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A Day In The Life:
A Computer Systems Security Analyst

- George’s job is very challenging
= 150,000 new malware strains are released
each day?
= Novel attacks can show up in the queues of

analyst but may go unnoticed

 Looking for a needle in a haystack, without really
knowing the shape, size, or color of the needle.

G@@E}@ » Ideal Scenario?
= Continual discovery of novel security breaches
» A fundamental approach to sort his queue
* Priority: unknown, potentially pernicious attacks

Morales, Jose. "Prioritizing Malware Analysis." Software Engineering Institute Blog. 4 November 2013.



Recent Advances In Network Security

» Intrusion Detection System (IDS) (~ 1997)

= Signature based detection (Virus Scanning)
* Can only recognize things it already knows
» (Essentially) NO power to detect novel attacks

- Anomaly Based-IDS (~ last 5-10 years)
= Detect activity that falls out of normal system operation
- Increased power to detect novel attacks
= “Abnormal” activity may not be an attack
- Raises alerts on non-attacks

- Anomalous Pattern Detection (McFowland et al, 2013)

= Fast Generalized Subset Scan (FGSS)

* Groups of records that are collectively anomalous given normal system
operation

- Significantly increased power to detect novel attacks
- Significantly decreased alarms on non-attacks



Anomalous Pattern Detection Procedure
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Anomalous Pattern Discovery Procedure

Test Data
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Anomalous Pattern Discovery Procedure

Test Data
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Anomalous Pattern Discovery Procedure
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Anomalous Pattern Discovery Procedure

Test Data
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—H
The Goal!

Attributes A,...Ay;

Discover subsets of records, for which
some subset of their attributes are the
most anomalous!

The Optimization
Rc{R,..Ry} Ac{A.. Ay}
S-RxA
S* = argmaxg F(S)

Records R,...Ry




..\
The DAP Algorithm | = (] -

Attributes A,...Ay; I. Compute the statistical anomalousness
of each attribute (for each record)

Records R,...Ry




of each attribute (for each record),

I. Compute the statistical anomalousness
under each known model.
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Novel Pattern K
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Novel Pattern K

Attl‘ibute I. Compute the statistical anomalousness
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I. Compute the statistical anomalousness
of each attribute (for each record),
under each known model.

« Compute empirical p-values

i. measures the interestingness of a

v under each M,

ii. p;j in S ~ Uniform(0,1) under H,
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I1. Discover subsets of records and
attributes that are anomalous under
every mapping of records to models.
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* H,: All records drawn from known models

% * H,(S): Records in S drawn from unknown

Subsets of data with a higher than model
expected quantities of significantly low

p-values are possibly indicative of an

anomalous process.



Novel Pattern K

I. Compute the statistical anomalousness
of each attribute (for each record),
under each known model.

« Compute empirical p-values

i. measures the interestingness of a

v under each M,

ii. p;j in S ~ Uniform(0,1) under H,
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I1. Discover subsets of records and
attributes that are anomalous under
every mapping of records to models.
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* H,: All records drawn from known models

% * H,(S): Records in S drawn from unknown

More specifically we want subsets of model

data with significantly low p-values
across all models.
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The DAP Algorithm

Nonparametric Scan Statistic (NPSS)

I. Compute the statistical anomalousness

_ of each attribute (for each record),
F(S) — mO?‘X Fa (Na N tot) under each known model.

« Compute empirical p-values

Na = |{pl]k 1 S:pijk £ a} | i. measures the interestingness of a

v under each M,

- ii. p;j in S ~ Uniform(0,1) under H,
Ntot - |{pyk | S} | I1. Discover subsets of records and

attributes that are anomalous under
every mapping of records to models.

» Evaluate subsets with NPSS

NPSS quantifies how dissimilar the
distribution of empirical p-values in S
are from Uniform(o0,1)



The DAP Algorithm

Nonparametric Scan Statistic (NPSS)

F(S)=max F,(N_,N.,)

Higher Criticism:

N_-N a
Fa(Na’NtOt): 2 2

JIN,al- a)

NPSS quantifies how dissimilar the
distribution of empirical p-values in S
are from Uniform(o0,1)

I. Compute the statistical anomalousness
of each attribute (for each record),
under each known model.

« Compute empirical p-values

i. measures the interestingness of a

v under each M,

ii. p;j in S ~ Uniform(0,1) under H,
I1. Discover subsets of records and

attributes that are anomalous under
every mapping of records to models.

