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EPIDEMIOLOGY

Presyndromic surveillance forimproved detection

of emerging public health threats

Mallory Nobles't, Ramona Lall?, Robert W. Mathes?, Daniel B. Neill*

Existing public health surveillance systems that rely on predefined symptom categories, or syndromes, are effective

at monitoring known illnesses, but there is a critical need for innovation in “presyndromic” surveillance that de-
tects biothreats with rare or previously unseen symptomology. We introduce a data-driven, automated machine
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learning approach for presyndromic surveillance that learns newly emerging syndromes from free-text emergency
department chief complaints, identifies localized case clusters among subpopulations, and incorporates practi-
tioner feedback to automatically distinguish between relevant and irrelevant clusters, thus providing personal-
ized, actionable decision support. Blinded evaluations by New York City’s Department of Health and Mental
Hygiene demonstrate that our approach identifies more events of public health interest and achieves a lower

false-positive rate compared to a state-of-the-art baseline.

INTRODUCTION

To offer a rapid, targeted, and effective response to emerging bio-
threats, public health officials must be able to detect a huge variety
of emerging events. Recent, high-profile events highlight the diver-
sity of situations that can affect public health: In February 2020, 50+
residents of a nursing home in Kirkland, Washington were part of
one of the first coronavirus disease 2019 (COVID-19) outbreaks in the
United States; in October 2019, 100+ people contracted Legionnaires’
disease and Pontiac fever from hot tub displays at the North Carolina
state fair; and in March 2018, 90+ people presented to emergency
departments in five states with unexplained bleeding that was even-
tually traced to the use of synthetic marijuana laced with brodifacoum,
or rat poison.

While existing, widely used disease surveillance systems such as
the Centers for Disease Control and Prevention’s National Syndromic
Surveillance Program have proven to be effective in detecting out-
breaks of known illnesses, or those with common symptomology
(e.g., influenza-like illness), these systems are not optimized for early
detection of rare events or novel (previously unseen) biothreats.
Syndromic surveillance systems typically monitor emergency depart-
ment (ED) chief complaint data: free-text symptom data reported
by each ED patient, recorded by a triage nurse, and sent to local public
health organizations from hospitals in their jurisdiction. Chief com-
plaints are typically short free-text strings, for example, “headache
and pain in rt arm” or “cough and nasal congestion x 2 days.” These
data are mapped to syndromes, like respiratory, fever, and gastro-
intestinal illness, and from there, spatial cluster detection methods,
such as spatial scan statistics (1), or simpler time series methods are
used to identify syndromes that are currently occurring with a higher-
than-expected frequency in some geographic area (2-5). Once they
are found, supplemental syndromes that describe novel events or
rare illnesses can be added to the system (6). While developing syn-
dromes in advance for every imaginable event is impossible, waiting
until cases are observed to manually develop a new syndrome can
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result in substantial detection delays. Moreover, syndromic surveil-
lance can dilute the signal of a rare outbreak or novel biothreat,
either by grouping rare cases with more common illnesses, or by
splitting cases among many syndromes. In either case, the syndromic
surveillance system may require a large increase in cases to recognize
an anomalous cluster corresponding to a rare or novel event, making
it difficult for public health to achieve timely detection and response.

Given these fundamental limitations of syndromic surveillance,
when the International Society for Disease Surveillance tasked a
team of epidemiologists, public health practitioners, and technical
analysts with translating public health’s most critical use-case defi-
ciencies into well-defined technical problems, they first called for
advances in “presyndromic” surveillance, a new type of surveillance
that does not rely on assigning cases to existing or predefined symp-
tom categories (7). Most existing methods for presyndromic sur-
veillance use a keyword-based approach that compares word counts
in the most recent period to word counts during a historical base-
line period. These methods can report any occurrences of new key-
words that were not previously seen in the historical chief complaints
and identify anomalous word frequencies in the most recent data
using various statistical methods including likelihood ratio tests,
Poisson test statistics, and Fisher’s exact hypothesis test (8-10). How-
ever, keyword-based methods are unable to detect meaningful word
combinations, and they frequently flag misspellings, typos, non-
standard abbreviations, or other nonmeaningful words and thus
suffer from a high false-positive rate, making them impractical for
daily use (11).

To address the critical need for new, effective, and deployable
methods for presyndromic surveillance, we worked with local and
federal public health organizations to design, develop, and test multi-
dimensional semantic scan (MUSES). MUSES offers three notable
methodological advances:

« MUSES eliminates the need for predefined syndromes by
learning syndrome categories, including those that character-
ize rare or novel health threats and occur over a small number
of cases, directly from free-text ED data.

« MUSES identifies localized case clusters through multidimen-
sional spatial scan statistics, enabling detection of emerging
biothreats that may be isolated to a certain hospital or spatial
region or to a certain demographic group of patients.
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o MUSES uses a practitioner in the loop approach to incorporate
user feedback, “zoom in” on relevant patterns, reduce false
positives, and provide local users with actionable insights
based on their own criteria for what is, and is not, relevant.

