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ABSTRACT
Machine learning is gaining popularity in a broad range of ar-
eas working with geographic data. Here, data often exhibit spatial
effects, which can be difficult to learn for neural networks. We
propose SXL, a method for embedding information on the autore-
gressive nature of spatial data directly into the learning process
using auxiliary tasks. We utilize the local Moran’s I, a measure of
local spatial autocorrelation, to “nudge” the model to learn the direc-
tion and magnitude of local spatial effects, complementing learning
of the primary task. We further introduce a novel expansion of
Moran’s I to multiple resolutions, capturing spatial interactions
over longer and shorter distances simultaneously. The novel multi-
resolution Moran’s I can be constructed easily and offers seamless
integration into existing machine learning frameworks. Over a
range of experiments using real-world data, we highlight how our
method consistently improves the training of neural networks in
unsupervised and supervised learning tasks. In generative spatial
modeling experiments, we propose a novel loss for auxiliary task
GANs utilizing task uncertainty weights. SXL outperforms domain-
specific spatial interpolation benchmarks, highlighting its potential
for downstream applications.
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1 INTRODUCTION
When monitoring the physical environment, the gathered data are
often geographic in nature and follow some spatial process: data
values depend on their spatial locations. This violates a key as-
sumption of many statistical learning frameworks, that data are
independent and identically distributed (iid). The complexities of
geographic data concern researchers in many academic fields and
are a key focus of the geographic information sciences (GIS). The
GIS community has a long tradition of analyzing spatial phenom-
ena, developing metrics to measure spatial effects and deploying
models to account for spatial dependencies. With the growing pop-
ularity of deep neural networks, applications to geospatial data
domains have become more and more common. Nevertheless, these
applications have only rarely inspired methodological innovation in
neural networks. Recently, [15] specifically pointed to a lack of deep
learning methods tailored to geospatial and spatio-temporal data
in the context of earth system science. In light of this call-to-action,
we propose SXL, a novel neural network method for geospatial
data domains, that is inspired by domain expertise from GIS and
explicitly learns spatial dependencies contained within the data.
This is facilitated through a multi-task learning process, where a
spatial embedding capturing local autoregressive effects at each
data point is learned as an auxiliary task. We integrate one of the
most prominent and widely used metrics in GIS into the model:
the Moran’s I measure of local spatial autocorrelation [1]. To also
account for longer-distance spatial relations, we propose a novel
multi-resolution local Moran’s I by gradually coarsening the input
data. We evaluate SXL on both generative and predictive spatial
modeling tasks, providing empirical evidence for consistent and
robust performance gains across multiple synthetic and real-world
experimental settings.

2 RELATEDWORK
Ideas from GIS and spatial statistics have inspired popular ap-
proaches in modern machine learning, from Gaussian Processes
(GPs) to spatial scan statistics. Nevertheless, since the emergence
of the era of deep neural networks, the relationship between the
GIS and machine learning communities has been mostly defined
through applications of existing neural network models to geo-
graphic data. Recent advances in machine learning that have been
particularly useful to the GIS community include scalable GPs [6]
and graph neural networks [11] for geospatial data.

But core concepts from GIS and geography are also gradually
attracting more attention in neural networks research: For example,
[12] propose vector embeddings to capture spatial context. While
there exist approaches for capturing spatial autocorrelation in neu-
ral networks [19], the Moran’s I metric has previously only been

https://doi.org/10.1145/3474717.3483922
https://doi.org/10.1145/3474717.3483922


SIGSPATIAL ’21, November 2–5, 2021, Beijing, China Klemmer & Neill

used once in an explicit machine learning setting, as a stopping
criterion for training generative adversarial networks [9].

In this paper, we use auxiliary learning, an approach using multi-
task learning to improve performance on a primary task, originally
conceptualized by [16]. The authors propose to give learners “hints”
related to the original task throughout training in order to improve
training speed and model performance. This can be understood
as forcing the learner (e.g., a neural network) to focus its atten-
tion on certain patterns in the data, highlighted by the auxiliary
objective. Auxiliary learning has been particularly successful in
deep reinforcement learning [5] and has also been deployed for
generative adversarial nets (GANs) [13]. However, to the best of our
knowledge, measures of spatial autocorrelation such as Moran’s I
have never previously been used in any kind of multi-task learning
setting, either for generative or predictive spatial modeling.

