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What is spatial scan?
• Spatial scan ≠ SaTScan (or, for that matter, 

any other single “out of the box” solution).

• Not a single method: a collection of many 

related methods for spatial event detection.

• Original spatial scan statistic by Kulldorff; 

many variants and extensions developed by 

research community over the last ~15 years.

• Different variants work better (or worse) in 

different circumstances  need to think 

carefully about which ones to use.
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Spatial event detection

Spatial time series data from 

spatial locations si (e.g. zip codes)

Time series of counts 

ci,m
t for each location si

for each data stream Dm.

Goals of detection task: detect any emerging disease outbreaks, 

pinpoint the affected spatial area, and characterize the type of event.

D1 = respiratory ED

D2 = constitutional ED

D3 = OTC cough/cold

D4 = OTC anti-fever

Outbreak detection

(etc.)

Informally, we want to know:

Is there anything happening?

If so, what and where?

Formally, we distinguish between:

Null hypothesis H0 (no events)

Set of alternative hypotheses H1(S, Ek)

= event of type Ek in spatial region S.

(Spatial region = set of “nearby” 

locations, often constrain shape/size)
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Spatial event detection

Spatial time series data from 

spatial locations si (e.g. zip codes)

Time series of counts 

ci,m
t for each location si

for each data stream Dm.

D1 = respiratory ED

D2 = constitutional ED

D3 = OTC cough/cold

D4 = OTC anti-fever

Outbreak detection

(etc.)

Simplifying assumptions:

Single data stream  Consider counts ci
t.

Single event type  Testing H1(S), “Counts in 

region S are significantly higher than expected.”

Typically many more assumptions, e.g. counts are 

Poisson distributed, uniform increase in risk, …

Goals of detection task: detect any emerging disease outbreaks, 

pinpoint the affected spatial area, and characterize the type of event.
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The spatial scan statistic

Rather than monitoring 

individual locations, we 

examine groups of locations.

Imagine moving a spatial 

window around the monitored 

area, allowing the size and 

shape of the window to vary.

(Kulldorff, 1997)
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The spatial scan statistic

Rather than monitoring 

individual locations, we 

examine groups of locations.

Imagine moving a spatial 

window around the monitored 

area, allowing the size and 

shape of the window to vary.

(Kulldorff, 1997)
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Is there any position of the 

window such that the points 

inside form a significant cluster? 

I have a population 

of 6000, of whom 90 

(1.5%) are sick.

Everywhere else has a 

population of 2.2 

million, of whom 

20,000 (0.9%) are sick.

The spatial scan statistic

Rather than monitoring 

individual locations, we 

examine groups of locations.

Imagine moving a spatial 

window around the monitored 

area, allowing the size and 

shape of the window to vary.

We compute a score for each spatial region, and then 

test whether the highest scoring regions are significant.

(Kulldorff, 1997)
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Kulldorff’s model

ci ~ Poisson(qbi)

H0: q = qall everywhere

H1(S): q = qin inside S,   

q = qout outside,

qin > qout.

Finding the most 

significant regions

• Define models:
• of the null hypothesis 

H0: no events. 

• of the alternative 

hypotheses H1(S): 

event in region S.

ci = count for location si (e.g. number of disease cases)

bi = baseline for location si (e.g. population at-risk, or 

expected count computed from historical data)

q = risk (expected ratio of count to baseline)
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Finding the most 

significant regions

Kulldorff’s model

ci ~ Poisson(qbi)

H0: q = qall everywhere

H1(S): q = qin inside S,   

q = qout outside,

qin > qout.

• Define models:
• of the null hypothesis 

H0: no events. 

• of the alternative 

hypotheses H1(S): 

event in region S.
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Finding the most 

significant regions
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Kulldorff’s model

ci ~ Poisson(qbi)

H0: q = qall everywhere

H1(S): q = qin inside S,   

q = qout outside,

qin > qout.

• Define models:
• of the null hypothesis 

H0: no events. 

• of the alternative 

hypotheses H1(S): 

event in region S.

• Derive a score function:

• Likelihood ratio:
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Kulldorff’s model

ci ~ Poisson(qbi)

H0: q = qall everywhere

H1(S): q = qin inside S,   

q = qout outside,

qin > qout.

• Define models:
• of the null hypothesis 

H0: no events. 