An overview of MUSES is shown in Fig. 1, and we describe the

approach in detail below. This study demonstrates that MUSES can
serve as a “safety net” for public health surveillance by enabling the
detection of emerging outbreaks and other events of interest that do
not fit existing syndromes and might otherwise go undetected.

RESULTS
Learning syndrome categories directly from emergency
department data
MUSES uses a new variant of topic modeling to learn syndrome
categories directly from the data. Topic models are a set of algo-
rithms that automatically summarize the main themes, or topics,
contained in large collections of documents. The most widely used
topic modeling approach, latent Dirichlet allocation (LDA), models
topics as probability distributions over words and documents as
probability distributions over these topics (12). Both the distribu-
tion over topics for each document and the distribution over words
for each topic are learned automatically from a corpus of training
data. In our setting, the documents are patients’ chief complaints
and the learned topics act as syndrome categories, since they sum-
marize symptoms that often appear together. Because standard top-
ic models are designed to learn themes that best summarize the
corpus as a whole, these topics correspond to common health con-
ditions that occur frequently in the training data. For example, in
our ED data, we might identify one topic with words corresponding
to gastrointestinal illness (“vomiting,” “nausea,” “diarrhea,” etc.)
and one with words corresponding to respiratory illness (“cough,”
“dyspnea,” “shortness,” and “breath”).

To detect patterns that may represent emerging biothreats, we
developed an extension of LDA that learns two sets of topics. First,

Date/time Hosp. Age Complaint

1 Jan 08:00 A 19-24 Runny nose

1 Jan 08:15 B 10-14 Fever, chills

1Jan 08:16 A 0-1  Brokenarm S—
2Jan08:20 C 65+  Vomited 3x

2Jan08:22 A 45-64 High temp

l

I Classify cases to topics

l

Hourly counts for each learned
syndrome and for each subpopulation

we learn a set of 25 “static” topics by fitting a topic model to a set of
historical data using the standard LDA approach. Then, we learn a
second set of 25 “emerging” topics over only the most recent data
using a new contrastive topic model (13). The set of historical static
topics are designed to capture common events. Identifying clusters
of such syndromes is not the main goal of our system; rather, we
learn these common syndrome types to be able to differentiate them
from newly emerging threats. The contrastive LDA model treats the
historical static topics as observed parameters and optimizes the set
of emerging topics to be maximally different from the historical
topics. As a result, previously unseen words or words with new
co-occurrence patterns dominate the set of emerging topics, which
has the desired effect of capturing any new biothreats that occur in
the most recent data. The contrastive LDA approach outperformed
other extensions of LDA, including topics over time, online LDA,
and labeled LDA (14-17), in detecting simulated disease outbreaks
and identifying rare clusters in a variety of data settings (13).

Detecting emerging anomalous clusters

among subpopulations

After learning syndromes that can capture emerging biothreats, MUSES
uses spatial scan statistics (1) to identify localized case clusters of
these topics. Spatial scan has been used to identify emerging out-
breaks of diseases including breast cancer, leukemia, and West Nile
virus (18,19). Here, we search over all groups of ED cases defined by
(i) one of the 25 learned emerging topics, (ii) a 1- to 3-hour time
window of arrival to the ED, (iii) one hospital or all hospitals, (iv) a
contiguous range of age groups, and (v) gender (males only, females
only, or all). We note that the geographic and demographic infor-
mation is not used when learning the topic models but only in the
scan step. For each group, we compute a likelihood ratio statistic
that describes the anomalousness of the observed number of cases
relative to the corresponding expected baseline. Randomization testing
is used to evaluate the significance of the highest-scoring group, ad-
justing for the multiple hypothesis testing issue, which could result
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Document prior

Cases’ distribution
over topics

Static
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Words

[ observed [ | Learned

Static topics
@4 : vomiting, nausea, diarrhea, ...
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Emerging topics
@;: blue, nose, hands...

Fig. 1. Overview of MUSES. MUSES is an innovative approach to presyndromic surveillance that learns newly emerging syndromes directly from free-text chief com-
plaint data from hospital EDs, and detects statistically significant increases in cases related to these syndromes, including case clusters that may be limited to or differen-

tially affect specific subpopulations.
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from scanning over many subpopulations. This allows us to identify
outbreaks of rare disease, or other novel biothreats, that may be iso-
lated to a certain hospital and spatial region, or to a certain group of
patients (e.g., the very young and very old).