» Evaluate subsets with NPSS



Novel Pattern K

I. Compute the statistical anomalousness
of each attribute (for each record),
under each known model.

« Compute empirical p-values

i. measures the interestingness of a

v under each M,

ii. p;j in S ~ Uniform(0,1) under H,
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I1. Discover subsets of records and
attributes that are anomalous under
every mapping of records to models.
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’ 1. Maximize F(S) over all subsets of S
Afk *Naive search is infeasible O(2N+M)
Search over all possible subsets of

records’ p-value ranges and find the
maximizing F(S)
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The DAP Algorithm

Linear Time Subset Scanning Property (LTSS)
I. Compute the statistical anomalousness
of each attribute (for each record),
under each known model.

« Compute empirical p-values

i. measures the interestingness of a

v under each M,

ii. p;j in S ~ Uniform(0,1) under H,

I1. Discover subsets of records and
attributes that are anomalous under
every mapping of records to models.

1. Maximize F(S) over all subsets of S
*Naive search is infeasible O(2N+M)

Search over all possible subsets of
records’ p-value ranges and find the
maximizing F(S)
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The DAP Algorithm

Linear Time Subset Scanning Property (LTSS)
I. Compute the statistical anomalousness

A F(S) and G(R,) satisfies LTSS iff : of each attribute (for each record),
under each known model.
Tgag( F(S) = Lnla)N( F ({ R(l)"'R(i)}) « Compute empirical p-values

i. measures the interestingness of a

v under each M,

ii. p;j in S ~ Uniform(0,1) under H,

I1. Discover subsets of records and
attributes that are anomalous under
every mapping of records to models.

1. Maximize F(S) over all subsets of S
*Naive search is infeasible O(2N+M)

Search over all possible subsets of
records’ p-value and find the
maximizing F(S)



The DAP Algorithm

Linear Time Subset Scanning Property (LTSS)

A F(S) and G(R,) satisfies LTSS iff :

max F(S) = maxF({Ry)..R)})

ScD i=1..N ()
We only need to consider:

Ry, R
Ry Ry Regyr

We can reduce the search over records
from O(2N) to O(N log N)

I. Compute the statistical anomalousness
of each attribute (for each record),
under each known model.

« Compute empirical p-values

i. measures the interestingness of a

v under each M,

ii. p;j in S ~ Uniform(0,1) under H,

I1. Discover subsets of records and
attributes that are anomalous under
every mapping of records to models.

1. Maximize F(S) over all subsets of S
*Naive search is infeasible O(2N+M)



The DAP Algorithm

Linear Time Subset Scanning Property (LTSS)

A F(S) and G(A)) satisties LTSS iff :

max F(S) = max F({A(l)...A( j)})

ScD j=1.M

We only need to consider:

AnAp))
A Ae) »Ag)r
{A(l), ............... ,A(m)}

We want to maximize of subsets of
records AND attributes; Observe F(S) is
only a function of p;;, thus we can use
LTSS to also maximize over the
attributes

I. Compute the statistical anomalousness
of each attribute (for each record),
under each known model.

« Compute empirical p-values

i. measures the interestingness of a

v under each M,

ii. p;j in S ~ Uniform(0,1) under H,

I1. Discover subsets of records and
attributes that are anomalous under
every mapping of records to models.

1. Maximize F(S) over all subsets of S
*Naive search is infeasible O(2N+M)



Novel Pattern K
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1. Start with a randomly chosen subset
of attributes

I. Compute the statistical anomalousness
of each attribute (for each record),
under each known model.

« Compute empirical p-values

i. measures the interestingness of a

v under each M,

ii. p;j in S ~ Uniform(0,1) under H,

I1. Discover subsets of records and
attributes that are anomalous under
every mapping of records to models.

1. Maximize F(S) over all subsets of S

maxminmax F'(S = RXA)
A MAP R
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The DAP Algorithm

DAP Search Procedure

Attributes A,...Ay; I. Compute the statistical anomalousness
of each attribute (for each record),
under each known model.

