each step of 

our methodology to obtain spatial trajectories of individu- 

als from online social networks. In Section 6 , we apply the 

presented methods to Twitter data in order to search for 

dengue infection clusters. We also discuss the results ob- 

tained by both models and present a comparison with the 

Bernoulli spatial scan statistics. Finally, Section 7 provides 

some discussion and concluding remarks. 

2. Spatial cluster detection 

The spatial cluster detection task aims at detecting 

localized spatial regions or zones, called spatial clus- 

ters , where the probability of some event occurrence is 

higher than in the rest of the map. Spatial cluster detec- 

tion methods, such as the spatial and subset scan statis- 

tics ( Kulldorff, 1997; 2001; Neill, 2012 ), search the data 

to uncover the location and boundaries of any possible 
clusters. These methods usually work in a unsupervised 

manner, without prior knowledge of the relevant spatial 

patterns of anomalies such as their center, shape, or size. 

They also provide meaningful statistical measures to eval- 

uate the significance of detected clusters. 

The spatial scan statistic ( Kulldorff, 1997; Kulldorff and 

Nagarwalla, 1995 ) is the most commonly used method in 

this class. It searches over a large set of geographical ar- 

eas Z with a rigid circular shape, allowing the radius of 

each circle to vary. Over this set of regions, the spatial scan 

maximizes a likelihood ratio statistic given by: 

L (Z) = 

P ( Data | H 1 (Z) ) 

P ( Data | H 0 ) 
, (1) 

where Data is a generic name for the observed data that 

is specified according to the model, e.g., the distribution of 

disease cases over space and time. 

For the Bernoulli spatial scan the alternative hypothesis 

H 1 ( Z ) assumes that the probability of being a case within 

Z ∈ Z is higher than outside Z , and the null hypothesis H 0 

assumes complete spatial randomness, i.e, each individual 

is equally likely to be a case everywhere in the map. Af- 

ter maximizing Eq. (1) over all considered circular regions 

to identify the most likely cluster, the method computes 

the statistical significance of the detected cluster through 

Monte Carlo hypothesis testing. The derivation of the like- 

lihood ratio test for the Bernoulli model can be found in 

Kulldorff (1997) . 

A major application of spatial scan statistics and many 

of its extensions is the detection of disease clusters to 

suggest risk factors, to focus preventive efforts, and for 

outbreak monitoring ( Brooker et al., 2004; Hjalmars et al., 

1996; Jones et al., 2012; Mostashari et al., 2003 ). How- 

ever, they have also been applied to several other tasks, 

such as the identification of hot spots zones based on 

the geographical locations of crime events ( Nakaya and 

Yano, 2010; Neill and Gorr, 2007 ) or traffic accidents ( Shi 

and Janeja, 2009 ). Also, in order to overcome the limi- 

tation of a rigid (circular) scanning window, the set of 

spatial zones was enlarged by allowing elongated ( Neill 

and Moore, 2004 ), elliptical ( Kulldorff et al., 2006 ), and 

irregularly-shaped regions ( Assunção et al., 2006; Costa 

et al., 2012; Duczmal and Assunção, 2004; Tango and Taka- 

hashi, 2005 ). 

In all this large body of work, there has been one in- 

variant aspect of the spatial characterization: there is one 

and only one spatial position associated with each individ- 

ual data item, whether that location represents a pixel in 

a medical image, as in Somanchi et al. (2018) , or a ran-

dom spatial event, such as a crime or accident location. 

In spatial epidemiology, searching for environmental puta- 

tive sources of infection or disease, in a few cases there 

have been two positions associated with each individual, 

their residential and working place addresses. Such an ap- 

proach ignores a multitude of exposures that individuals 

may be subject to during their daily routine. Indeed, as 

we will discuss in Section 3 , there have been several stud- 

ies pointing out that most people get infected away from 

home ( Stoddard et al., 2013; 2009 ). 
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3. Dengue overview 

Dengue is an emerging mosquito-borne viral disease.

Estimates on the number of global infections per year have

ranged from 50 to 100 million cases counting clinically

manifested infections up to almost 400 million cases in-

cluding asymptomatic carriers ( Bhatt, 2013; Murray et al.,

2013 ). Such a large range on the estimated incidence of the

disease clearly indicates that the true numbers are difficult

to assess, mostly due to misdiagnosis and underreporting.

The World Health Organization (WHO) estimates that al-

most half of the world’s population is at risk of infection

with dengue viruses, the majority being concentrated in

the South and Central Americas, Asia and Pacific regions. 

With four known serotypes, dengue may vary from se-

vere flu-like illness to a potentially lethal complication

known as hemorrhagic dengue. The global incidence of

the disease keeps growing both in number and severity of

cases, presenting approximately 20,0 0 0 associated deaths

occurring annually ( Murray et al., 2013 ). Since there is no

currently approved, effective and broadly available vaccine

to protect the population against the virus, epidemiological

surveillance and effective vector control are still the main-

stay of dengue fever prevention. 

The main vector for transmission of dengue virus is the

Aedes aegypti mosquito. Several entomological indicators

have been proposed to quantify the abundance of Aedes

aegypti since its monitoring was first employed for yel-

low fever control ( Cromwell et al., 2017 ). The rationale be-

hind such indicators is that the greater the mosquito pop-

ulation, the higher the risk of dengue transmission and

therefore intervening to reduce the vector abundance con-

sequently decreases the number of infections. However, re-

cent studies have shown that there is no accurate correla-

tion between vector prevalence and dengue transmission

( Bowman et al., 2014; Cromwell et al., 2017 ). In addition,

mosquito prevalence data is costly to obtain, particularly

at large scale. 