• of the alternative 

hypotheses H1(S): 

event in region S.

• Derive a score function:

• Likelihood ratio:

Score = 1.3
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Finding the most 
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ci ~ Poisson(qbi)

H0: q = qall everywhere

H1(S): q = qin inside S,   
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• Likelihood ratio:
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Finding the most 
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Finding the most 
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• Define models:
• of the null hypothesis 

H0: no events. 

• of the alternative 

hypotheses H1(S): 

event in region S.

• Derive a score function:

• Likelihood ratio:

• To find the most 

significant regions:

Score = 1.3
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Finding the most 

significant regions
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• Define models:
• of the null hypothesis 

H0: no events. 

• of the alternative 

hypotheses H1(S): 

event in region S.

• Derive a score function:

• Likelihood ratio:

• To find the most 

significant regions:
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2nd highest 

score = 8.4
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Which regions are 

significant?

• Randomly generate counts for 
R = 999 replica datasets under 
H0 (i.e. assuming no events).

• Find maximum region score 
F*= maxS F(S) of each replica.

• p-value of region S = (RB+1) / 
(R+1), where RB =  # of replicas 
with F* ≥ F(S).

• All regions with p-values < 
are significant at level .  

Maximum region 

score = 9.8

2nd highest 

score = 8.4

…

G1 G2 G999

F* = 2.4 F* = 9.1 F* = 7.0

This region is significant at = .05; 

no other regions are significant.

RB = 12, p = .013

RB = 97, p = .098



SPATIAL SCAN TIPS
1. Use historical count data, rather than 

population, to obtain expected counts bi
t.
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Population-based method 

(Kulldorff, 1997, 2001):

Baselines represent population at risk, 

typically obtained from census and 

possibly adjusted for known risk factors.  

Under the null hypothesis, we expect 

counts to be proportional to population.

Compare disease rate (count / pop) 

inside and outside region.

qin = .02

qout = .01

q is disease 

rate, bi is 

population

ci ~ Po(qbi)

The old way of doing things

The problem: real data 

doesn’t behave this way!

Different areas have different base rates

age and health of population

environmental hazards

wealth and buying habits

Base rate of an area varies over time

day of week effects holidays

seasonal trends weather

promotional sales of OTC medications

ED visits      

OTC drug sales
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Population-based method 

(Kulldorff, 1997, 2001):

Baselines represent population at risk, 

typically obtained from census and 

possibly adjusted for known risk factors.  

Under the null hypothesis, we expect 

counts to be proportional to population.

Compare disease rate (count / pop) 

inside and outside region.

qin = .02

qout = .01

q is disease 

rate, bi is 

population

ci ~ Po(qbi)

The old way of doing things

The problem: real data 

doesn’t behave this way!

Base rate of an area varies over time

day of week effects holidays

seasonal trends weather

promotional sales of OTC medications

ED visits      

OTC drug sales

Different areas have different base rates

age and health of population

environmental hazards

wealth and buying habits

The solution

1. Infer the time series of expected counts for 

each location, based on time series analysis 

of the historical data for that location.

2. Find regions where the observed counts 

are significantly higher than expected.
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Day T (present)Day 

1

Day T-W Day T-W+1

ci
t = 20

……

Last W days are “recent”

ci
t = 22 ci

t = 18 ci
t = 26

Is there any spatial region S where the most recent 

counts are significantly higher than expected?

Last w days, 

w ≤ W

The expectation-based approach
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Day T (present)Day 

1

Day T-W Day T-W+1

ci
t = 20

……

ci
t = 22 ci

t = 18 ci
t = 26

Step 1:  Compute the expected 

number of cases (or “baseline”) 

bi
t for each spatial location for 

each recent day, using some 

time series analysis method.

Counts of 

past days

Inferred counts of 

recent days

The expectation-based approach

(Weighted or unweighted) 

moving average.  Important 

to adjust for day of week

and seasonality.

Many other methods possible, 

e.g. EWLR, ARIMA, Kalman filter, 

Gaussian process regression.
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Day T (present)Day T-W+1

…

bi
t = 19,  ci

t = 18 bi
t = 20, ci

t = 26

Step 2: use a space-time 

scan statistic to find clusters 

with the actual counts ci
t

significantly greater than the 

expected counts bi
t.

To do so, we scan 

over the set of 

space-time regions

S x {tmin…T}.

