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Advances in medical imaging technology have created opportunities for

computer‐aided diagnostic tools to assist human practitioners in identifying

relevant patterns in massive, multiscale digital pathology slides. This work

presents Hierarchical Linear Time Subset Scanning, a novel statistical method

for pattern detection. Hierarchical Linear Time Subset Scanning exploits the

hierarchical structure inherent in data produced through virtual microscopy

in order to accurately and quickly identify regions of interest for pathologists

to review. We take a digital image at various resolution levels, identify the most

anomalous regions at a coarse level, and continue to analyze the data at

increasingly granular resolutions until we accurately identify its most

anomalous subregions. We demonstrate the performance of our novel method

in identifying cancerous locations on digital slides of prostate biopsy samples

and show that our methods detect regions of cancer in minutes with high

accuracy, both as measured by the ROC curve (measuring ability to distinguish

between benign and cancerous slides) and by the spatial precision‐recall curve

(measuring ability to pick out the malignant areas on a slide which contains

cancer). Existing methods need small scale images (small areas of a slide

preselected by the pathologist for analysis, eg, 32×32 pixels) and may not work

effectively on large, raw digitized images of size 100K×100K pixels. In this work,

we provide a methodology to fill this significant gap by analyzing large digitized

images and identifying regions of interest that may be indicative of cancer.
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1 | INTRODUCTION

1.1 | Background

Anatomic pathology is a medical specialty, which includes diagnosing a disease from biopsy samples of an organ. For
decades, pathology workflows have been highly manual: thin slices of biopsy specimens are histochemically stained
on a glass slide and analyzed by a pathologist under an optical microscope. More recently, advances in computer‐aided
medical diagnostics have introduced a digital workflow, and use of digital pathology has grown dramatically in the last
10 years.1 Many pathology laboratories are on the path towards modernizing and updating their work flows using these
advanced techniques. Digital pathology offers many advantages over traditional anatomic pathology, including secure
Copyright © 2018 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/sim 3599
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and easy distribution of digital images and the ability to use informatics tools to analyze them. It is typically believed
that pathologists are often under time pressure to analyze these images,2 which may lead to misdiagnoses. Thus, the
use of automated tools to assist in diagnosis and focus attention on the most relevant areas of the slide has great
potential to improve the digital pathology workflow, enable pathologists to better manage their workload, and improve
overall accuracy of diagnosis. Automatically differentiating between cancerous and benign images can help prioritize
cases that need urgent attention, while identification of malignant areas on a slide can provide specific evidence in
support of the cancer diagnosis. In this paper, we introduce novel detection methods that can aid pathologists by quickly
identifying potential regions of interest in a high‐resolution digital image. These regions are automatically detected and
highlighted in an image viewer for further examination. This process helps in timely diagnosis and can provide input for
secondary opinions on regions of interest that the pathologist might have missed.
1.2 | Approach based on subset scanning

Typically, the regions of interest for a pathologist in a tissue biopsy contain patterns that are abnormal as compared
with the rest of the tissue structure. Hence, our approach for aiding medical diagnostics is to detect regions that contain
anomalous patterns in these large‐scale multiresolution images. Specifically, we approach pattern detection as a “subset
scan” problem,3,4 where we search over subsets of data with the goal of finding the most anomalous subsets. There are 2
main challenges in subset scan approaches: statistically quantifying the anomalousness of a subset and efficiently
searching over the exponential number of subsets to identify the most anomalous subsets. Anomalousness of a subset
can be typically quantified by a log‐likelihood ratio statistic like the Expectation Based Poisson4,5 or Expectation Based
Gaussian3 statistics. A major computational hurdle of the “subset scan” approach to pattern detection is that we need to
optimize the score function over an exponential number of subsets. Linear Time Subset Scanning (LTSS)3,4 is a novel
approach to anomalous pattern detection that enables efficient computation by identifying the most anomalous subset
without exhaustive search.

For the many scoring functions that satisfy the LTSS property, we can find the subset that maximizes the scoring
function by evaluating only a linear number of subsets: for N data elements, the number of subsets evaluated is propor-
tional to N rather than 2N. However, when the data is huge (ie., number of data elements is in billions or trillions) even
evaluating a linear number of subsets might not be feasible. Also, LTSS only finds the best subset of pixels, without
enforcing any constraints on the detected subsets, and thus might include many “noise” pixels which are individually
anomalous simply by chance. In this paper, we introduce a new framework called Hierarchical Linear Time Subset
Scanning (HLTSS) to address these issues. HLTSS assumes that data elements are aggregated at multiple levels of
hierarchy. For example, in the case of digital pathology, the image of a biopsy sample is stored at multiple resolutions
in order to help a pathologist analyze it through virtual microscopy. HLTSS takes advantage of this hierarchical
structure in the data to achieve high accuracy and computational efficiency for detecting anomalous subsets. We show
that any scoring function that satisfies the LTSS property can be incorporated into our new HLTSS framework.
1.3 | Application

We develop the HLTSS framework for identifying regions of interest in digital pathology images. Digital pathology
images are stored at multiple resolutions, as “Whole Slide Images” (WSI), with the lowest (coarsest) resolution image
providing the overall big picture and the highest (finest) resolution image providing very detailed structure of the biopsy
sample. There is a pyramidal structure to WSI where each level in the pyramid is an image at some resolution. A special
file format (Tagged Image File Format (TIFF), ScanScope Virtual Slide (SVS)) is necessary to store these multiple res-
olution images in a single WSI file.6 Figure 1 provides an example image with multiple resolution images shown in the
form of a pyramid. Typically, biopsy samples are placed on a glass slide and histologically stained for physical examina-
tion. These glass slides are converted to WSI by various high resolution scanners (Aperio, Mirax, etc).