In fact, dengue has a huge amount of uncertain and

difficult to obtain parameters driving the disease. Human

mobility is one of the key factors, especially due to the

mosquito day-biting habit ( Stoddard et al., 2013; 2009 ). In

this sense, attaching each individual to a single location,

their home address, may be a poor indicator of the regions

with higher level of interaction between humans and in-

fected vectors. Being able to identify the most risky places

would greatly benefit infectious disease surveillance by tar-

geting preventive efforts and mitigation actions where they

are most needed. 

3.1. Dengue in Brazil 

Brazil reports more cases of dengue than any other

country. 1 In 2015 the Brazilian Ministry of Health reported

approximately 1.6 million cases of dengue infection. This

number represents a rate of 788 cases per 100 thousand

inhabitants, well above the red line indicated by the WHO,
1 http://www.paho.org/data/index.php/en/mnu-topics/ 

indicadores- dengue- en/dengue- nacional- en/252- dengue- pais- ano- en. 

html . 

 

 

which is 300 cases. In addition, 839 deaths were confirmed

to be caused by dengue in the same period. 2 The Brazil-

ian disease surveillance system is almost entirely manual

and relies on the ability to observe early cases of dengue

for each location and time period. This process usually re-

sults in long delays for data acquisition. Despite the huge

amount of resources spent for surveillance and preven-

tion actions, dengue still challenges Brazilian health ser-

vices and policy makers. Previous studies leveraged online

social network data to predict the incidence of dengue in

Brazil ( Gomide et al., 2011; Souza et al., 2014 ). However,

they are not able to pinpoint high risk regions. We believe

that our approach can bring significant contribution to the

spatial epidemiology and surveillance of dengue. 

4. Detecting spatial clusters from trajectories 

We use Fig. 1 to explain the problem. In the left-hand

side, each individual is indexed by a number i and has a

set of n i spatial positions. In this case, the positions are

given by geolocated tweets. The tweets from a single per-

son are connected by line segments. The individuals are

additionally labeled by two colors according to their sta-

tus: dengue case (in red) or control (in blue). The cases

are those individuals who mentioned a personal experi-

ence with dengue in at least one tweet, as we will dis-

cuss in Section 5 . The tweets which have mentioned per-

sonal experience with dengue are marked with a hatched

shadow in Fig. 1 . The figure also shows a spatial zone Z

where the risk of becoming a case might be higher than

in the rest of the region. Our main objective is to search

for spatial clusters where the infection risk is significantly

higher than elsewhere. If a candidate zone Z is easy to

identify in this toy example, the difficulty with real data is

much higher as the right hand-side of Fig. 1 demonstrates.

We show a sample of tweets issued from the central area

of Belo Horizonte, a city in the Southeast region of Brazil.

With this realistic amount of data, it is obvious that sim-

ple visual inspection of the map is not effective and that

a computer-based algorithm is necessary to find the most

plausible spatial clusters. 

The multiple locations associated with each individual,

rather than the usual single location (such as their place

of residence), leads us to consider two different models,

which we term the visit model and the infection model

( Souza et al., 2016 ). They are defined in terms of two

events representing the individual becoming a case and

tweeting from a certain zone Z , respectively. The models

consider two different conditional probabilities: for a given

individual i , while the visit model examines 

p(Z) = P ( individual i tweets from Z | individual i is a case ) ,

(2)

the infection model evaluates 

r(Z) = P ( individual i is a case | individual i tweets from Z ) .

(3)
2 http://portalarquivos.saude.gov.br . 

http://www.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html
http://portalarquivos.saude.gov.br
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Fig. 1. Left : Schematic drawing of the problem showing a potential infection spatial cluster and trajectories of case (red) and control (blue) individuals. 

Right : trajectories of case and control individuals built based on a sample of tweets issued from the central area of Belo Horizonte in 2015. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
Therefore, the models consider different aspects of the 

same problem, depending on which event we condition on. 

To complete the specification of the models, let p̄ (Z) be 

the analogue of (2) for a control individual, and r( ̄Z ) the 

probability given by Eq. (3) but evaluated in Z̄ , the region 

outside Z . Our interest resides only on zones where there 

is enough evidence to conclude that p(Z) > p̄ (Z) or r(Z) > 

r( ̄Z ) . 

Among the n i tweets from the i th individual, let V i, z 

be the number inside the spatial cluster Z . The visit model 

considers the binary variables 1 [ V i,z ≥ 1] , i.e., the likeli- 

hood that individual i visits zone Z at any point during 

the study period. Its likelihood P ( Data | H 1 (Z) ) under the 

alternative hypothesis H 1 ( Z ) is given by the product of 

Bernoulli random variables defined for each individual. Let 

1 [ V i,z ≥ 1] indicate the event that the i th individual vis- 

its Z at least once. For a case individual, we have V i,z = 0 

if individual i never visits Z in his n i tweets, which hap- 

pens with probability (1 − p) n i , and V i, z ≥ 1 with proba- 

bility 1 − (1 − p) n i . For a control individual, we have simi- 

lar formulas with p̄ replacing p . Then the likelihood of the 

data is given by the product over all individuals, both cases 

and controls: 

