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I Research question: what predicts homicides?

I Background: space-time interaction tests

I Methods: kernel-based measures of
independence

I Applications: 911 call data, crime o�ense
reports from Chicago
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Chicago

I Population: 2.7 million

I Area: 234 square miles

I Research
question: Which
types of calls to 911 are
predictive of homicides
and shootings nearby?
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Space-time interaction

I Residual space-time dependence, after controlling for purely spatial
and purely temporal dependence.

I If two events are close in space, they are likely to be close in time
[Diggle, 1995].

Data: point processes

P1 = {(x 1i , y 1i , t 1i ), i ∈ 1, . . . , n1}, P2 = {(x2j , y2j , t2j ), j ∈ 1, . . . , n2}
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Statistical tests for space-time interaction

Knox test [1964]
Put the N = n1 · n2 pairs of points into a contingency
table:

close in space far in space
close in time X a = Nt
far in time b c

= Ns

Test statistic: X
N −

Nt
N ·

Ns
N

(or just X )

5 Carnegie Mellon University
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Mantel test [1967]
Put the N pairs of points into two matrices:

space: K =


0 ‖s1 − s2‖ . . . ‖s1 − sn‖

‖s2 − s1‖ 0 . . . ‖s2 − sn‖
. . .

‖sn − s1‖ ‖sn − s2‖ . . . 0



time: L =


0 |t1 − t2| . . . |t1 − tn|

|t2 − t1| 0 . . . |t2 − tn|
. . .

|tn − t1| |tn − t2| . . . 0


Test statistic:

∑
i,j Ki,jLi,j
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Shortcomings

I Knox: discretizes using pre-specified cuto�s

I Mantel: linear measure of independence
(correlation)

I Focus is exclusively on interpoint (Euclidean)
distances

I No way to include covariates, more spatial or
temporal structure

7 Carnegie Mellon University



Machine learning to the rescue
I A kernel is a real-valued paired similarity function:
k(x, y) ∈ R. Larger values ⇒ more similar.

I You’ve heard of kernels: they’re a generalization of
covariance functions C(x, y)!

I Example: Gaussian k(x, y) = e−‖x−y‖
2

I Mathematical theory: kernels turn points into
infinite dimensional vectors, i.e. functions:
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The “kernel trick”
I Take a standard statistical tool (e.g. clustering,
PCA, SVMs), replace dot products or similarity
metrics 〈x, y〉 with kernels k(x, y) throughout.

I Enables the application of simple, linear methods
in non-linear settings

9 Carnegie Mellon University
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Mantel test: transformed

k(s) :=
1

s + ε1
, `(t) :=

1

t + ε2

K =


0 k(‖s1 − s2‖) . . . k(‖s1 − sn‖)

k(‖s2 − s1‖) 0 . . . k(‖s2 − sn‖)
. . .

k(‖sn − s1‖) k(‖sn − s2‖) . . . 0



L =


0 `(|t1 − t2|) . . . `(|t1 − tn|)
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“Kernelized” Mantel test
Choose kernels k and `:

K =


0 k(s1, s2) . . . k(s1, sn)

k(s2, s1) 0 . . . k(s2, sn)
. . .

k(sn, s1) k(sn, s2) . . . 0



L =


0 `(t1, t2) . . . `(t1, tn)

`(t2, t1) 0 . . . `(t2, tn)
. . .

`(tn, t1) `(tn, t2) . . . 0



Test statistic:
∑

i,j k(si, sj)`(ti, tj)
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Theory
I Given points P = {pi = (si , ti)} we have two ways of

measuring similarity:
k(pi , pj) := k(si , sj) (similarity in space)

`(pi , pj) := `(ti , tj) (similarity in time)

I Are these two notions of similarity independent?

I Equivalently: given a random point p ∼ P , are the Hilbert

space representations k(p, ·) and `(p, ·) independent?
I Mantel test only picks up linear dependence (measured as

correlation): ∑
i,j

k(si , sj)`(ti , tj)

I Statistical machine learning says there’s a better way...

13 Carnegie Mellon University
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Kernel measures of independence

I Hilbert-Schmidt Independence Criterion (Gretton et al.

2012)

I Given observations (si , ti) ∼ S × T , is P(S, T ) = P(S)P(T )?

I Looks for a function f :

HSIC = sup
f

(
E

(s,t)∼S×T
f (s, t)− E

s∼S,t∼T
f (s, t)

)2

I Intuition: f is a “witness” function, meant to find

discrepancies between P(S, T ) and P(S)P(T ).

