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Abstract

We present three recently proposed subset scan methods for spatial disease surveil-
lance that use movement data from case and control individuals, rather than a
single location per individual, in order to identify areas with a high relative risk of
infection. We illustrate the use of these methods to detect spatial clusters of dengue
infection risk using geo-located data from Twitter classified into infected cases and
non-infected controls.

1 Introduction

The spatial cluster detection task aims at detecting localized spatial regions or zones, called spatial
clusters, where the probability of some event occurrence is higher than in the rest of the map. Spatial
cluster detection methods, such as the spatial and subset scan statistics [Kulldorff, 1997, 2001, Neill,
2012], search the data to uncover the location and boundaries of any possible clusters. These methods
usually work in an unsupervised manner, without prior knowledge of the relevant spatial patterns of
anomalies such as their center, shape, or size. They also provide meaningful statistical measures to
evaluate the significance of detected clusters.

The spatial scan statistic [Kulldorff and Nagarwalla, 1995, Kulldorff, 1997] is the most commonly
used method in this class. It searches over a large set of geographical areas Z with a rigid circular
shape, allowing the radius of each circle to vary. Over this set of regions, the spatial scan maximizes
a likelihood ratio statistic, given by

L(Z) =
P (Data | H1(Z))

P (Data | H0)
, (1)

where Data is specified according to the model, e.g., the distribution of disease cases over space
and time. Across the several variants of the spatial scan statistics [Shi and Janeja, 2009, Tango
and Takahashi, 2005, Neill et al., 2004], there has been one invariant aspect of the geographical
characterization of the subjects: there is one and only one spatial position associated with each
individual, whether that location represents a pixel in a medical image, as in Somanchi et al. [2018],
or a spatially localized event, such as a crime or accident location. In particular, in health surveillance,
these systems usually locate each individual by their home address and, more rarely, their workplace
address. However, human mobility plays a key role in the transmission of infectious diseases
[Stoddard et al., 2009], and relying solely on an individual’s residential or workplace address as a
proxy for the place that individual was infected ignores a multitude of exposures that individuals are
subjected to during their daily routines.

In this paper, we explore different models to search for localized spatial risk clusters based on data
from two groups of individuals, cases and controls. The cases are composed of individuals who
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experienced a particular event related to the risk, such as crime victims or diseased individuals.
The control group is composed of individuals who have not experienced that event during the same
time period. Each individual is represented by a set of points describing their movement in space,
specifying a location for each observation of that individual. Below we describe three probabilistic
models that can be used in a spatial or subset scan statistic approach to search for the most likely
spatial risk cluster. The models differ in their assumptions about the difference in risk between
the case and control groups assuming that a spatial risk cluster exists. We illustrate the use of our
models for discovery of spatial risk clusters of dengue, an important health problem in tropical
areas. Geo-tagged Twitter data from two groups of individuals were analyzed. The individuals were
classified into controls or disease cases based on the textual content of their messages. The methods
were able to detect spatial clusters that are prime suspects for further epidemiological investigation.

2 Detecting Spatial Clusters in Mobility Patterns

We use Figure 1 to explain the problem. Each individual is indexed by an integer i and has a
set of ni spatial positions. These positions may come from lat-long coordinates of geo-located
tweets, call detail records, or other sources. The positions from a single person are connected
by line segments. Individuals are additionally labeled by two colors according to their status:
cases (in red) or controls (in blue). In a disease surveillance scenario, the cases may repre-
sent the group of infected individuals and the controls are the non-infected population at risk.
The positions marked with a hatched shadow are the ones which helped to identify the case
individuals, for instance, when they mention specific dengue-related keywords in that tweet.

Figure 1: Schematic drawing of the problem.

It also shows a spatial zone Z where the risk of
becoming a case given that an individual travels
in that zone might be higher than in the rest of
the region. Our main objective is to search for
spatial clusters where the infection risk is signif-
icantly higher than elsewhere. A key challenge
is that the number of positions ni composing
each mobility pattern can vary substantially be-
tween individuals i. Thus, simple approaches
like counting the total numbers of case and con-
trol tweets per location would be biased and
inaccurate; moreover, individuals with larger
numbers of positions may be more likely to be
identified as a case, since we have more informa-
tion about them. Nevertheless, our assumption
is that the entire mobility patterns will be in-
formative of the riskier areas if we properly compare the spatial patterns from case and control
individuals. The problem is to find appropriate ways to make this pattern comparison. The multiple
locations associated with each individual, rather than the usual single location (such as their place of
residence), lead us to consider several different models, which we describe next.