L 1 (Z, p, p̄ ) = ( 1 − p ) 
∑ N 

i =1 n i 1 [ V i,z =0] 
( 1 − p̄ ) 

∑ N+ M 
i = N+1 n i 1 [ V i,z =0] 

N ∏ 

i =1 

[ 
( 1 − (1 − p) n i ) 

1 [ V i,z ≥1] 
] 

(4) 

N+ M ∏ 

i = N+1 

[ 
( 1 − (1 − p̄ ) n i ) 

1 [ V i,z ≥1] 
] 

, 

where the first N individuals are cases and the last M 

are the control individuals. To simplify the expression, we 

dropped the zone Z from p ( Z ) and p̄ (Z) writing simply p 

and p̄ . The null model P ( Data | H 0 ) in the denominator of 

Eq. (1) is obtained by making p = p̄ for all Z . 

For the infection model , let the binary indicator I i = 1 if 

the i th individual is a case, and let k be the individual’s 
i 
number of tweets in zone Z . Then we define 

π( k i , r, ̄r ) = P (I i = 1 | V i,z = k i ) = 1 − ( 1 − r ) 
k i ( 1 − r̄ ) 

n i −k i , 

and the likelihood under H 1 ( Z ) is given by: 

L 2 (Z, r, ̄r ) = 

N+ M ∏ 

i =1 

( π( k i , r, ̄r ) ) 
I i ( 1 − π( k i , r, ̄r ) ) 

1 −I i . (5) 

For the null model H 0 in (5) , similarly to the visit model, 

we take r = r̄ for all Z . 

The most likely spatial cluster Z is found by first maxi- 

mizing (4) over p and p̄ for the visit model and maximizing 

(5) over r and r̄ for the infection model for each fixed zone 

Z . Next, we maximize over Z to identify the highest-scoring 

(most significant) spatial clusters. The p-value of each clus- 

ter is then obtained by randomly permuting the cases and 

control labels among the individuals and recalculating the 

maximum likelihood ratio, as given by Eq. (1) . After a large 

number of independent permutations, we have the empiri- 

cal distribution of the maximum likelihood ratio under the 

null hypothesis, and the p -value can be obtained as the 

proportion of times the simulated values of the maximum 

likelihood ratio were larger than the observed value. 

5. Dataset 

In this section we thoroughly describe each step of our 

methodology designed to identify the case and control in- 

dividuals and extract their trajectories from GPS-annotated 

social media data. The first step is the collection of ge- 

olocated Twitter data ( Section 5.1 ). Next, we need to as- 

sign each message to a valid location based on its embed- 

ded spatial coordinates ( Section 5.2 ). After that, we define 

the group of case individuals by filtering and analyzing the 

content of the tweets ( Section 5.3 ). The individuals not se- 

lected in the previous task compose the control group. Fi- 

nally, for individuals in each group, we build their trajecto- 

ries by retrieving all geolocated messages they issued dur- 

ing the period of analysis ( Section 5.4 ). 
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Table 1 

Selected cities: #tweets is the total number of Twitter posts issued by 

users within the city; #reports is the total number of dengue cases in 

the city according to official reports; Population shows the number of in- 

habitants; Rate is the number of dengue cases per one hundred thousand 

inhabitants. 

City #tweets #reports Population Incidence rate 

Campinas 574,226 66,577 1,164,098 5719.2 

Goiânia 566,114 74,097 1,448,639 5114.9 

Table 2 

Sentiment categories, the associated semantics and examples of real 

tweets (translated from Portuguese) belonging to each class. 

Sentiment Semantics Tweets 

Personal 

experience 

Express dengue cases “I am staying in bed. Got 

Dengue!”

Information Carries some type of 

information 

“Confirmed first case of 

dengue type 4.”

Opinion Express public opinion “I hate this dengue 

mosquito-repellent smoke”

Campaign Reinforces public 

campaigns 

“Everyone against dengue! 

That’s our fight!”

Irony/sarcasm Jokes, sarcasm, or 

irony 

“My social media is so quiet 

that it looks like breeding 

dengue water.”

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. Data acquisition 

The data used in our experimental analysis were ac-

quired through the Twitter Streaming Application Pro-

gramming Interface (API). 3 Twitter users are allowed to

disclose their location in a number of different ways. They

can fill in a free text field in their profile or Twitter can

obtain and provide an approximate location based on the

IP addresses. Tweets can also be geotagged with latitude-

longitude GPS coordinates when tweeting from mobile de-

vices with that feature enabled. While the first options are

typically too coarse for a detailed spatial analysis (usually

reporting the city or state where the user lives), the geo-

tagged tweets allow us to track users’ movement patterns

with a reasonably good resolution. Therefore, in this study,

we focus on geotagged tweets. 

The Twitter API allows us to specify a geographic

bounding box and collect the public tweets issued within

that location together with their associated lat/long coor-

dinates. The API also limits the crawling to a maximum of

1% of the total Twitter fire hose. However, this amount is

just about the total volume of GPS-annotated posts ( Sloan

and Morgan, 2015 ), enabling us to collect the vast majority

of the geotagged tweets within the bounding box. 

We set a bounding box covering the Brazilian

territory, defined by the points [ −33 . 751 , −73 . 986 ] SW,

[ 5 . 265 , −34 . 288 ] NE. Data was collected from January 1st,

2015 to December 31th, 2015. During this time period

we were able to collect a total of 106,784,441 Twitter

messages. All collected tweets are geotagged with lat/long

GPS coordinates. 