« Compute empirical p-values

i. measures the interestingness of a

v under each M,

ii. p;j in S ~ Uniform(0,1) under H,

I1. Discover subsets of records and
attributes that are anomalous under
every mapping of records to models.

Records R,...Ry

1. Maximize F(S) over all subsets of S

1. Start with a randomly chosen subset
of attributes

2. Map each record to min M, max min max F(S = RXA)
A MAP R



Records R,...Ry

The DAP Algorithm

DAP Search Procedure
Attributes A,...Ay;

4 44l

(Score = 7.5)

1. Start with a randomly chosen subset
of attributes
. Map each record to min M,
3. Find the highest-scoring subset of
recs for the given atts

N

I. Compute the statistical anomalousness
of each attribute (for each record),
under each known model.

« Compute empirical p-values

i. measures the interestingness of a

v under each M,

ii. p;j in S ~ Uniform(0,1) under H,

I1. Discover subsets of records and
attributes that are anomalous under
every mapping of records to models.

1. Maximize F(S) over all subsets of S
LTSS over records O(N log N)

maxminmax F'(S = RXA)
A MAP R
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The DAP Algorithm

DAP Search Procedure

Attributes A,...Ay; I. Compute the statistical anomalousness
of each attribute (for each record),
under each known model.

« Compute empirical p-values

i. measures the interestingness of a

v under each M,

ii. p;j in S ~ Uniform(0,1) under H,

I1. Discover subsets of records and
attributes that are anomalous under
every mapping of records to models.

Records R,...Ry
L

(Score = 8.1) 1. Maximize F(S) over all subsets of S
: LTSS over records O(N log N)
. Map each record to min M,

3. Find the highest-scoring subset of *LTSS over attributes O(M log M)

recs for the given atts max min max F(S = R)(A)
4. Find the highest-scoring subset of 4  MAP R
atts for the given recs

N



The DAP Algorithm

DAP Search Procedure
Attributes A,...Ay;

2
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(Score = 8.1)
2. Map each record to min M,

3. Find the highest-scoring subset of
recs for the given atts

4. Find the highest-scoring subset of
atts for the given recs

I. Compute the statistical anomalousness
of each attribute (for each record),
under each known model.

« Compute empirical p-values

i. measures the interestingness of a

v under each M,

ii. p;j in S ~ Uniform(0,1) under H,

I1. Discover subsets of records and
attributes that are anomalous under
every mapping of records to models.

1. Maximize F(S) over all subsets of S
LTSS over records O(N log N)

LTSS over attributes O(M log M)
maxminmax F'(S = RXA)
A MAP R
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The DAP Algorithm

DAP Search Procedure
Attributes A,...Ay; I. Compute the statistical anomalousness
of each attribute (for each record),
under each known model.

. % « Compute empirical p-values
r:d 1. measures the interestingness of a
od = v under each M,
'§ ii. p;j in S ~ Uniform(0,1) under H,
O :

S = II. Discover subsets of records and
R = attributes that are anomalous under

H every mapping of records to models.

(Score = 9.3) 1. Maximize F(S) over all subsets of S
LTSS over records O(N log N)

LTSS over attributes O(M log M)
maxminmax F'(S = RXA)
A MAP R

5. Continue iterating until convergence
(To Local Maximum)



Anomalous Pattern Discovery Procedure

Test Data
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Experiments: Network Intrusion Detection

- Real-World dataset of sessions on a military network
= Background Activity & 7 Intrusions

- Datasets Generated
= Test Data: 10,000 records
- 250 anomalies (2.5%) from each of the 7 intrusions
- Remaining data is from the background activity
= Training Data: up to 100,000 records

- Anomalous Pattern Discovery
= (Generate 50 Test Data Sets
- Mix of intrusions and Background Activity
s Generate Generate 50 Training Data Sets
 For Background Activity

* For each Intrusion
- Start only with Background Training Data



Anomalous Pattern Discovery

Cumulative Number of False Posotives
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Anomalous Pattern Discovery
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Summary

 Outlined the challenging problem faced by many
Computer Security firms

« Proposed the Anomalous Pattern Discovery task
= Devised a method to solve the general discovery task

- Demonstrated the efficacy of this methodology for
assisting security analyst in continual discovery of novel
anomalous patterns
= as compared to the current state of the art