S is a spatial region Cluster ends at 

the present

tmin > T-W

The expectation-based approach

Which variant of the scan statistic should we use?



SPATIAL SCAN TIPS
1. Use historical count data, rather than 

population, to obtain expected counts bi
t.

2. Choose an appropriate likelihood ratio 

statistic for the given dataset and expected 

cluster size.
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H0: qi
t = 1 everywhere       

(counts = expected)

Counts are Poisson distributed: ci
t ~ Poisson(qi

tbi
t)

qi
t is relative risk, 

bi
t is expected 

count under H0

qin = 1.2

H1(S): qi
t = qin in S and qi

t = 1 

outside, for some qin > 1. 

(counts > expected in S)

Poisson scan statistic models

Expectation-based Poisson (EBP) Kulldorff’s scan statistic (KULL)

(Neill et al., KDD 2005) (Kulldorff, 1997, 2001)

H0: qi
t = qall everywhere 

(inside = outside)

H1(S): qi
t = qin in S and qi

t = qout 

outside, for some qin > qout. 

(inside > outside)

qin = 1.3

qout = 1.1
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Poisson scan statistic models
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H0: qi
t = 1 everywhere       

(counts = expected)

Counts are Poisson distributed: ci
t ~ Poisson(qi

tbi
t)

qi
t is relative risk, 

bi
t is expected 

count under H0

H1(S): qi
t = qin in S and qi

t = 1 

outside, for some qin > 1. 

(counts > expected in S)

Expectation-based Poisson (EBP) Kulldorff’s scan statistic (KULL)

(Neill et al., KDD 2005) (Kulldorff, 1997, 2001)

H0: qi
t = qall everywhere 

(inside = outside)

H1(S): qi
t = qin in S and qi

t = qout 

outside, for some qin > qout. 

(inside > outside)
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Counts are Gaussian distributed: ci
t ~ Gaussian(qi

tbi
t, i

t)

Gaussian scan statistic models

Expectation-based Gaussian (EBG) Population-based Gaussian (PBG)

all
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expF(S)

2

(if C’in / B’in > C’out / B’out)(if C’ > B’)

(Neill, Ph.D. thesis, 2006) (Neill, Ph.D. thesis, 2006)

Let C’ = ci
tbi

t / ( i
t)2 and B’ = (bi

t)2 / ( i
t)2

H0: qi
t = 1 everywhere       

(counts = expected)

H1(S): qi
t = qin in S and qi

t = 1 

outside, for some qin > 1. 

(counts > expected in S)

H0: qi
t = qall everywhere 

(inside = outside)

H1(S): qi
t = qin in S and qi

t = qout 

outside, for some qin > qout. 

(inside > outside)
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Comparison of detection power

We computed the average number of injected cases

needed for each method to detect 90% of outbreaks on a 

given day, as a function of the number of affected zip codes. 

Respiratory ED visits and thermometer sales: EBP achieves consistently 

high performance.  KULL has low detection power for large outbreaks.
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Comparison of detection power

Cough/cold and anti-fever OTC sales: KULL outperforms EBP when less 

than 2/3 of zip codes are affected, but has low power for large outbreaks.

We computed the average number of injected cases

needed for each method to detect 90% of outbreaks on a 

given day, as a function of the number of affected zip codes. 
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Comparison of detection power

Cough/cold and anti-fever OTC sales: KULL outperforms EBP when less 

than 2/3 of zip codes are affected, but has low power for large outbreaks.

We computed the average number of injected cases

needed for each method to detect 90% of outbreaks on a 

given day, as a function of the number of affected zip codes. 

Extreme example: entire 

monitored region has 

twice as many cases as 

expected. EBP would 

alert, KULL would ignore.



SPATIAL SCAN TIPS
1. Use historical count data, rather than 

population, to obtain expected counts bi
t.

2. Choose an appropriate likelihood ratio 

statistic for the given dataset and expected 

cluster size.

3. Decide whether randomization testing is a 

good idea (typically the answer is NO!)
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Randomization testing considerations

• Randomization is one way to provide a 

suggested threshold for sounding the 

alarm, but there are other options as well.

• Each day, report top-k non-overlapping clusters.

• Report all clusters with scores over fixed value.

 Use the empirical distribution of maximum 

scores from historical data (i.e. to be significant 

at = .05, must beat ~95% of historical days).