5.2. Location assignment 

The geographic bounding box set to collect the data

also includes regions outside Brazil. We filtered out the

messages issued from these areas. Next, we need to as-

sign each message coming from the Brazilian territory to

a valid municipality. In Brazil, the decision process regard-

ing dengue surveillance actions is under the responsibility

of each town hall. Thus, performing our analysis for each

Brazilian city separately can provide the responsible health

officials with a list of potential high-risk areas inside their

corresponding town. 

We selected two municipalities to analyze based on the

total number of dengue cases reported by the Brazilian

Ministry of Health. Among the cities with more than 1

million inhabitants, we selected the two cities with the

highest 2015 incidence rate of cases per 100 thousand in-

habitants. Table 1 provides general information about the

selected cities. 

In order to process the location of each collected tweet

we used the OpenStreetMap API 4 and retrieved the spatial

polygons of all Brazilian cities. Then, for each tweet, we

assign its lat-long information to the corresponding city by

checking in which polygon it falls within. Table 1 presents

the total number of collected tweets that were issued from
within each of the selected cities. 

3 https://dev.twitter.com/streaming/overview . 
4 https://www.openstreetmap.org/about . 

 

 

 

5.3. Textual content filtering and analysis 

The content of geotagged tweets comprises a multitude

of subjects. In order to find the individual cases, we need

to check the content of the messages looking for evidences

about a dengue infection for that particular user. This is

not a straightforward task. For instance, despite having

well known symptoms, dengue can be mistaken for an-

other viral infection, as they share several features. There-

fore, we cannot rely only on mentions of terms such as

fever and headache in the tweets. However, previous works

( Gomide et al., 2011; Souza et al., 2014 ) showed a high

correlation between the time series of official dengue re-

ports and Twitter data mentioning the keywords dengue

and Aedes . Thus, we set these same two terms to perform

a search throughout our collected data, accounting for mis-

spelling and ignoring letter case. 

After retrieving all messages based on the predefined

keywords, we need to perform a content analysis. That is,

we want to classify the messages according to the sen-

timent expressed in the textual content. The goal of this

task is to retain only the messages presenting the largest

evidence of a dengue infection, distinguishing them from

tweets using the terms in jokes or other not infection re-

lated uses. 

Our classification was performed in a supervised man-

ner, requiring manually labeled data to train the classi-

fier. In scenarios of disease surveillance, previous studies

have already proposed a set of categories for this classifi-

cation task. We employed the same taxonomy of Chew and

Eysenback (2010) and manually labeled a set of 20 0 0

tweets into five sentiment categories. Table 2 shows the

sentiment categories, the associated semantics and some

instances of real tweets belonging to each class (translated

from the original Portuguese texts). 

https://dev.twitter.com/streaming/overview
https://www.openstreetmap.org/about
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Table 3 

Classifier performance: overall accuracy across all five classes, and mea- 

sures of precision and recall for the personal experience class. 

Accuracy Precision Recall 

0.659907 ± 0.003148 0.730251 ± 0.007777 0.680961 ± 0.005920 
We employed the Lazy Associative Classifier (LAC) 

( Veloso et al., 20 07; 20 06 ) to generate a sentiment model 

from the training data. The classifier uses association rules 

to assign textual patterns to the predefined categories. 

These rules have the form A → C , where the antecedent of 

the rule A is composed of textual patterns and the con- 

sequent C is one of the sentiment categories (e.g., dengue 

and fever → personal experience). Each rule represents a 

vote to the category in the consequent C and the weight 

of the vote is given by the confidence of the corresponding 

rule ( Agrawal et al., 1993 ). 

In order to assign each message m to one of the cat- 

egories, we compute a normalized score which estimates 

the likelihood that a given sentiment category c i , among 

the possible values for the consequent C , is being ex- 

pressed by a message m . This score is given by 

p(c i | m ) = 

∑ 

R 

w (A → c i ) 

∑ 

C 

∑ 

R 

w (A → C) 

where R is the set of rules generated to classify the mes- 

sage m and w ( A → c i ) is the weight of a generated rule that 

has c i as its consequent. Notice that, this approach allows 

us to assign the same tweet m to more than one category 

based on its score. For instance, if c i and c j present a high 

score we could say that the tweet expresses the sentiment 

of both categories. This can be very useful especially when 

some of the classes have very similar semantics. In our 

case, we decided to assign each message to the category 

presenting the highest score. 

We performed a preprocessing step in the content to 

classify the messages. First, we filtered out accent marks 

and URL’s from the text. Also, we created pairs of con- 

secutive words, called bi-grams ( Collins, 1996 ), to enhance 

the semantics of the textual patterns by providing more 

context. Finally, some words, called stop-words, were re- 

moved. These are words that do not convey much mean- 

ing concerning the message content such as articles and 

prepositions. 

In order to assess the performance of our textual 

content classification, we applied the classifier to the 

manually labeled dataset. We performed a k -fold cross val- 

idation protocol, with k = 10 . In this evaluation strategy 

the dataset is partitioned into k folds of roughly equal 

sample size. Then, k − 1 folds are used to train the model 

and the remaining single fold is held out for testing. The 

process is repeated k times, therefore using each of the k 

folds exactly once as the validation data. The result of each 

fold is then averaged to obtain a single performance esti- 

mation. Due to the different proportion among the senti- 

ment categories, we performed a stratified k -fold cross val- 

idation, where each of the k folds has approximately the 

same proportion of class labels. Table 3 shows the mean 
and standard deviation for classification overall accuracy as 

well as the precision and recall measures on the personal 

experience class. All metrics are averaged over 10 runs of 

the 10-fold cross validation in our labeled dataset to re- 

duce the potential bias of fold selection. 