3 METHODOLOGY
3.1 Multi-resolution local Moran’s I
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Figure 1: Multi-resolution local Moran’s I calculation with
an example input at three different resolutions: Original in-
put size (𝑛 ×𝑚), downsampled by factor 2 and downsampled
by factor 4.

Working with geospatial data requires a careful assessment of
and accounting for potential autoregressive effects–an intuition
which neural networks traditionally do not provide. One of the most
prominent measures, capturing spatial autocorrelation at the point-
level, is the local Moran’s I metric [1]. Local Moran’s I measures the
direction and extent of similarity between each observation and its
local spatial neighbourhood. As such, it provides an indication for
both local spatial clusters and spatial outliers.

Formally, let 𝑋𝑛×𝑚 be a 2-𝑑 spatial matrix (image) and the vec-
tor x = 𝑣𝑒𝑐 (𝑋 ) consists of 𝑛𝑥 = 𝑛𝑚 real-valued observations 𝑥𝑖 ,
referenced by an index set 𝑁𝑥 = {1, 2, ..., 𝑛𝑥 }. We define the spatial
neighbourhood of observation 𝑖 to be N𝑥𝑖 = { 𝑗 ∈ 𝑁𝑥 : 𝑤𝑖, 𝑗 > 0}.
Here,𝑤𝑖, 𝑗 corresponds to a binary spatial weight matrix, indicating
whether any observation 𝑗 is a neighbor of 𝑖 . Throughout this study,
we utilize queen contiguity (i.e. all adjacent grid cells, including
diagonals, are neighbors), but the approach generalizes to arbitrary
neighborhood definitions. We can compute the local Moran’s I
statistic, 𝐼𝑖 , of observation 𝑥𝑖 with the mean over all observations 𝑥
as:

𝐼𝑖 = (𝑛𝑥 − 1) 𝑥𝑖 − 𝑥∑𝑛𝑥
𝑗=1 (𝑥 𝑗 − 𝑥)2

𝑛𝑥∑
𝑗=1, 𝑗≠𝑖

𝑤𝑖, 𝑗 (𝑥 𝑗 − 𝑥) (1)

𝐼𝑖 can take positive or negative values: a positive value suggests
that a data point is similar to its neighbors, which could indicate
latent cluster structure. A negative value suggests that the data
point is distinctly different from neighboring data points, which
could indicate a changepoint or edge.

One of the main limitations of the local Moran’s I metric is
scale sensitivity [18]: its reliance on immediate neighbors can cause
longer-range dependencies to be lost. Here, we propose a novel,
multi-resolution representation of the local Moran’s I by increas-
ingly coarsening the input data for the Moran’s I computation and
then upsampling the output back to the original data shape. The
coarsening step here is analogous to a 2-𝑑 average pooling oper-
ation. The coarsened Moran’s I is then upsampled again to the
original input size 𝑛 ×𝑚 using nearest-neighbor interpolation. This
whole process can be repeated several times to compute the local
Moran’s I at increasingly coarse resolutions. The local Moran’s I
values at different resolutions can then be stacked on top of one
another, much like a multi-channel image (e.g. RGB image). As such,
tensors provide an ideal data structure for our metric. We illustrate
this with an example in Figure 1.

3.2 Auxiliary learning of spatial autoregressive
structures

Auxiliary task learning shares the benefits of multi-task learning:
auxiliary tasks hint at specific patterns in the data for the model to
focus attention on. Further, they introduce a representation bias,
whereas the model prefers latent representations of the data that
work for both primary and auxiliary tasks, thus helping with gen-
eralization. Lastly, auxiliary tasks can work as regularizers by in-
troducing inductive bias and decreasing the risk of overfitting the
model. Here, we want to use the local Moran’s I embedding as
auxiliary tasks. The main motivation for any auxiliary tasks is
“relatedness” to the primary task: spatial theory characterizes a
spatial pattern as a reflection of underlying spatial processes. Ac-
cordingly, [3] concludes that “[...] the capability of generalizing
and quantifying spatial patterns is a prerequisite to understand-
ing the complicated processes governing the distribution of spatial
phenomena.”–explicitly mentioning the power of the Moran’s I
metric to capture these effects. Recent research further highlights
the importance of learning at multiple resolutions to support a
comprehensive understanding of spatial processes [17].