At the highest resolution, these images are very large, typically in the range of 100K×100K pixels. A pathologist
typically starts from low resolution and zooms in to high resolution to pinpoint abnormal regions on a slide. Our method
is motivated by this procedure: we take a multiresolution digital image, identify the most anomalous regions at a coarse
level, and continue to analyze the data at increasingly granular resolutions until we accurately identify the most anoma-
lous subregions. Our objectives are to perform this task with high detection power for distinguishing cancerous from
benign images, high accuracy for pinpointing the affected areas of a cancerous image, and computational efficiency.



FIGURE 1 An example of a Hematoxylin and Eosin (HE) stained Whole Slide Image, where images at multiple resolutions are stored in a

pyramidal structure. This structure helps a pathologist to efficiently view the slide through virtual microscopy [Colour figure can be viewed at

wileyonlinelibrary.com]
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Each pixel in an image is typically represented in Alpha, Red, Green, Blue (ARGB) format, with 8 bits each for Red,
Green, and Blue (RGB) components of pixel color. Pyramidal images are typically representative of the hierarchical
aggregation of each component.6 That is, if a given pixel at a higher (coarser) level is representative of a grid of 2×2
pixels at a lower level in the hierarchy, then each component (R,G,B) of the higher‐level pixel is approximately the aver-
age of the corresponding component of the 4 pixels below it.

Digital pathology images are typically Hematoxylin and Eosin (HE) stained images. The resulting image is composed
of hematoxylin (violet color), eosin (pink color), and white (background color). Hematoxylin is typically indicative of
cell nuclei, and pink is indicative of other tissue regions like cytoplasm. In this work, we focus on identifying regions
that contain a higher than expected concentration of violet pixels (hematoxylin dye).

There are various applications where identifying this pattern is potentially useful: identifying regions of inflammation
in gastrointestinal tracts for Crohn's disease; finding regions of inflammation (gastritis) in the stomach, which may be
indicative of colonization by Helicobacter pylori; and diagnosis of prostatic intraepithelial neoplasia, which may lead to
prostate cancer. Specifically, we apply this methodology for identifying cancerous regions in a prostate biopsy sample,
as described below.
1.3.1 | Detection of prostate cancer

Prostate cancer is the most prevalent form of cancer and second most common cause of cancer deaths among men in
the U.S.7 About 1 in 6 men will be diagnosed with prostate cancer during their lifetime.7 Pathologists rely on examina-
tion of biopsy samples under a microscope for detecting cancerous cases. It is extremely important for pathologists to
accurately identify cases of cancer so that early intervention can improve the prognosis. For diagnosis of prostate cancer,
the single most important feature is the presence of a prominent and enlarged nucleolus, 1 as well as darker coloration
of the cytoplasm,8 and thus areas affected by prostate cancer are generally more violet in color than benign locations.8

Pathologists also use luminal and architectural characteristics, which are based on cell shape, and our method does not
take these into account. Nevertheless, because of the importance of the nucleic and cytoplasmic color characteristics, we
hypothesize that our anomaly detection algorithm (which finds regions with higher than expected concentrations of
violet pixels) can be used for identifying prostate cancer.

http://wileyonlinelibrary.com
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1.4 | Related work

Previous work applies machine learning approaches to automatically classify pathology images as cancerous or
benign.9-13 These methods extract image features from labeled training examples and use standard techniques like
Support Vector Machines or penalized logistic regression to classify images as cancerous or noncancerous. Recent work
by Janowczyk and Madabhushi,14 described in more detail in Section 3.2, uses deep learning for subtype classification of
digital pathology images. However, this method uses small‐scale images of size 32×32 pixels (small areas of a slide
preselected by the pathologist for analysis) and may not work effectively on large, raw digitized images of size
100K×100K pixels. In this paper, we provide a methodology to fill this significant gap by analyzing large digitized
images and identifying regions of interest that may be indicative of cancer. An additional, important distinction is that
the above methods are based on supervised learning and require large numbers of manually labeled training examples,
whereas our method is unsupervised and does not require training data.
1.5 | Contributions

We quantify the anomalousness of a region using the Expectation Based Binomial (EBB) scoring function, where we
map each pixel to a continuum of violet (hematoxylin), pink (eosin), and white (absence of tissue) and pinpoint regions
containing a higher than expected proportion of violet pixels. We show that EBB satisfies the LTSS property and hence
can be efficiently optimized over subsets of pixels. Finally, we show how to incorporate the hierarchical, multiresolution
structure of digital pathology images and present the HLTSS framework for efficiently identifying regions of interest. We
apply our methodology to digital images of prostate biopsy samples from the Department of Pathology at University of
Pittsburgh Medical Center (UPMC) to identify cancerous locations in these images. We show that our methodology
helps in differentiating between cancerous and benign images. Further, we show that our methods have good accuracy
in picking out the malignant areas on a slide which contains cancer.

In the remainder of this paper, we discuss the application of EBB for scoring areas of anomalous coloration and
propose our HLTSS framework in Section 2. Evaluation results on simulated data are shown in Section 3. We show
the effectiveness of our methods in identifying cancerous locations in prostate biopsy samples and provide case studies
and discussion of accuracy results in Section 4. We conclude and provide future directions of this work in Section 5.
2 | METHODOLOGY

We first describe the EBB scoring function used for statistically quantifying a region as anomalous, and then present the
HLTSS framework for efficiently identifying the regions of interest.
2.1 | Expectation Based Binomial (EBB) for scoring discoloration

To score a subset S, which may consist of pixels si at multiple levels of hierarchy, we first compute its aggregate color