After preprocessing and classifying the messages, we 

selected those assigned to the personal experience category 

as they present the largest evidence about a dengue infec- 

tion. These are the red tweets with a hatched shadow in 

the schematic Fig. 1 and they are named dengue-labeled. 

The corresponding set of Twitter users who issued such 

messages are considered the case individuals. The control 

individuals are those who never issued a dengue-labeled 

message during the whole period of analysis. 

5.4. Building the case and control trajectories 

After analyzing the textual content of our geotagged 

data to create the case and control groups of individuals, 

we must build the users’ corresponding trajectories. Each 

trajectory is composed by all messages issued by a given 

user within the period of analysis. More specifically, we are 

interested in the spatial coordinates associated with each 

message to trace the individuals movements over the map. 

Recall that users belonging to the case group present at 

least one dengue-labeled message. Therefore, for each indi- 

vidual case we search throughout the dataset to retrieve all 

other messages issued by the user. All tweets posted by a 

case individual are considered case tweets, not only those 

that are labeled personal experience . They are connected by 

red line segments in Fig. 1 . Since there is typically a lag 

of 7–10 days between when a user is infected and when 

they become symptomatic, we are implicitly considering 

that the users must have been infected at some point in 

their daily movement and not necessarily when and where 

the dengue-labeled messages were sent. In order to avoid 

highly active users (e.g., bots), we set an upper limit on the 

total number of messages issued by each user. We adopted 

a 5-message-per-day threshold, which represents a maxi- 

mum of 1825 messages per year. The users with total num- 

ber of messages above this threshold were excluded from 

the dataset. 

The group of control individuals comprises all users 

who never posted neither a dengue-labeled message nor 

a message containing any of the keywords used to filter 

the data in Section 5.3 . We introduce this last constraint 

to potentially reduce noise. All tweets from a given con- 

trol individual are considered control tweets and they are 

connected by blue line segments in Fig. 1 . We defined the 

same threshold on the total number of messages per user 

to exclude highly active individuals in the control group. 

As the number of control users is much larger than the 

number of case individuals, we employ a sampling strat- 

egy to select the individuals. To perform the sampling, 

we stratified the case individuals according to the total 

number of messages in ranges of ten. In each range, we 

sampled the number of control users as 3 times larger 

than the number of case users. When the number of con- 

trol users in a given range was not enough to reach the 

amount of individuals required by our sampling strategy, 

we select the remaining individuals randomly from the 
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Table 4 

Data summary: #tweets is the total number of tweets issued from the 

city; #users is the number of unique users; #cases and #ctrls are the 

number of case and control individuals; #tw_cases and #tw_ctrls are the 

number of tweets issued by cases and control individuals, respectively. 

City #tweets #users #cases #ctrls #tw_cases #tw_ctrls 

Campinas 574,226 20,335 90 226 37,313 64,442 

Goiânia 566,114 16,849 54 147 15,933 33,750 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

immediate next range. This sampling approach allows us

to obtain case and control groups with a very similar dis-

tribution on the number of messages. Table 4 presents a

summary of our final dataset for each selected city. 

6. Results and discussion 

In this section we perform two different analyses. First,

we apply both the visit and infection models described

in the previous section to the dataset to search for spa-

tial clusters of dengue infection. Next, we perform a com-

parison between both models and the traditional Bernoulli

spatial scan statistics ( Kulldorff, 1997; Kulldorff and

Nagarwalla, 1995 ). 

6.1. Spatial cluster analysis 

As previously mentioned, we selected the two cities re-

porting the highest incidence of dengue cases in the year

2015 (among the cities with more than 1 million inhab-

itants) to perform the analysis, as shown in Table 1 . In

2014, Brazil faced severe drought conditions that led to a

water supply crisis and an increased use of artificial wa-

ter storage by the population. These artificial sources of

standing water served as breeding places for the dengue

mosquito and the following year registered a large in-

crease in dengue reports in Brazil. The cities considered in

our analysis were deeply affected by the strong surge of

dengue. 

To run the models for each city, we defined the scan-

ning regions Z by overlaying an axis-aligned rectangular

grid to the city. The grid cells are then combined to ac-

commodate regions with different sizes. Also, we set the

number of Monte Carlo replicas to build the reference dis-

tribution equal to 499 and the significance level equal to

α = 0 . 05 . Table 5 presents the results. 

The visit model detected one significant cluster in Goiâ-

nia and no significant clusters in Campinas. The infection

model detected four significant clusters in Campinas and

two possible clusters (with borderline p -values, 0 . 05 < p <

0 . 1 ) in Goiânia. We note that in infectious disease surveil-

lance it may be worthwhile to take borderline significant

regions into account, depending on the public health re-

sources available for cluster investigation. 