• Randomization multiplies computation time

by the number of Monte Carlo replications 

(typically at least 100, often 1000 or 10,000).
32



Randomization testing considerations

• Randomization testing identifies clusters which are 

unexpected given the null hypothesis… but H0

makes many assumptions we don’t believe.

• Independent Poisson-distributed counts (not 

overdispersed, no spatial autocorrelation, etc.)

• No irrelevant anomalies (data entry errors, etc.)

• Uniform risk assumed under the null: baselines capture 

all the variation in counts if no outbreaks are occurring.

• Randomization guarantees the desired FPR (e.g. 

= .05) if the null is true, but not otherwise.

• In real data (with incorrectly specified null) FPR is 

much higher: 11-57% at = .05 for OTC data.
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• High false positive rate can harm detection power 

(days to detect for a given FPR, e.g. 1/month).

• Many days with p-values of 1/(R+1)  indistinguishable.

• On the ED and OTC datasets, reporting the regions with 

lowest p-values gave much lower detection power than 

simply reporting the highest-scoring regions.

• Using the Gumbel p-value correction helps, but still does 

not achieve higher detection power.

• Randomization often does not help, and can even 

harm, performance.  So when can it be helpful?

• Insufficient historical data to use empirical scores.

• Major changes in empirical score distribution over time 

due to population shifts, new monitored locations, etc.
34

Randomization testing considerations



SPATIAL SCAN TIPS
1. Use historical count data, rather than 

population, to obtain expected counts bi
t.

2. Choose an appropriate likelihood ratio 

statistic for the given dataset and expected 

cluster size.

3. Decide whether randomization testing is a 

good idea (typically the answer is NO!)

4. Choose appropriate set of search regions.

35
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• Some practical considerations:

• Set of regions should cover entire search space.

• Regions should overlap, not partition the space.

• Choose a set of regions that corresponds well with 

the size/shape of the clusters we want to detect.

• Typical approaches consider some fixed shape (circles, 

rectangles) and vary the location and dimensions.

Don’t search too few regions: Don’t search too many regions:

Computational infeasibility!

Overall power to detect any given 

subset of regions reduced because of 

multiple hypothesis testing.

Reduced power to detect clusters 

outside the search space.

Choosing the set of search regions
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• Kulldorff’s original spatial scan 
searches over circular regions of 
varying radius, centered at each 
spatial location si.

• Since the score function F(S) 
depends only on which locations 
are included, we need to search 
O(N2) regions, each consisting of 
a center location and its k-NN.

• Advantages: computationally 
efficient, generalizable to arbitrary 
metric spaces, high detection 
power for compact clusters.

• Disadvantage: low power for 
elongated/irregular clusters.

Choosing the set of search regions

April 1979: inadvertent release of 

anthrax from a Soviet biological 

weapons facility, 77 cases confirmed.

Disease cluster elongated due to wind.
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• Kulldorff’s original spatial scan 
searches over circular regions of 
varying radius, centered at each 
spatial location si.

• Since the score function F(S) 
depends only on which locations 
are included, we need to search 
O(N2) regions, each consisting of 
a center location and its k-NN.

• Advantages: computationally 
efficient, generalizable to arbitrary 
metric spaces, high detection 
power for compact clusters.

• Disadvantage: low power for 
elongated/irregular clusters.

Choosing the set of search regions
Many recent spatial scan 

variants search over 

elongated clusters, e.g. 

rectangles1 or ellipses2

1Neill and Moore, KDD 2004

2Kulldorff et al., Stat. Med., 2007

3Duczmal and Assuncao, CSDA, 2004

4Tango and Takahashi, IJHG, 2005

5Patil and Taillie, EES, 2004

Other variants: heuristic 

search over all connected 

regions3, or exhaustive 

search over a subset of 

connected regions4,5

Main challenge: 

efficient computation!
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• Kulldorff’s original spatial scan 
searches over circular regions of 
varying radius, centered at each 
spatial location si.

• Since the score function F(S) 
depends only on which locations 
are included, we need to search 
O(N2) regions, each consisting of 
a center location and its k-NN.

Choosing the set of search regions
Many recent spatial scan 

variants search over 

elongated clusters, e.g. 

rectangles1 or ellipses2

Other variants: heuristic 

search over all connected 

regions3, or exhaustive 

search over a subset of 

connected regions4,5

Main challenge: 

efficient computation!