(R,G,B) and number of base‐level pixels N: R ¼ ∑si∈SRi∗Ni

∑si∈SNi
, G ¼ ∑si∈SGi∗Ni

∑si∈SNi
, B ¼ ∑si∈SBi∗Ni

∑si∈SNi
, and N ¼ ∑ðsi∈SÞNi ,

where each pixel si has color (Ri,Gi,Bi) and corresponds to Ni base‐level pixels. (For example, if pixel si is in the level
with downsampling of 4, then it represents Ni=4∗4=16 base‐level pixels.) Our generative model assumes that, at
the base level, each pixel is either white, pink, or violet, where White=(Rw,Gw,Bw), Pink=(Rp,Gp,Bp), and
Violet=(Rv,Gv,Bv) can be represented as 3‐dimensional points in RGB space. Given the aggregated color (R,G,B) for
subset S, we can compute the corresponding proportions of white, pink, and violet pixels by projecting the point onto
the plane formed by White, Pink, and Violet and computing W, P, V such that (R,G,B)= (W∗White+P∗Pink+V∗Violet),
where W,P,V≥ 0 and W+P+V=1. See Section 2.5 for more details. The 3 base colors White, Pink, and Violet can be
estimated from a small number of slides from a given laboratory; we do this with an algorithm presented by Ruifrok
and Johnston15 using ImageJ software.16

Given the aggregated white, pink, and violet values (W,P,V) of subset S and its corresponding number of base‐level

pixels N, we compute the score of subset S using the log‐likelihood ratio statistic FðSÞ ¼ log
PðDatajH1ðSÞÞ
PðDatajH0Þ , where the

null hypothesis H0 assumes that no subset of pixels is affected, and the alternative hypothesis H1(S) assumes that subset
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S is affected because of cancer in the corresponding cells. Our generative model assumes that each nonwhite pixel at the
base level is either violet with probability pi or pink with probability 1−pi; note that white is the background color and
is eliminated from the analysis as it may not be pathologically relevant. For benign images, we assume pi=p0
everywhere for some constant p0, which can be estimated from a small sample of benign images. Further, we assume
that if a region is affected by cancer, then the probability of violet pixels in the region increases by a multiplicative factor
q>1. Let ci∈ {0,1} represent the state of a nonwhite pixel si, where ci=1 and ci=0 represent violet and pink, respec-
tively. We then test the null hypothesis H0 against the set of alternative hypothesis H1(S,q), where H0:ci∼Bernoulli(p0)
for all pixels si, and H1(S,q):ci∼Bernoulli(q∗p0) for pixels si∈S and ci∼Bernoulli(p0) for si∉S. The quantity q represents
the relative risk, ie, the multiplicative increase in the probability of generating violet pixels. As is typical in the scan
statistic framework, we use a Generalized Likelihood Ratio Test, which assumes the maximum likelihood estimate of
the free parameter q. The log‐likelihood ratio statistic F (S) can then be written as follows:

FðSÞ ¼ log
max1<q< 1

p0
∏si∈SPrðci∼Bernoulliðqp0ÞÞ∏si∉SPrðci∼Bernoulliðp0ÞÞ

∏siPrðci∼BernoulliðpoÞÞ

¼ log
max1<q< 1

p0
∏si∈SPrðci∼Bernoulliðqp0ÞÞ

∏si∈SPrðci∼Bernoulliðp0ÞÞ

:

Now, given the values of (W,P,V) and number of base‐level pixels N for subset S, we compute the effective number of
violet pixels C=V∗N and the effective number of nonwhite pixels Ne f f =(1−W)N=(V+P)N. Substituting the paramet-
ric equations for the above formulation we get:

FðSÞ ¼ max
1<q<

1
p0

log∏
si∈S

ðqp0ÞCið1−qp0ÞN
ef f
i −Ci

pCi
0 ð1−p0ÞN

ef f
i −Ci

¼ max
1<q<

1
p0

C log qþ ðNef f−CÞlog1−qp0
1−p0

:

We compute the maximum likelihood estimate as q̂ ¼ C

Nef f p0
, and hence the q that maximizes the above equation is

maxðq̂; 1Þ. Hence, our scoring function is reduced as follows:

FðSÞ ¼ C log
C

Nef f p0
þ ðNef f−CÞlog

1− C

Nef f

1−p0
if C>Nef f p0

¼ 0 otherwise:

This can be further rewritten as

FðSÞ ¼ N× V log
V

ðV þ PÞp0
þ P log

P
ðV þ PÞð1−p0Þ

� �
if

V
V þ P

>p0

¼ 0 otherwise:

With this notion of color brought into the scoring function, we can interpret
p0

1−p0
as the ratio of the number of violet

pixels to pink pixels at the base‐level image in a normal (benign) slide.
2.2 | EBB scoring function and LTSS

In the above section, we describe the EBB scoring function for measuring the anomalousness of a subset S of pixels.
However, in an image with N base‐level pixels, there are 2N possible subsets to consider. To use a scoring function,
including EBB, in our efficient hierarchical framework, it must satisfy the LTSS property,3 as any function satisfying
LTSS can be efficiently and exactly maximized over all subsets of the data. More precisely, for a pair of functions
F (S) and G(si), which represent the “score” of subset S and the “priority” of data record si, respectively, the LTSS
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property guarantees that the only subsets with the potential to be optimal are those consisting of the top k highest
priority records {s(1),…,s(k)}, for some k between 1 and N. This property enables us to search only N of the 2N subsets
of records, while still guaranteeing that the highest‐scoring subset will be found.

Ci
Theorem 1. The EBB scoring function F (S) satisfies the LTSS property with priority function GðsiÞ ¼
Nef f

i

.

Proof We note that Binomial distributions are members of the exponential family of distributions; there-

fore, we can write the log‐likelihood function as follows:

log PðCijpi;Nef f
i Þ ¼ hðCiÞ þ TðCiÞðμiÞ−ψðθðμiÞÞ;

where hðCiÞ ¼ Nef f
i

Ci

 !
, T(Ci)=Ci, θðμiÞ ¼ log

pi
1−pi

� �
¼ log

μi
Nef f

i −μi
, and

ψfθðμiÞg ¼ Nef f
i log

1
1−pi

� �
¼ Nef f

i log
Nef f

i

Nef f
i −μi

.