As discussed in Section 4 , the visit and infection models

consider two different conditional probabilities, given by

Eqs. (2) and (3) , respectively. In this sense, they exploit the

data in a different fashion and can be seen as complemen-

tary solutions. In fact, they can find different and separate

regions in the search process. The visit model searches for

regions where p(Z) > p̄ (Z) , i.e., it seeks for regions where
case individuals are more likely to visit (more precisely, to

post at least one tweet while located in that region) than

controls. Since it takes into account the binary informa-

tion of whether or not each individual visited the region

at some point during the study period, the visit model is

more prone to find larger regions where a high number of

case individuals have visited. This effect can be observed,

for instance, in the region detected by the visit model in

Goiânia, where a large portion of case individuals have

issued a tweet. On the other hand, The infection model

searches for regions where r(Z) > r( ̄Z ) , i.e., it contrasts the

risk of being infected inside a given region against the rest

of the map. Since the infection model considers the num-

ber of times each individual has gone through (tweeted in-

side) the region, geographically smaller regions with indi-

vidual cases issuing tweets more times tend to emerge as

clusters. This effect can also be observed in Table 5 . 

Detected regions should be seen only as an approxima-

tion to the real geographical clusters ( Kulldorff, 2001 ). For

instance, in Fig. 2 , we zoom in to the first region detected

by the infection model in Campinas, shown in Table 5 . This

region has 5 case individuals issuing 21 tweets and 4 con-

trol individuals posting 16 messages. In order to improve

visualization, we introduced a small and uniform jitter to

the spatial locations. The first observation is that the de-

tected region is surrounded by other regions with a large

number of case individuals, such as the North East and

South East areas of the map. We also introduced lines con-

necting the tweets issued by the same individual. These

lines allow us to see that case individuals visiting the de-

tected region also visited the surrounding regions. These

surrounding regions can be targeted for surveillance ac-

tions. The detected region is located in a non-residential

area, being close to two university campuses, parks and

one mall. In this sense, assigning individuals only to their

residential addresses would hamper the detection of such

regions. While we do not have gold standard data available

to verify the quality of our methods, we argue that pro-

viding a list of suspect high risk regions can greatly ben-

efit surveillance systems and assist public health decision-

making regarding preventive actions. 

6.2. Alternate model specification using only tweets prior 

to infection 

In the previous section, the analysis was performed us-

ing all locations from which each user tweeted during the

entire year of 2015. Although it is much more likely that

the person got the disease before they issued the dengue-

labeled tweet, we still considered the places visited after

the dengue-labeled tweet. One reason to follow the above

approach is that the Twitter data is sparse, depending on

the user’s engagement, and it is unlikely that each user

tweets from all of the different locations they visit. Thus,

the tweet locations from the remainder of the year are also

informative as to places where the individual might have

been during the infection period. Several studies show that

people have very regular movement patterns ( Gonzalez

et al., 2008 ) and therefore our analysis used the remain-

ing data to improve our search for riskier regions. 
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Fig. 2. Zoom in to the first region found in Campinas, identified by the infection model. Detected regions should be seen as a good approximation of the 

infection places. 

 

5 
In this section, we consider an alternate model spec- 

ification: for each case individual, we considered only 

the locations they had been before they issued the dengue- 

labeled tweet, up to and including the position of the 

dengue-labeled tweet. If a case individual issued more 

than one dengue-labeled tweet, we considered only the 

first one to truncate the data. Although we are not en- 

tirely certain of the exact moment the individuals got sick, 

as they can be mentioning a past case, this alternative ap- 

proach attempts to capture only the locations visited be- 

fore the infection manifested. For the control individuals, 

we adopt a strategy similar to the previous section. We 

sampled the number of control users as 3 times larger than 

the number of case users having a number of tweets in 

the same range of the respective cases. However, this num- 

ber of tweets is computed in the same time span as the 

case individuals. This way we are comparing the move- 

ments of case and control individuals over the same pe- 

riod. Table 6 shows the details of this new dataset. Notice 

that, compared to Table 4 , this new dataset contains less 

information about each user’s movements due to the more 

restricted set of tweets. 

In order to run both the visit and infection models, we 

follow the same settings as the previous section. We set 

the number of Monte Carlo replicas to 499 and the signifi- 

cance level equal to α = 0 . 05 . Table 7 presents the results. 

Notice that the visit model found a significant cluster 

in the data from Goiânia. It is noteworthy that the re- 

gion detected by the visit model in this experiment is very 
similar to the region found in Section 6.1 . Fig. 3 plots both 

detected regions in a map for comparison. We can see that 

the regions have a large overlap. This indicates that the 

visit model was able to find almost the same region using 

much less data. On the other hand, the infection model did 

not identify any significant regions for either city in this 

new dataset. The main explanation is because the infection 

model depends strongly on the number of times each indi- 

vidual visits a certain region. The truncated dataset is more 

sparse than the original data used in Section 6.1 . There- 

fore, the infection model has less evidence to identify po- 

tentially significant regions. 

6.3. Comparison with the spatial scan statistics 

In this section, we compare the visit and infection mod- 

els against the Bernoulli spatial scan statistics ( Kulldorff, 

1997; Kulldorff and Nagarwalla, 1995 ). The usual spatial 

scan assumes that each individual is spatially represented 

by a single point in the data. Our goal in this section is to

demonstrate that this assumption may lead to invalid con- 

clusions in some situations. Thus, we generate two simu- 

lated scenarios, described below, and show how directly 

applying the traditional spatial scan without modification 

in these settings can result in misleading conclusions. In 

both scenarios, we use the SaTScan 

5 software to run the 

Bernoulli spatial scan statistics. 
https://www.satscan.org/ . 

https://www.satscan.org/
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Table 5 

Visit and infection model results: LL is the log-likelihood of the cluster; p ( Z ) and p̄ (Z) are the probabilities 

considered by the visit model; r ( Z ) and r( ̄Z ) are the probabilities considered by the infection model; N and 

M are the respective numbers of case and control individuals inside the zone; N _tweets and M _tweets are 

the numbers of tweets issued inside the cluster by case and control individuals, respectively. 