With our experiments, we focus on two distinct settings: gen-
erative spatial modeling using GANs [7], and predictive spatial
modeling in the form of spatial interpolation. To outline the ap-
plication of our proposed auxiliary task approach, we introduce
the GAN example in detail–the predictive modeling formulation
follows from this directly. GANs are comprised of two neural net-
works, a GeneratorG that produces fake data and a DiscriminatorD
that seeks to distinguish between real and fake data. These two net-
works are agents in a two-player game, where G learns to produce
synthetic data samples that are faithful to the true data generat-
ing process, and D learns to separate real from fake samples. The
standard GAN loss function is thus given as:

min
𝐺

max
𝐷

L𝐺𝐴𝑁 (𝐷,𝐺) = Ex∼𝑝𝑑𝑎𝑡𝑎 (x)
[
log𝐷 (x)

]
+

Ez∼𝑝z (z)
[
log(1 − 𝐷 (𝐺 (z)))

]
,

(2)
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Figure 2: GAN with spatially explicit auxiliary tasks using
multi-resolution Moran’s I.

We propose two options to integrate our auxiliary tasks:
(1) Adding 𝑁 auxiliary tasks (single- or multi-resolution) with

losses L (𝐷)
𝐴𝑇𝑖

using fixed loss weights 𝜆 (see Figure 2):

min
𝐺

max
𝐷

L𝜆
𝑀𝑅𝐸𝑆−𝑀𝐴𝑇

(𝐷,𝐺) = L𝐺𝐴𝑁 (𝐷,𝐺)+

𝜆(L (𝐷)
𝐴𝑇1

+ · · · + L (𝐷)
𝐴𝑇𝑁

) .
(3)

(2) Automatically learning the weights of main and auxiliary loss
using each task’s homoskedastic uncertainty to inform the weight.
We expand the loss proposed by [4] to the GAN setting:

min
𝐺

max
𝐷

L𝑈𝑊
𝑀𝑅𝐸𝑆−𝑀𝐴𝑇

(𝐷,𝐺) = L (𝐺)+(
1

2𝜎2
1
L (𝐷)
𝑀𝑇

+ 1
2𝜎2

2
L (𝐷)
𝐴𝑇1

+ · · · + 1
2𝜎2

𝑁+1
L (𝐷)
𝐴𝑇𝑁

+
𝑁+1∑
𝑖=1

log𝜎𝑖

)
,

(4)

where 𝜎1, . . . , 𝜎𝑁+1 are the model noise parameters, L (𝐺) is the
generator loss and L (𝐷)

𝑀𝑇
the main task discriminator loss. This

constitutes the first adaption of the uncertainty task balancing
principles to the multi-task GAN family. The adaptation of SXL
to predictive spatial models follows intuitively (analogous to the
“prediction" task of the GAN discriminator).

4 EXPERIMENTS

Model Toy PetrelGrid DEM TreeCanopy
GAN [7] 0.0934 0.4106 0.1120 0.1138
GAN-MAT UW 0.1077 0.4860 0.1814 0.1132
GAN-MRES-MAT UW 0.0917 0.4014 0.1180 0.1038
DCGAN [14] 0.1534 0.2993 0.0591 0.0654
DCGAN-MAT UW 0.2319 0.3049 0.0591 0.1009
DCGAN-MRES-MAT UW 0.0938 0.2793 0.0612 0.0635
EDGAN [20] 0.0269 0.2909 0.0499 0.0322
EDGAN-MAT UW 0.0276 0.3061 0.0481 0.0316
EDGAN-MRES-MAT UW 0.0241 0.2971 0.0469 0.0314

Table 1: Test MMD scores (lower is better) of different GAN
configurations with uncertainty weights. We compare syn-
thetic samples from these generators to held-out test data
to compute the scores.