Here, Ci represents the observed number of violet base‐level pixels, Nef f
i represents the observed number of

nonwhite (pink or violet) base‐level pixels, pi represents the assumed probability that a nonwhite base‐level
pixel is violet, and μi ¼ Nef f

i pi represents the expected number of violet base‐level pixels. Under the null
hypothesis H0, we assume pi=p0 everywhere for some constant p0, and under the alternative hypothesis
H1(S), we assume pi=qp0 for pixels in subset S and pi=p0 for pixels outside subset S, for some constant
q>1. Given these assumptions, we can write the generalized log‐likelihood ratio statistic for EBB scoring
function as follows:

FðSÞ ¼ supq>1 TðCiÞ θðqμiÞ−θðμiÞ½ � þ ψfθðμiÞg−ψfθðqμiÞgð Þ:

The EBB belongs to the separable exponential family of distributions (as defined in Neill3), as we can write

θðqμiÞ ¼ log
qμi

Nef f
i −qμi

¼ log
qp0N

ef f
i

Nef f
i −qp0N

ef f
i

¼ log
qp0

1−qp0
¼ ziθ0ðqÞ þ vi;

where zi=1, vi=0 and θ0ðqÞ ¼ log
qp0

1−qp0

� �
. Note that θ0(q) is only a function of q as p0 is assumed to be a

known constant. Therefore, from Theorem 2 of Neill,3 the EBB scoring function satisfies the LTSS property

with priority function of a given pixel si as GðsiÞ ¼ TðCiÞ
μi

¼ Ci

p0N
ef f
i

∝
Ci

Nef f
i

. □
However, an unconstrained scan on the base‐level pixels is not necessarily what we want, both because of the large
number of pixels (∼10 billion) to be scanned and the fact that such a scan fails to incorporate spatial information from
nearby pixels on the slide. Hence, we propose the HLTSS framework to incorporate hierarchical constraints in the
search and provide sublinear time algorithms for detection.
2.3 | Hierarchical linear time subset scanning (HLTSS)

The HLTSS methodology is designed to find anomalous patterns in very large scale data, taking advantage of the
hierarchy of aggregated information at multiple levels to efficiently and accurately find anomalous subsets. We apply
HLTSS to analyze digital pathology images stored at multiple resolutions, finding anomalous groups of pixels that are
indicative of cancer. We use the EBB scoring function, which satisfies the LTSS property, to identify relevant clusters
of pixels that contain a greater proportion of violet pixels than expected.

We assume that our data is aggregated in a hierarchical manner. In Figure 2, individual pixels are at the bottom level
and are very large in number. In a WSI, each pixel at a coarser resolution is an aggregation of pixels at a more granular
level. We assume that some small subset of these elements are generated by an anomalous process, and our goal is to
find this subset in the large image as quickly and accurately as possible.

Our approach to anomalous pattern detection is through subset scanning. Given a scoring function, eg, a log‐
likelihood ratio statistic, to quantify the anomalousness of a subset, we want to efficiently find the small subset of most



FIGURE 2 A general perspective of

large scale data and its hierarchical

aggregated information [Colour figure can

be viewed at wileyonlinelibrary.com]
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anomalous elements. We can employ existing techniques like LTSS3 or Kulldorff's circular scan.17 First, we note that
these techniques are mostly linear or quadratic in terms of number of elements. For very large scale data, this might
have prohibitively high cost both in terms of time and memory. Moreover, without the right constraints in the search
procedure, the subsets returned might contain a lot of noise. Hence, we propose the HLTSS framework to incorporate
hierarchical constraints in the search and provide sublinear time algorithms for detection.

Given a scoring function that satisfies the LTSS property, we propose the following HLTSS algorithm (Algorithm 1).
Note that F (S) is our scoring function, the start level Ls is some coarser level where the search procedure starts, and the
end level Le is the most granular aggregation in our analysis. In the experiments below, Ls=8 (each start‐level pixel
represents a 256×256 block of base‐level pixels) and Le=2 (each end‐level pixel represents a 4×4 block of base‐level
pixels). Thus, a total of 7 levels were considered, with each parent node representing a 2×2 grid of child nodes at
the next level.

Note that we are not individually processing all pixels at level Le. Due to the hierarchical representation, HLTSS only
processes a sublinear number of base‐level pixels to detect anomalous regions, thus maintaining computational effi-
ciency with the additional advantage of not returning random noise pixels (like individual violet pixels) that are typi-
cally lost in the hierarchical aggregation.

In step 9, removing all pixels that are not in the best subset S∗ dramatically improves computation time without loss
of accuracy. See Section 2.4 for details. Step 14 enforces connectivity of the resulting clusters, merging clusters across the
fixed partitions imposed by the hierarchical decomposition of the slide, which helps to correctly identify cancerous
regions that lie across these partitions.
2.4 | List pruning

In this section, we provide justification for removing all pixels that are not in the best subset S∗ in Step 9 of Algorithm 1.
We show that any pixel p that is not in the best subset in a given iteration of the algorithm will not be in the best subset

http://wileyonlinelibrary.com
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in any further iterations of the algorithm. Hence, p can be pruned from the list, thereby improving computational
efficiency without loss of accuracy.

∗ ∗ ′ ′ ∗ ∗
FIGUR
figure
Theorem 2. For any pixel p, if p∉Si , then p∉Si′ , in iteration i for any i > i, where Si and Si′ , are the highest
scoring subsets of pixels, as defined by the EBB scoring function, in iterations i and i′, respectively.
Proof. Let us assume that the elements in list at iteration i are list ={p ,…,p }, where the pixels are
i 1 N

assumed to be ordered by the priority function G (ie, pixel p1 has highest priority). Further, let the
highest scoring subset in iteration i be S∗i ¼ fp1; ⋯; pkg for some k, 1≤ k≤N. (As shown in Theorem
1, the EBB scoring function satisfies the LTSS property,3 guaranteeing that the highest scoring subset
will be the top‐k highest priority pixels). In iteration i+1, we expand the highest‐priority pixel p1
and include all of its M children pixels {p11,…,p1M} in the list. Now, given the new list on iteration
i+1, listiþ1 ¼ fp2; ⋯; pNg∪fp11; ⋯; p1Mg, it is sufficient to show that pq∉S

∗
iþ1 for any q> k.