City p -value LL p ( Z ) | r ( Z ) p̄ (Z) | r( ̄Z ) N N _tweets M M _tweets 

Visit model 

Goiânia 0.01 −135.322 0.044 0.01 48 6352 115 14,600 

Infection model 

Campinas 0.006 −695.647 0.07 0.01 5 21 4 16 

0.006 −696.454 0.97 0.01 2 2 0 0 

0.006 −696.499 0.04 0.01 1 49 2 23 

0.006 −696.514 0.97 0.01 2 3 0 0 

Goiânia 0.096 −369.431 0.04 0.01 1 36 1 1 

0.088 −367.272 0.22 0.01 1 5 2 2 

Fig. 3. Results by the visit model in the city of Goiânia. Left: using the data from the whole year; Right : using the truncated dataset. 

Table 6 

Total number of tweets from cases and 

control individuals in the new dataset. 

City #tw_cases #tw_ctrls 

Campinas 16,557 40,925 

Goiânia 8951 28,810 

Table 7 

Results for the truncated dataset: columns are the same as Table 5 . 

City p -value LL p ( Z ) p̄ (Z) N N _tweets M M _tweets 

Visit model 

Goiânia 0.02 −168.347 0.077 0.01 48 4198 91 11,670 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3.1. Scenario A 

In our first simulation there are 100 control individuals,

each one issuing 15 tweets located in space and totaling

1500 positions. These positions are uniformly distributed

over the map. The case group has 30 individuals also
issuing 15 tweets each, summing up to 450 spatial po-

sitions. However, their tweets are distributed differently

from the controls. We overlaid a 20 × 20 grid on the region

and selected one cell in this grid to receive 5 tweets from

every case individual, totaling 150 tweets in this cell. For

each case individual we selected a different, randomly se-

lected cell on the map to receive another 6 tweets belong-

ing to that individual. The remaining 4 tweets per individ-

ual are uniformly distributed over the remaining locations

on the map. We generated all positions within the bound-

aries of Goiânia city to make the simulation more realistic.

In order to run the Bernoulli spatial scan, we consider

the following approach to preprocess our data: we reduce

the set of tweets from each individual user to one sin-

gle data point in a geographic location by selecting his

most common tweeting location. Hence, the total number

of data points is equal to the number of distinct individ-

uals in the sample. Each candidate cluster consists of the

cells in the 20 × 20 grid or a connected combination of

them. We must then consider the total numbers of case
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Table 8 

Results for Scenario A. Both the visit and infection models were able to detect the injected cluster. The Bernoulli spatial 

scan (SaTScan) detects an entirely different region. RR is the relative risk and E (N) is the expected number of cases. 

Algorithm p -value LL p ( Z ) | r ( Z ) p̄ (Z) | r( ̄Z ) N N _tweets M M _tweets 

Visit 0.01 −31.417 0.92 0.01 30 150 9 9 

Infection 0.01 −21.728 0.41 0.01 30 150 9 9 

Algorithm p -value LLR RR N E (N) M 

SaTScan 0.0 0 014 14.271 5.23 17 6 9 

Fig. 4. Left: artificially generated data (Scenario A) and the cluster detected by both the visit and infection models. Right: the cluster detected by SaTScan. 
and control individuals for each zone. For SaTScan, we set 

the maximum size of a cluster to 20% of the population. 

For the visit and infection models we also set the number 

of Monte Carlo replicas to 499 and the significance level to 

α = 0 . 05 . Table 8 shows the results. 

Intuitively, in this example, we are considering a popu- 

lation of case individuals that live in different places (rep- 

resented by each individual’s most frequent tweeting re- 

gion) but they share in common another region on the 

map that they visit frequently, where the infection is as- 

sumed to occur. This example illustrates the traditional ap- 

proach of surveillance systems. Our main goal is to show 

how this simplifying assumption can create misleading re- 

sults. From Table 8 , we can observe that both the infection 

and visit models were able to detect the injected cluster. 

On the other hand, the Bernoulli spatial scan (as imple- 

mented by SaTScan) was not able to detect the true cluster 

as it indeed disappears when each individual’s trajectory is 

reduced to their most frequent location. SaTScan detected 

another much larger region comprising 20% of the popu- 

lation, its allowed maximum size. Fig. 4 depicts both so- 

lutions. The map on the left-hand side shows the gener- 

ated data along with the region detected by the visit and 

infection models. On the right-hand side we can see the 

cluster detected by SaTScan, which does not include the 
true region. The region detected by SaTScan in this exam- 

ple would not be interesting for public health surveillance 

since it covers a very large region, lacking the specificity to 

take immediate actions. 