2.1 Models

In this section, we briefly present three spatial models that deal differently with the data: the previously
proposed visit and infection models [Souza et al., 2016], and our new logistic exposure model [Souza
et al., 2018]. To make it more concrete, we describe the models in the context of data coming from
geo-tagged Twitter data. Intuitively, the visit model searches for the most likely zone Z looking at
the conditional probability P(i tweets from Z | i is a case) while the infection model considers the
inverse conditional probability P(i is a case | i tweets from Z). The third model conditions on the
total number of points ni associated with the i-th individual.

Visit Model. Let Vi,z be the number of tweets issued in Z among the ni total number of tweets
the i-th individual generated. Let 1[Vi,z ≥ 1] be the binary random variable indicating whether the
i-th individual ever tweeted inside the candidate zone Z . These random variables can be assumed
independent but they are not identically distributed, as the success probability depends on the number
ni of tweets issued by each individual. Denote by p = p(Z) the probability that, given that a case
individual is tweeting, he does so from within Z . Let p̄ = p̄(Z) be the similar probability for
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a control individual. We are interested in zones where p(Z) > p̄(Z). For a case user, we have
P (Vi,z ≥ 1) = 1− (1− p)ni and, for a control subject, it is equal to 1− (1− p̄)ni .

Infection Model. We will estimate the probability that an individual becomes a case given that they
visited region Z a total of k times. Let r = r(Z) be the infection risk inside the candidate cluster
and r̄ = r(Z̄) the infection risk in Z̄ , the region outside Z . We are interested in zones Z where
r(Z) > r(Z̄). Let Ii be the binary indicator that the i-individual is a case. We assume that these
binary random variables are independent. They are not identically distributed since the probability
of Ii = 1 depends on the number of visits Vi,z made by the i-th individual to the zone Z . We have
P(Ii = 1|Vi,z = ki) = 1− P(Ii = 0|Vi,z = k) = 1− (1− r)ki (1− r̄)ni−ki .

Logistic Model. Let Yi be the binary indicator that the i-th individual is a case rather than a control.
The probability that someone appears as a case increases with the number of points ni in which we
have information. We allow for this effect through a possibly non-linear, monotone non-decreasing
function g(ni):

g(ni) =
P(Yi = 1|ni)
P(Yi = 0|ni)

, (2)

where g(ni) is an arbitrary and unspecified function. The proportion p(Z)i of time spent on the
putative high risk zone Z modifies this ratio according to the ratio λin/λout between the risk inside
and outside Z:

P(Yi = 1|ni, p(Z)i)

P(Yi = 0|ni, p(Z)i)
=

P(Yi = 1|ni)
P(Yi = 0|ni)

(
λin
λout

)(p(Z)i−p0(Z))

= g(ni) e
β (p(Z)i−p0(Z)) (3)

where β = log(λin/λout). The term p0(Z) = E(p(Z)i) is the expected value of the proportion
p(Z)i over all individuals. When Z is indeed a high risk zone, we have β > 0 and, as a consequence,
individuals spending a considerable proportion of their time inside Z (as estimated from the set
of observed locations) have a larger probability of becoming a disease case. Hence, intuitively,
zones where this β coefficient is large are candidate high risk zones. Model (3) implies a binomial
distribution for Yi with a semi-parametric logistic probability specification with the g(ni) as an offset:

P(Yi = 1|ni, p(Z)i) =
g(ni)

g(ni) + exp(−β(p(Z)i − p0(Z)))
(4)

2.2 Inference

Due to space constraints, we derive the inference step only for the last model. Analogous reasoning
can be carried out for the other models. We want to test the null hypothesis H0 : λ(x, y) = λall is
constant versus the set of alternative hypotheses H1(Z) : there is a region Z such that λ(x, y) = λin
for all (x, y) ∈ Z and λ(x, y) = λout < λin for all (x, y) 6∈ Z . This alternative hypothesis is
equivalent to having β > 0 in model (4). The aim is to find the most likely zone Z given the
evidence provided by Si = (Yi0, Yi1, . . . , Yik) and the spatial locations of the tweets. For model
(4), considering a fixed region Z , the likelihood for the observed sample Y1, Y2, . . . , Yn of binary
variables is given by the logistic likelihood