Let us assume that there exists some q> k such that pq∈S
∗
iþ1. Then by the LTSS property, the

highest scoring subset is of the form S∗iþ1 ¼ fp11; ⋯; p1rg∪fp2; ⋯; pqg, where the r highest‐priority
children of pixel p1 (for some r, 1≤ r≤M) are included. We show that this leads to a contradiction,
as Fðfp11; ⋯; p1rg∪fp2; ⋯; pqgÞ<Fðfp11; ⋯; p1rg∪fp2; ⋯; pkgÞ, and hence the assumed S∗iþ1 cannot
be the highest scoring subset.

To see this, we first note that the EBB scoring function is convex. Thus, it follows that Fðfp11; ⋯; p1rg
∪fp2; ⋯; pkg∪fpkþ1; ⋯; pqgÞ þ Fðfp11; ⋯; p1rg∪fp2; ⋯; pkg∪fp1ðrþ1Þ; ⋯; p1MgÞ ≤ Fðfp11; ⋯; p1rg
∪fp2; ⋯; pkgÞ þ Fðfp11; ⋯; p1rg ∪fp2; ⋯; pkg∪fpkþ1; ⋯; pqg∪fp1ðrþ1Þ; ⋯; p1MgÞ, and therefore

Fðfp11; ⋯; p1rg∪fp2; ⋯; pqgÞ þ Fðfp1; ⋯; pkgÞ ≤ Fðfp11; ⋯; p1rg∪fp2; ⋯; pkgÞ þFðfp1; ⋯; pqgÞ.
Now, we know that F ({p1,…,pq}) < F ({p1,…,pk}), since {p1,…,pk} is the highest scoring subset in iteration i,

and thus Fðfp11; ⋯; p1rg∪fp2; ⋯; pqgÞ<Fðfp11; ⋯; p1rg∪fp2; ⋯; pkgÞ. Therefore, for any p∉S∗i , we know
that p∉S∗iþ1, and hence by induction p∉S∗i′ for any i′> i. □
Thus, we can prune the list by removing any pixels not in the best subset S∗, keeping the list to a manageable size and
dramatically improving the efficiency of the algorithm. Figure 3 shows a comparison of run times (in minutes) between
the HLTSS algorithm with and without list pruning, keeping the end level Le=2 fixed and varying the start level Ls. We
can see that the difference in computation times with and without pruning increases drastically as the number of levels
processed (Ls−Le+1) increases, while results produced by pruned and unpruned HLTSS were identical.
2.5 | Color mapping

Our generative model assumes that, at the base level, each pixel is either white, pink, or violet, where White=(Rw,Gw,
Bw), Pink=(Rp,Gp,Bp), and Violet=(Rv,Gv,Bv) can be represented as 3‐dimensional points in RGB space. Given the
aggregated color (R,G,B) for subset of pixels S, under the assumption of perfect aggregation in the hierarchical image,
E 3 Runtime comparison of Hierarchical Linear Time Subset Scanning (HLTSS) algorithm with and without list pruning [Colour

can be viewed at wileyonlinelibrary.com]
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we can compute the proportions of white (W), pink (P), and violet (V), such that (R,G,B)= (W∗White+P∗Pink
+V∗Violet), where W,P,V≥ 0 and W+P+V=1:

W

P

V

2
64

3
75 ¼

Rw Rp Rv

Gw Gp Gv

Bw Bp Bv

2
64

3
75
−1

∗
R

G

B

2
64

3
75:

Typically, in the case of digital pathology, the glass slide is scanned at multiple levels of resolution by a high resolution
camera with various levels of zooming. Therefore, in reality, not every color (R,G,B) may not be on the plane formed by
White, Pink, and Violet. Thus, we first project each point (R,G,B) to a corresponding point (R∗,G∗,B∗) on the plane:

ðR∗;G∗;B∗Þ ¼ ðR;G;BÞ−ððR−Rw;G−Gw;B−BwÞ· n!Þ n!;

where

n!¼ ðPink−WhiteÞ×ðViolet−WhiteÞ
jðPink−WhiteÞ×ðViolet−WhiteÞj:

We use the projected point (R∗,G∗,B∗) in order to compute W, P, and V. This projection guarantees W+P+V=1, but in
rare cases (less than 1% of pixels in our data) where the projected point is not a convex combination of White, Pink, and
Violet, the constraint W,P,V≥ 0 may not be satisfied. In these cases, we use the point (Ra,Ga,Ba), which is closest to (R∗,
G∗,B∗) and still satisfies these conditions. We note that both the projection from (R,G,B) to (R∗,G∗,B∗) and the mapping
from (R∗,G∗,B∗) to (W,P,V) are linear, and thus we expect the observed (W,P,V) values for a given pixel at coarse
resolution to be very close to the mean of the (W,P,V) values of the corresponding base‐level pixels. Two potential
sources of error are that the (R,G,B) values do not aggregate perfectly because of the physical process of creating an
image from a glass slide, as noted above, and the rarely occurring noisy pixels for which the projected point (R∗,G∗,
B∗) does not map to nonnegative (W,P,V).
3 | EXPERIMENTAL SIMULATION AND RESULTS

The goals of the experimental simulation are to demonstrate the performance of our method for identifying anomalous
regions in large digital pathology images and to compare its performance with competing methods across various
experimental settings.
3.1 | Simulation setup

To replicate realistic conditions, we used the parameters of the real data (Section 4) to generate the simulated data. More
specifically, we created images that at the most granular level have 216× 216 pixels, with each pixel being either pink or
violet color. The probability of a pixel being violet (p0), and the RGB combinations of a typical pink and violet color
were observed from the actual digital pathology images. Note that for the purpose of this simulation, we have not
generated any white pixels at the most granular level. After generating images at the most granular level, we built
the hierarchical aggregations, where the RGB combination of each pixel at a given level is an aggregation of the
corresponding RGB values of 4×4 pixels at the lower level. This process was repeated to generate 8 levels of
hierarchically aggregated data.