6.3.2. Scenario B 

In our second scenario, we artificially generated case 

and control populations as follows: there are 100 con- 

trol individuals and 15 positions (representing the tweets) 

for each individual, totaling 1500 points. These positions 

are uniformly spread over the map. The cases comprise 

31 individuals with 30 of them having 10 positions in- 

dependently and uniformly distributed on the map. The 

remaining individual has 150 points concentrated in the 

same position. One can think of this last individual as only, 

and frequently, tweeting from his home address. This sce- 

nario illustrates one of the challenges when dealing with 

geolocated social media data: users typically have different 

levels of engagement in social networks and may present 

different amounts of information. This simulation is as- 

sumed to represent a scenario where no regions of ele- 

vated risk are present. 

In order to run the Bernoulli spatial scan we consider 

another possible way of pre-processing our data: we ignore 

the fact that tweets are produced by individual users and 
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Table 9 

Results for Scenario B. The Bernoulli spatial scan (SaTScan) detects the 

region with one single individual as extremely significant. Both visit and 

infection models did not detect any significant clusters. 

Algorithm p -value LLR RR N E (N) M 

Satscan < 10 −15 206.810 5.59 150 36.92 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

simply lump all the tweets together into two sets, a case

set and a control set; next, we compute the total number

of case and control tweets in each candidate cluster. The

candidate clusters, number of Monte Carlo replicas, and α
threshold are set as in the previous scenario. 

Table 9 shows the results. The visit and infection mod-

els did not detect any clusters in the data. Even though

one of the regions has a large concentration of tweets, both

models are able to take into account the fact that one sin-

gle individual is responsible for all of the excess tweets and

therefore the region should not be considered a true clus-

ter. On the other hand, SaTScan pinpointed this region as

highly significant, since it presented a high ratio of case

to control tweets. As can be seen in Table 9 , the num-

ber of expected cases was around 37 while the observed

number was 150. Indeed, if we considered the variant pre-

sented in Section 6.3.1 , SaTScan would ignore this region.

However, as discussed above, that variant also has serious

drawbacks. 

7. Concluding remarks 

A major problem in spatial disease surveillance is to

locate the spatial clusters of infection risk. The primary

difficulty lies in the lack of information about the daily

movements of the population at risk. Usually, public health

officials have only a single spatial location to associate

with each individual, the residence address. Occasionally,

there is also a work address. This is not enough to ac-

curately locate the high risk zones at a fine-grained spa-

tial resolution. This may be less important if the data is

coarsely aggregated, e.g., by county or state, in which case

very few of an individual’s tweets may occur outside their

area of residence. However, if one is interested in identify-

ing high risk regions within a city, to place each individual

in a single position in the map is too coarse. 

Social network data offers a unique opportunity to ob-

tain information on the spatial movements of individuals.

These data are easily available, in large amount and with

almost no delay. Furthermore, we can dynamically extract

the disease status as cases and controls of the individ-

uals from the textual content. In this paper, we showed

how a publicly available social network, Twitter, can be

used to provide such rich information. We described in

detail how we collected and processed the data so that

they can be used in a disease surveillance system. We

also presented two statistical models to search for zones

of high infection risk. The models differ because one deals

with P (A | B ) while the other with P (B | A ) , where A is the

event that someone is tweeting from a zone Z and B is

the event that the person is a case rather than a control

individual. 
The stochasticity of location data is not appropriate for

the usual spatial cluster detection tools such as the tradi-

tional spatial scan statistic approach. Each user is repre-

sented by a different number of geographic points and the

variability of these numbers is large. We showed how the

usual statistical approaches can be easily misled if not ex-

tended to account for this special structure. 

One limitation of our approach is the self-selected sam-

ple nature of our data. A random sample of social network

users is not a random sample of the at-risk population.

There are multiple biases involved in such a sample ( Sloan

and Morgan, 2015 ). The probability of belonging to a given

social network is likely to be different according to sex,

age, social status and many other attributes that may also

be related to the individual’s mobility pattern and infection

risk. This is a serious objection to the use of social media

data and should be carefully considered ( Lazer et al., 2014;

Pollett et al., 2017 ). However, we feel that there is merit in

developing and using these methods for two reasons. First,

in poor regions with lack of information and resources, the

suggestion of potential regions of high risk may target a

higher proportion of the available resources toward regions

with larger probability of being true risk clusters. Second,

the population coverage of social networks is expected to

continue to expand, resulting in a larger and less biased

sample of the population. Additionally, we could imagine

using these methods not just on geotagged social media

data but on user location data more frequently collected

from devices such as cell phones. For example, new ini-

tiatives have sampled individuals and, upon their consent,

tracked their movement 24/7 as well as measured their

disease status (case or control) after some time ( Freifeld

et al., 2010; Rehman et al., 2016 ). 

Dengue is just one of many infectious diseases with a

well known etiology but a huge amount of uncertain and

difficult to obtain parameters that quantify factors such as

infected mosquito population, likelihood of being bitten by

an infected mosquito, human movement in the mosquito

areas, among others. Our methods add to the set of tools

that spatial epidemiologists have available to search for

spatially localized risk clusters using readily available so-

cial network data. 
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Appendix A. Regions from Table 5 

In this appendix, we show a zoom in to the regions in

Table 5 , complementing Fig. 2 . Fig. A.5 depicts the regions

from Goiânia, while Fig. A.6 shows the regions detected in

Campinas. 

https://doi.org/10.13039/501100004901
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Fig. A.5. Zoom in to the regions in Goiânia. Region 1 was identified by the visit model, while regions 2 and 3 were identified by the infection model. 

Fig. A.6. Zoom in to the regions in Campinas. All regions were identified by the infection model. 
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