L(H1,Z, β) =
∏
i

P(Yi = 1|ni, p(Z)i)
yiP(Yi = 0|ni, p(Z)i)

1−yi (5)

For fixed Z , the maximum likelihood estimator of β maximizes (5) and it is denoted by β̂(Z). The
most likely zone Ẑ is finally given by Ẑ = arg maxZ L(H1,Z, β̂(Z)). To obtain the p-value, it
is useful to denote this most likely zone obtained with the observed dataset as Ẑ(0). Under the
null hypothesis H0 : λin = λout = λ, we have β = 0 as staying longer in Z has no effect on
the probability of Yi = 1. Therefore, in the case of the logistic model, L(H0) =

∏
i P(Yi = 1 |

ni)
yiP(Yi = 0 | ni)1−yi where P(Yi = 1 | ni) = 1/(1 + exp(g(ni))) as β = 0 under H0.

To evaluate the statistical significance of the maximum likelihood estimator β̂(Z) obtained from this
model, we calculate the maximum likelihood ratio test statistic (MLRT):

T 0 =
L(H1, Ẑ, β̂(Ẑ))

L(H0)
.
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Next, we run a permutation test to obtain its associated p-value. We randomly permute the case
and control labels (i.e., randomly permute the observed values of Yi) among the individuals. This
guarantees that, in this permuted dataset, the cases and controls gain their labels in a manner
disassociated with any spatial aspect. This permutation assignment is carried out a large number nsim
of times. After the random assignments, we run the entire zone detection procedure with the pseudo
datasets obtaining β̂(1), . . . , β̂(nsim), the associated most likely zones Ẑ(1), . . . , Ẑ(nsim) and the value
of the MLRT T 1, T 2, . . . , T nsim. The p-value is essentially the proportion of permutation-based
values T 1, T 2, . . . , T nsim that are larger than the observed value T 0.

3 Case Study: Dengue in Brazil

In this case study, we are interested in searching for spatial clusters associated to high risk of infection
by dengue. Traditional systems for dengue surveillance place the case individuals at their home
locations. Though easy to obtain, residential addresses are often a poor indicator of the regions where
people and infected mosquitoes tend to interact more. Our geolocated data were collected through
the Twitter Streaming API1. From a large number of analysis based on Brazilian municipalities, we
selected the results from Sorocaba city, located in the Southeast region of Brazil, to illustrate our
methods. We identify “infected” individuals (cases) as those individuals who have at least one tweet
classified as a current, personal experience with dengue. This classification was made through NLP
techniques applied to textual content of the tweets. Because of the incubation period and recovery time,
infected Twitter users are likely to mention dengue in their tweets days after they are infected, and usu-
ally not at the location where the exposure (mosquito bite) occurred, which makes the task harder. The
control individuals are composed of the remaining users. To run our models, we create the mobility pat-
terns of each individual by retrieving the positions of all messages they issued in the period of analysis.

Figure 2: Zoom in to the regions detected by
the Logistic Model.

To run the models, we scan over axis-aligned rectan-
gular regions of different sizes. The number of Monte
Carlo simulations was set to 299 and the significance
level α = 0.05. The offset g(ni) was estimated us-
ing a Lowess smoother. Both Infection and Logistic
models were able to detect at least one region in
the selected city. The visit model only suspected re-
gions but they were not significant at level α = 0.05.
As each model conditions its probability on different
events they may identify different regions. This effect
can be useful depending on the type of event being
monitored. Figure 2 shows the prime suspect regions
pinpointed by the logistic model. It is worth men-
tioning that, there are many points of interest, such
as hospitals, parks, and college campus, inside the
detected regions. As those places are non-residential,
standard approaches would fail to consider them as
potential infection places in the event of a spike in
the number of cases.

4 Discussion and Concluding Remarks

Identifying places where people have higher risk of being infected, rather than focusing on residential
address locations, may be key to guide spatial surveillance actions, specially for vector-borne diseases
such as dengue, allowing public health officials to focus mitigation actions. The stochasticity of
location data is not appropriate for typical spatial cluster detection tools such as the traditional spatial
scan statistic [Kulldorff, 1997]. Each user is represented by a different number of geographic points
and the variability of these numbers is large; traditional approaches can be easily misled if not
extended to account for this special structure. We expect that our methods will also be useful to other
spatial surveillance problems where movement data can bring relevant information.

1https://dev.twitter.com/streaming/overview
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