Next, we injected simulated anomalous regions into these hierarchically aggregated images. These anomalous
regions are created at the most granular level such that the probability of violet pixels is increased by a multiplicative
factor inside the injected box. There are 2 parameters for injected regions: the size of the injected box and the effect size
(q). Increasing the box size and/or the effect size makes the detection problem easier. The box sizes are 2b×2b pixels,
where b is varied between 8 and 10 with increments of 0.25. Similarly, we vary the effect size q from 1.25 to 3 with
increments of 0.25, that is, for a given value of q, the probability of the violet pixels inside the box is increased to
q∗p0. For a given box size and effect size, we create multiple boxes (100 in our experimental setting) randomly injected
at the most granular level. Note that the offsets of each box's x and y coordinates are chosen uniformly at random, and
thus the injected box is very unlikely to align perfectly with the previously created image hierarchy.
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3.2 | Methods

We are not aware of any previous methods that have been applied to large, raw digital pathology data for finding
regions of interest. However, we compare the performance of our method with the recently proposed deep learning‐
based cancer classification algorithm described by Janowczyk and Madabhushi.14 We will refer to this approach as
the “Janowczyk and Madabhushi Deep Learning” (JMDL) algorithm throughout the discussion below, and note that
additional details of the JMDL network architecture and input parameters can be found in reference.14 The JMDL
method uses a multilayer Convolutional Neural Network architecture which minimizes a softmax loss function. The
standard “AlexNet” network architecture used by JMDL is described in detail in Krizhevsky et al18 and summarized
in Tables 2 and 3 of Janowczyk and Madabhushi.14 We used the code provided by Janowczyk and Madabhushi,14 with
the default parameters, implemented on an open source framework (Caffe). Further, the JMDL algorithm expects the
input image to be much smaller in scale (32×32pixels). Hence, we partition the image at end level Le into multiple
images. Furthermore, we compare the performance of HLTSS with 2 variants of the basic LTSS algorithm: LTSS‐
granular, an unconstrained subset scan on the fine‐grained pixels at end level Le, and LTSS‐coarse, an unconstrained
subset scan on the coarse‐grained pixels at start level Ls. In each case, after obtaining the highest‐scoring subsets, we
combine groups of pixels that are connected and then return the top k connected subsets. These methods are compared
in order to understand whether and how the use of hierarchical structure benefits the performance of HLTSS.
3.3 | Evaluation metrics

We apply our HLTSS algorithm and the competing methods to the simulated data and evaluate the performance on 2
metrics: detection power and spatial overlap.

For a given combination of simulation parameters (q and box size), detection power measures a method's ability to
detect the presence of an anomalous region in a given image. We generate scores for each competing method under the
null hypothesis (H0), where there are no anomalous regions injected in the data. More specifically, we generate 1000
random images under H0 and compute the score for each method to get the distribution of null scores. Then, for each
method and each combination of simulation parameters, we produce a score F alt and identify the proportion of null
scores that are lower than F alt. Essentially, we are finding the probability that a method correctly rejects the
null hypothesis given that H1 is true, at a threshold corresponding to a 5% false positive rate (ie, the 95th percentile
of null scores). Therefore, detection power is computed by calculating the proportion of the 100 datasets with injected
regions that score above the 95th percentile of the distribution of null scores. For HLTSS, LTSS‐coarse, and LTSS‐granular,
the score is themaximum (over subsets S) of theEBB scoring function for discoloration,maxSFðSÞ, as defined in Section 2.1.
For JMDL, the score is the average estimated probability of being anomalous across all small‐scale images.

Spatial overlap is a measure of detection accuracy. While detection power measures how well each method identifies
whether or not an anomalous region is present in an image, spatial overlap measures how well a method can identify
the exact anomalous region within the image. For a given combination of simulation parameters, each method
identifies the anomalous region Sdetected, and from the simulation experiment, we know the true affected region Saffected.
Therefore, the spatial overlap is defined as

spatial overlap ¼ jSdetected ∩ Saffectedj
jSdetected ∪ Saffectedj;

where |S| is defined as the number of pixels in the region S. The above measure of spatial overlap lies between [0,1] and
is a combination of precision and recall. The higher the spatial overlap, the higher the accuracy in exactly identifying
the true affected region.
3.4 | Simulation results

We compare the performance of various methods by varying both the effect size (q) and the box size of the injected
anomalous region. Figure 4 shows the detection power of each method for various effect sizes and box sizes. We observe
that, for a given box size, detection power typically increases with the effect size. Similarly, the ability to detect anom-
alous images increases with increasing box size. Figure 4 demonstrates that the HLTSS algorithm has significantly



FIGURE 4 Detection power, for differentiating between anomalous images and benign images of Hierarchical Linear Time Subset

Scanning (HLTSS), Janowczyk and Madabhushi Deep Learning (JMDL),14 Linear Time Subset Scanning (LTSS)‐granular, and LTSS‐coarse

[Colour figure can be viewed at wileyonlinelibrary.com]

SOMANCHI ET AL. 3609
higher detection power as compared with the 3 competing methods. Most importantly, HLTSS is able to perform
significantly better on the most challenging injects where both effect size and box size are small.