14 Carnegie Mellon University
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Kernel measures of independence

I For f su�ciently complex, can do much more than

distinguish linear dependence:

Theorem. HSIC = 0 if and only if P(S, T ) = P(S)P(T )

I For f in a Hilbert space and bounded, f ∗ can be found in

closed form:

HSIC =
1

n2
∑
i,j

k(si , sj)`(ti , tj)−
2

n3
∑
i,j,r

k(si , sj)`(ti , tr) +
1

n4
∑
i,j,q,r

k(si , sj)`(tq, tr)

I We show that these results hold for testing whether k(p, ·)
and `(p, ·) are independent ⇒ new test for space-time
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Space-time interaction statistics

HSIC:

1

n2
∑
i,j

k(si , sj)`(ti , tj)−
2

n3
∑
i,j,r

k(si , sj)`(ti , tr)+
1

n4
∑
i,j,q,r

k(si , sj)`(tq, tr)

Kernelized Mantel: ∑
i,j

k(si , sj)`(ti , tj)

I Notice: missing terms! Mantel is like HSIC, but with some

non-optimal choice of f (⇒ less power).

16 Carnegie Mellon University



Our Contributions

I New way of thinking about space-time interaction in terms

of kernels ⇒ new interpretation of HSIC ⇒ new test for

space-time interaction

I Extensions to bivariate, forward in time cases

I Interesting connections with Mantel test, showing its

shortcomings and a possible fix

I More flexible test: kernels can encode more than just

distance between points. HSIC can test for non-linear

dependencies.
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Experimental Setup

Synthetic data: draw n = 40 or n = 100 random
cluster centers, draw k = 5 or 1 children with locations
displaced N(0, σ) from parent in every direction.

Easy example: σ = .025
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Experimental Setup

Synthetic data: draw n = 40 or n = 100 random
cluster centers, draw k = 5 or 1 children with locations
displaced N(0, σ) from parent in every direction.

Hard example: σ = .2
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Synthetic Data: Results
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Experimental Setup: Crime Data

Question: which types of calls to 911 predict

homicides and aggravated battery with a handgun

(“shootings”)?

Data:

I Dispatcher calls from January 2007-May 2010, coded by

one of 271 types (≈ 9 million):

"01-01-2010","12:25:00","ARSON",1172456,1834562

"01-02-2010","19:55:00","THEFT",1173123,1831123

I All shootings / homicides from January 2007-May 2010

(9,087 total):

"01-01-2010","19:00:37","HOMICIDE",1172001,1834023

"01-07-2010","19:55:00","HOMICIDE",1173934,1831384
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Experimental Setup: Algorithms

I Calculate p-values for directional, bivariate
space-time interaction between each 911 call type
and shootings

I Compare Knox and HSIC

I Knox: cuto� for close: 500 feet, 14 days

I HSIC: Gaussian RBF kernels, with equivalent
bandwidth

I Permutation testing 1000 times to calculate
p-values
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Results

HSIC < .01 HSIC and Knox < .01 Knox < .01
auto accident pd 10-1 arson report
battery jo death removal auto theft ip
battery victim inj. evidence technician (pri. 1) criminal tres. (ov)
beat team meeting [ov] evidence technician (pri. 2) evidence technician (pri. 3)
crim dam. to prop rpt gambling found property
mental unauth absence gang disturbance k9 request
mission outdoor roll call kidnapping report
person with a gun person shot notify
robbery victim injured plan 1-5 person stabbed
theft ip shots fired pick up car

shots fired (ov) polling place check
suspicious person (ov)
transport

Expert rating: 5 (most reasonable) , 4 , 3 , 2 , 1

(least reasonable)
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Conclusions

I New data-driven formulation of “leading
indicators” question as space-time interaction
between pairs of point processes

I Defined a new kernel-based space-time
interaction test

I HSIC performance was comparable to classical
tests, parameter choices less critical

I Applied to large, real, and important dataset:
shootings in Chicago
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Thank you! Questions?1

Seth Flaxman - flaxman@cmu.edu

1Thank you to the Chicago Police Department for sharing data. Points of
view or opinions contained within this presentation are those of the author
and do not necessarily represent the o�cial position or policies of the
Chicago Police Department. Title page photo by Palsson on Flickr.
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Extensions

I Bivariate case: for test statistic, restrict sums to pairs of

points of di�erent types:

1

n2
∑
i,j

k(s1i , s
2
j )`(t

1
i , t

2
j )−

2

n3
∑
i,j,r

k(s1i , s
2
j )`(t

1
i , t

2
r ) +

1

n4
∑
i,j,q,r

k(s1i , s
2
j )`(t

1
q, t

2
r )

I Interesting interpretation in Hilbert space

I Only predict forward in time: restrict sums to pairs of

points where ti < tj .
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Excess risk attributable to space-time

interaction

D(s, t) =
FS,T (s, t)− FS(s)FT (t)

FS(s)FT (t)

Given that we see an event of type 1, proportional
increase (excess risk) of seeing an event of type 2.
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Maximum Mean Discrepancy (Gretton et al. 2012)

“Witness” f̂ ∗:

f̂ ∗(x, y) ∝
∑
i

k(x, xi)−
∑
j

k(y, yj)
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False positive rate

HSIC: 4.07% false positive
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False positive rate

Mantel (kernelized): 4.37% false positive
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False positive rate

Knox: 5.69% false positive
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