Generative modeling. In our first experiment, we want to ex-
amine whether our proposed method can improve the learning
of spatial data generating processes with GANs. To assess model

Figure 3: Interpolation results on samples from the test set,
across the different benchmarkmodels, presenting our CNN
+ MAT UW model. The orange boxes highlight areas where
the improvement over the benchmarkmodels becomes visu-
ally apparent.

quality, we use the Maximum Mean Discrepancy (MMD) metric
[2]. A lower MMD score between samples of real and synthetic
data indicates higher quality of the synthetic samples. As GAN
training is notoriously difficult, we train ten cycles of each tested
GAN using the best generator (based on validation scores) from
each cycle to compute test scores. We select four datasets for our ex-
periments: (1) toy dataset of a Gaussian peak mirroring a Gaussian
dip, (2) a PetrelGrid seabed relief dataset [10], (3) a Digital Elevation
Model (DEM) dataset obtained via the elevatr R package, and (4)
Tree canopy data from the “Global Tree Change” project [8]. These
datasets are chosen to represent a range of different geospatial
patterns occurring in real-world physical environments and relate
to important modeling challenges in the earth sciences, ecology, or
geography. The modularity of our proposed auxiliary task learning
method allows us to test it on a range of different GAN models. We
chose the original GAN implementation, denoted here as GAN [7],
the DCGAN [14] and lastly an Encoder-Decoder GAN (EDGAN )
architecture recently proposed by [20] and explicitly designed for
geospatial applications. Table 1 shows results from our experiments.
We can see that the auxiliary task settings improve performance
for most experiments, agnostic of the underlying GAN architec-
ture, by usually 3-10%. However, the optimal loss weight setting for
applying the auxiliary task appears to vary. The MRES MAT UW
strategy seems to be the safest bet, as it does not require further,
manual weight parameter tweaking.

Predictive spatial modeling. We now tackle spatial interpolation,
obtaining high-resolution spatial data from a low-resolution input.
It is a regression task and can be evaluated using the root mean
squared error (RMSE) between real and predicted high-resolution
output. We again train 10 models per strategy and compare their
performance when no model selection is used (final model used for
prediction on test set) and when model selection on a validation
set is applied, saving the 10 best models, one from each run. We
use hillshades of DEM data from the National Ecological Observa-
tory Network (NEOS), a common use case in geography, for the
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RMSE
Model / Task 32 → 64

(no model selection) (model selection)
BicInt 0.0667 −
IDW 0.0693 −
OK 0.0801 −
UK 0.0796 −
CNN 0.0678(±0.0128) 0.0503(±0.0008)
CNN + MAT UW 0.0649(±0.0119) 0.0496(±0.0006)
CNN + MAT 𝜆 = 0.1 0.0665(±0.0118) 0.0516(±0.0018)
CNN + MAT 𝜆 = 0.01 0.0666(±0.0178) 0.0532(±0.0033)

Table 2: Model RMSE scores and their standard deviation
(over 10 runs) on held-out test data.

interpolation task. Spatial statistics provides a range of tools to
tackle interpolation problems as benchmarks: (1) Bicubic interpola-
tion (BicInt), (2) Inverse Distance Weighting (IDW ), (3) Ordinary
Kriging (OK), and (4) Universal Kriging (UK). We compare these
established methods to a simple CNN implementation with two
hidden layers (5). The modularity of SXL allows us to simply plug-in
ourMAT. In this setting, we do not use theMRES MAT, as our ex-
periments show that further coarsening the already-reduced image
is counterproductive. The CNN model main tasks are optimised
using MSE loss, while the auxiliary tasks use ℓ1 loss. The results of
this experiment are presented in Table 2 and Figure 3. We can again
see a positive effect of the MAT on the performance of the CNN
model—outperforming all other benchmarks. If no model selection
is deployed, both hard loss weights and uncertainty weights pro-
duce models that outperform the naively trained CNN.MAT UW
models provide the best average performance increase, of around
5%. If model selection is utilized, the MAT UW strategy outper-
forms the naive CNN by about 1.5%. Both of these performance
increases are statistically significant, according to a paired t-test
of the mean prediction scores. As compared to the use of fixed
loss weights, the MAT UW strategy prevails in all interpolation
experiments, whether model selection is applied or not.

5 CONCLUSION
With SXL we propose the use of single- and multi-resolution mea-
sures of local spatial autocorrelation for improving the learning of
geospatial processes. We introduce a novel, flexible multi-resolution
version of the local Moran’s I statistic using coarsened inputs. We
demonstrate its integration as an auxiliary task into generative and
predictive neural network models, using both hard (static) and task
uncertainty (automatically learned) loss weights. We empirically
show robust, consistent and significant performance gains of up
to 10% for generative spatial modeling and up to 5% for predictive
spatial modeling when using this strategy.
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