Figure 5 shows the variation in each method's detection accuracy, as measured by spatial overlap, as a function of
the simulation parameters. Again, we observe that the spatial overlap of all methods typically increases with increasing
effect size and box size. The spatial overlap of the JMDL algorithm14 is similar to our HLTSS algorithm, though HLTSS
performs slightly better across all simulation parameter combinations. One reason for this could be because of the small
scale images (32×32 pixels) that are given as inputs to JMDL. These small scale images could be noisy and have a
higher chance of being incorrectly identified as anomalous by the method, whereas, due to the nature of top down
search in our HLTSS algorithm, it is more robust to the noise in the data. Finally, the LTSS‐coarse and LTSS‐granular
methods have very low accuracy results. LTSS‐coarse performs poorly in terms of spatial accuracy because it is limited
to detecting coarse‐grained regions, which are rough approximations of the true injected region, while LTSS‐granular
incorrectly identifies many fine‐grained regions that appear anomalous because of noise, leading to low precision.
4 | EMPIRICAL EVALUATION AND RESULTS

We now demonstrate the performance of our method for identifying regions of interest in digital pathology images,
identifying the most anomalous groups of pixels in images of prostate biopsy samples of patients suspected to have pros-
tate cancer. This method of identifying cancerous regions can be used to first differentiate the cancerous images from
FIGURE 5 Spatial overlap, for correctly identifying the anomalous region within an image of Hierarchical Linear Time Subset Scanning

(HLTSS), Janowczyk and Madabhushi Deep Learning (JMDL),14 Linear Time Subset Scanning (LTSS)‐granular, and LTSS‐coarse [Colour

figure can be viewed at wileyonlinelibrary.com]
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benign images. Once we have identified the cancerous images, we can find regions of interest within each large‐scale
image, which aids a pathologist to make further decisions. As in the experimental simulations described above, we com-
pare the performance of our HLTSS algorithm with the JMDL method described in Janowczyk and Madabhushi,14

LTSS‐coarse and LTSS‐granular methods.
4.1 | Data

We have digital pathology images of prostate biopsy samples from the Department of Pathology, UPMC, including 35
images that contained cancerous locations and 55 images from benign prostate biopsy samples. The 35 cancerous
images were also annotated indicating the locations of cancer. These annotations were used for evaluating the
performance of our method in detecting regions of interest within a digital image. Each image contains about 5 billion
pixels at the most granular level and takes up approximately 10GB of space in uncompressed form.
4.2 | Methods and metrics

We apply our HLTSS algorithm and the competing methods to analyze the images obtained from UPMC. We evaluate
the ability of each method to distinguish between benign and cancerous slides by showing the Receiver Operator
Characteristic (ROC) curve. As the JMDL method requires labeled training examples, we partition the dataset into 2
halves (using the first half for training and second half for testing, and vice versa) and report the results as an average
of these 2 folds. Further, we evaluate the methods' ability to pick out the malignant areas on a slide, which contains
cancer by showing Precision‐Recall curves. Precision provides the percentage of detected pixels that were actually
cancerous, while Recall gives the percentage of cancerous pixels that were successfully detected.

We note that the ground truth regions (known to contain cancerous cells) were provided by the pathologist at a very
coarse level, as shown by the yellow rectangles in Figure 6. As our HLTSS algorithm finds the affected pixels at a more
granular level than the ground truth data, we draw a bounding box around each subset detected by HLTSS and
consider the bounding box as our detected cluster for comparison to the ground truth. We use the same procedure
for the LTSS‐coarse, LTSS‐granular, and JMDL algorithms.
4.3 | Experimental results

Figure 6 shows an example of our detected regions as compared with the ground truth results. The green regions are the
top 10 highest‐scoring regions identified using HLTSS and yellow are the coarse‐level cancerous locations marked by a
pathologist. We can see that HLTSS identified most of the regions with high accuracy.
FIGURE 6 Example of regions detected by Hierarchical Linear Time Subset Scanning (green) as compared with ground truth boxes drawn

by a pathologist (yellow) [Colour figure can be viewed at wileyonlinelibrary.com]
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4.3.1 | Accuracy in identifying benign slides from cancerous slides

Figure 7 provides the Receiver Operating Characteristic curve for differentiating cancerous from benign images. This is
very important for a pathologist as they have a huge number of slides to analyze per day and effectively identifying
potentially cancerous slides helps them in prioritizing their work. Similar to the evaluation above using simulated data,
for HLTSS, LTSS‐coarse, and LTSS‐granular, each image is scored based on the highest region score found in that
image. For the JMDL method, the score is the average estimated probability of being cancerous across all small‐scale
images. For each method, we sort its scores in decreasing order and step through the sorted list to determine the false
positive rate (fraction of noncancerous images labeled as cancerous) and true positive rate (fraction of cancerous images
labeled as cancerous) corresponding to each score threshold.

From Figure 7, we can see that HLTSS has higher true positive rates for most false positive rates in comparison with
the competing methods. Hierarchical Linear Time Subset Scanning has over 75% true positive rate for a 20% false
positive rate, while the nonhierarchical LTSS methods perform no better than chance, suggesting that they are picking
up scattered violet pixels rather than potentially relevant clusters.
4.3.2 | Accuracy in identifying cancerous regions

We use the spatial precision‐recall curve to evaluate and compare the accuracy of detected regions within a cancerous
image. To calculate this metric, we record the list of scores returned for each pixel in an image. For HLTSS, the score
of each pixel is the score of the highest scoring detected group of which it is a member. Any pixels that are not detected
in any group are scored individually using the EBB score function and ranked below all detected pixels. For JMDL, the
score of each pixel is the estimated probability that its corresponding 32×32 image is cancerous. We sort the list of scores
and use each unique score value as a threshold for classifying locations and calculate the precision (ratio of correctly
identified cancerous pixels to total number of pixels in the detected region) and the recall (ratio of correctly identified
cancerous pixels to total number of cancerous pixels) at each threshold. These precision and recall values are plotted
on the curve for each image and are averaged over all slides to obtain a single curve for each method with standard errors
shown in Figure 8.