Our recently proposed “Linear-Time 

Subset Scanning” methods enable 

efficient optimization over irregularly 

shaped clusters, finding the highest-

scoring proximity-constrained subsets 

of locations, and substantially 

improving detection time and accuracy.

1Neill and Moore, KDD 2004

2Kulldorff et al., Stat. Med., 2007

3Duczmal and Assuncao, CSDA, 2004

4Tango and Takahashi, IJHG, 2005

5Patil and Taillie, EES, 2004



SPATIAL SCAN TIPS
1. Use historical count data, rather than 

population, to obtain expected counts bi
t.

2. Choose an appropriate likelihood ratio 

statistic for the given dataset and expected 

cluster size.

3. Decide whether randomization testing is a 

good idea (typically the answer is NO!)

4. Choose appropriate set of search regions.

5. Simpler is not always better… see what the 

recent literature has to offer.
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Multivariate models
• Timeliness and accuracy of detection can often be 

dramatically improved by combining information 

from multiple data streams.

• Lots of recent work here- parametric, nonparametric, 

Bayesian…

• Multivariate Bayesian Scan Statistic

• MBSS allows us to model and differentiate between 

multiple outbreak types, as well as distinguishing 

between outbreaks and false positive alerts (e.g. 

promotional OTC sales)  event characterization.

• Future advances will continue to improve the 

timeliness, accuracy, and scalability of spatial 

event detection methods.
41



42

References
• L. Duczmal and R. Assuncao. A simulated annealing strategy for the detection of arbitrary shaped 

spatial clusters. Computational Statistics and Data Analysis, 45:269–286, 2004.

• M. Kulldorff. A spatial scan statistic. Communications in Statistics: Theory and Methods, 26(6): 1481–
1496, 1997.

• M. Kulldorff. Prospective time-periodic geographical disease surveillance using a scan statistic.  
Journal of the Royal Statistical Society A, 164: 61–72, 2001.

• M. Kulldorff, L. Huang, L. Pickle, and L. Duczmal. An elliptic spatial scan statistic. Statistics in 
Medicine, 25:3929–3943, 2006.

• M. Kulldorff, F. Mostashari, L. Duczmal, W. K. Yih, K. Kleinman, and R. Platt. Multivariate scan 
statistics for disease surveillance. Statistics in Medicine, 26: 1824–1833, 2007.

• D.B. Neill, A.W. Moore, M. Sabhnani, and K. Daniel. Detection of emerging space-time clusters. Proc. 
11th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 218-227, 2005.

• D.B. Neill. Detection of spatial and spatio-temporal clusters. Ph.D. thesis, Carnegie Mellon University, 
Department of Computer Science, 2006.

• D.B. Neill and J. Lingwall. A nonparametric scan statistic for multivariate disease surveillance. 
Advances in Disease Surveillance 4: 106, 2007.

• D.B. Neill. Fast and flexible outbreak detection by linear-time subset scanning. Advances in Disease 
Surveillance 5: 48, 2008.

• D.B. Neill. An empirical comparison of spatial scan statistics for outbreak detection. 
International Journal of Health Geographics 8: 20, 2009.

• D.B. Neill. Expectation-based scan statistics for monitoring spatial time series data. International 
Journal of Forecasting, 2009, 25: 498-517.

• D.B. Neill and G.F. Cooper.  A multivariate Bayesian scan statistic for early event detection and 
characterization.  Machine Learning, 2010, 79: 261-282.

• G. P. Patil and C. Taillie. Upper level set scan statistic for detecting arbitrarily shaped hotspots. Envir. 
Ecol. Stat., 11: 183–197, 2004.

• T. Tango and K. Takahashi. A flexibly shaped spatial scan statistic for detecting clusters.  Intl. Journal 
of Health Geographics, 4: 11, 2005.



Thanks!!!  Questions???
1. Use historical count data, rather than 

population, to obtain expected counts bi
t.

2. Choose an appropriate likelihood ratio 

statistic for the given dataset and expected 

cluster size.

3. Decide whether randomization testing is a 

good idea (typically the answer is NO!)

4. Choose appropriate set of search regions.

5. Simpler is not always better… see what the 

recent literature has to offer.
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