From Figure 8, we see that HLTSS maintains high precision while capturing most of the cancerous locations in an
image. The precision of JMDL degrades substantially for high recall values, while nonhierarchical LTSS methods
incorrectly flag many small violet areas as cancerous, resulting in low precision. Hence, our results show that HLTSS
can not only differentiate cancerous from benign images, but also accurately identifies regions of interest within a
cancerous image.
FIGURE 7 ROC curves, for differentiating cancerous images from benign images of Hierarchical Linear Time Subset Scanning (HLTSS),

Janowczyk and Madabhushi Deep Learning (JMDL),14 Linear Time Subset Scanning (LTSS)‐granular, and LTSS‐coarse [Colour figure can be

viewed at wileyonlinelibrary.com]
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FIGURE 8 Precision and Recall curves, for finding cancerous regions within a cancerous image of Hierarchical Linear Time Subset

Scanning (HLTSS), Janowczyk and Madabhushi Deep Learning (JMDL),14 Linear Time Subset Scanning (LTSS)‐granular, and LTSS‐coarse

[Colour figure can be viewed at wileyonlinelibrary.com]
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4.3.3 | Comparison of execution times

We also compared the execution times of the various methods. We executed each method on a quad‐core Intel(R)
Xeon(R) CPU 5160 @ 3.00GHz machine. To be fair in comparing the execution times, we did not use any Graphics Pro-
cessing Unit (GPU) components for the execution of the JMDL algorithm.14 Table 1 provides the comparison, including
TABLE 1 Comparison of average execution times (in minutes) of various methods

Method Pre/Post Processing Time Algorithm Time Total Time

HLTSS 10.23 34.49 44.72

JMDL14 13.57 21.34 34.91

LTSS‐granular 17.12 9.43 26.55

LTSS‐coarse 2.45 3.38 5.83

Abbreviations: HLTSS, Hierarchical Linear Time Subset Scanning; JMDL, Janowczyk and Madabhushi Deep Learning; LTSS, Linear Time Subset Scanning

FIGURE 9 Case study: Hierarchical

Linear Time Subset Scanning successfully

identified prostate cancer locations on this

digital pathology image [Colour figure can

be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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both the pre/post processing times and the algorithm execution times. There is a substantial preprocessing time for
JMDL in partitioning the image into smaller scale 32×32 pixel images and storing these images in the database,
required by the algorithm. Further, our HLTSS algorithm requires postprocessing to identify all the connected regions
detected by the algorithm. We can see that the execution times are very similar: HLTSS is slightly slower than JMDL,
while LTSS‐coarse and LTSS‐granular are faster but have substantially lower accuracy than HLTSS.
4.4 | Case studies

Given the digital images of prostate biopsy samples from UPMC, we show several examples of regions of interest that
were detected automatically by HLTSS and then further investigated by a pathologist.

In our first case study, 2 of the top‐scoring regions detected by HLTSS are shown in Figures 9 and 10, respectively.
Follow‐up analysis (by Dr. Anil Parwani) of the region of interest in Figure 9 confirmed that HLTSS was successful in
detecting prostate cancer. The region of interest in Figure 10 contained not only prostate cancer but also bladder cancer,
FIGURE 10 Case study: Hierarchical

Linear Time Subset Scanning identified

bladder cancer which has spread to the

prostate gland. This bladder cancer has

color characteristics similar to prostate

cancer [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 11 Case study: Hierarchical

Linear Time Subset Scanning identified a

region of interest for pathologists. In this

case, the location was a benign mimic of

prostate cancer and has color

characteristics similar to prostate cancer

[Colour figure can be viewed at

wileyonlinelibrary.com]
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which had spread to the prostate gland. The bladder cancer cells in the prostate gland exhibit color characteristics sim-
ilar to prostate cancer, and hence our method detected this location as a region of high interest.

Our second case study is also of a prostate biopsy sample, and one of the highest‐scoring detected regions of interest
is shown in Figure 11. This region is interesting for a pathologist, as it is a benign mimic of cancer. Though it does not
contain cancerous cells, it has all the color characteristics of prostate cancer, and it is difficult for a human pathologist to
differentiate it from cancer using the shape characteristics. We believe that providing such regions of interest is
important, allowing a well‐trained pathologist to make final decisions on each of these regions and to report all relevant
findings (both benign and malignant). Also, these regions could be used as examples for educational purposes in
training pathology residents to make subtle distinctions between cancerous regions and benign mimics.
5 | CONCLUSIONS

In this work, we proposed a novel HLTSS framework for detecting regions of interest in massive, multiscale digital
pathology slides. Such images typically consist of 10 billion pixels or more at the finest resolution but are stored as
multiple layers, each representing a hierarchical aggregation of data from the previous layer. Hierarchical Linear Time
Subset Scanning exploits this hierarchical structure inherent in data produced through virtual microscopy in order to
accurately and quickly identify regions of interest for pathologists to review. We evaluated the performance of HLTSS
for identifying cancerous locations on digital slides of prostate biopsy samples and demonstrated that our methods
detect regions of cancer in minutes with high accuracy, as measured by the ROC curve (measuring ability to distinguish
between benign and cancerous slides) and the spatial precision‐recall curve (measuring ability to pick out the malignant
areas on a slide that contains cancer).

Identifying regions of interest in pathology slides based on color characteristics may be useful in many other
applications, such as identifying regions of inflammation in the gastrointestinal tracts for Crohn's disease; finding
gastritis in the stomach, which may be indicative of colonization by Helicobacter pylori; and diagnosing prostatic
intraepithelial neoplasia, which may lead to prostate cancer. Other cases where the shape characteristics of cells are
more important than their color characteristics would not be appropriate for this method and might be better addressed
using existing image processing methods. Furthermore, we would like to apply our fast detection techniques to other
domains, which rely on massive image data, such as analyzing multiresolution satellite imagery to automatically detect
forest fires.
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