Detected relevant events in New York City

To evaluate the ability of MUSES to detect a diverse set of emerging
patterns relevant to public health in large and complex data, we ap-
plied our algorithm to historical chief complaint data from New York
City (NYC). This dataset has more than 28 million ED cases from
53 NYC hospitals during 2010-2016. For each hospital, we have
data on the patients’ free-text chief complaint, date and time of ar-
rival, age group, gender, and discharge International Classification
of Disease-9 (ICD-9) diagnosis code. Public health practitioners at
NYC’s Department of Health and Mental Hygiene (DOHMH) per-
formed a blinded evaluation of the top 500 highest-scoring clusters
detected over the 6-year time period by our method and by a com-
peting, state-of-the-art, keyword-based approach. For each of these
clusters, the evaluators indicated if the cluster (i) represents a meaning-
ful collection of cases and (ii) is, in their judgement, highly relevant
to public health (i.e., potentially worthy of follow-up investigation).
For example, clusters related to “bacterial meningitis” and “synthetic
drug use” were rated as highly relevant, clusters related to “motor
vehicle accidents” were rated as meaningful but not highly relevant,
and clusters resulting from misspellings or common words (such as
“left”) were rated as not meaningful. We note that the evaluation
was blinded (cluster lists for the two methods were merged and
shuffled) so that the public health practitioner was not aware which
method reported a given cluster or where that cluster ranked on its
top 500 list.

The blinded evaluation by DOHMH demonstrated that our method
correctly identifies a larger number of events of interest to public
health departments than the baseline method. We observe that 320
(64%) of the top 500 results from MUSES corresponded to mean-
ingful health events, while the keyword-based method only detected
246 such events (49.2%). Figure 2A shows that for any fixed number
of detected clusters, MUSES identified more meaningful events
than keyword-based scan. Alternatively, for any desired number of
discovered meaningful events, MUSES exhibits substantially higher
precision: For example, to identify 100 meaningful events, it had to
report 159 total clusters (precision = 63%) as compared to 225 total
clusters (precision = 44%) for the keyword-based scan, correspond-
ing to a 53% reduction in the number of false-positive clusters. Similarly,
as shown in Fig. 2B, when 200 clusters are reported, MUSES detected
26 highly relevant clusters, while the keyword-based method detected 17.
These findings demonstrate that regardless of the false-positive rate
public health officials are willing to tolerate, MUSES offers an improve-
ment over the current state of the art in presyndromic surveillance.
This ability to report newly emerging case clusters that do not cor-
respond to existing syndrome groups but have meaning and rele-
vance to public health, without overwhelming the user with a large
number of false-positive detections, suggests high potential utility
for day-to-day operational use.

In addition, to determine how our approach might provide situ-
ational awareness of emerging health concerns following a natural
disaster, we examined the clusters identified by our approach in the
week following 29 October 2012, when Hurricane Sandy struck NYC
and caused a historic level of damage. These results show a temporal
progression of detected clusters from acute cases related to falls and
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shortness of breath, to mental health issues like depression and anxiety,
to chronic health issues that require maintenance procedures, like dialysis
and methadone distribution. Such procedures are typically handled
in outpatient clinics but were displaced to EDs when clinics were closed
because of storm damage and power outages. We note that DOHMH
epidemiologists manually inspected hospital ED data immediately
following Hurricane Sandy; noticed an increase in the words
“methadone,” “dialysis,” and “oxygen”; and created a “needs medica-
tion” syndrome (6). The ability of MUSES to automatically identify
similar symptoms as human experts highlights its ability to learn
meaningful but previously unseen combinations of symptoms, including
automatically identifying the progression of stresses on hospital EDs
in the aftermath of a natural disaster.

Incorporating practitioner feedback

While our initial, blinded evaluation with NYC public health offi-
cials confirmed MUSES’ ability to detect clusters of interest to pub-
lic health, it also highlighted the potential benefits of developing a
practitioner in the loop (PITL) approach. During the initial evaluation,
DOHMH practitioners indicated that 102 of MUSES’ 200 highest-
scoring clusters represented events that were meaningful collections
of cases but not specifically relevant to their jurisdiction’s needs for
the system, including 28 clusters related to motor vehicle accidents,
12 related to medical evaluations or clearances, and 8 related to al-
cohol intoxication. With a PITL approach, the public health user could
mark the first identified occurrence of a “motor vehicle accident” as
irrelevant to that particular health department, enabling the system
to ignore or de-emphasize future instances of such clusters and to
focus attention on known and relevant event types, as well as those
that correspond to novel, previously unseen events. Human in the
loop topic modeling has also been shown to increase topics’ inter-
pretability, improve users’ ability to find information in a large cor-
pus, and encode expert knowledge (20-25).

To capitalize on the benefits of including a human in the loop,
we refined our system to efficiently collect feedback from public
health practitioners about which alerts correspond to events of in-
terest. Figure 3 shows that as public health practitioners use MUSES,
they see a ranked set of detected clusters, each consisting of a list of
ED cases and summary information about the spatiotemporal ex-
tent and textual topic of each cluster. The system allows public
health officials to provide feedback on relevant events based on
their own criteria and to distinguish between events of high interest
(e.g., meningitis exposures) and low interest (e.g., motor vehicle ac-
cidents). This approach reduces the false-positive rate and allows
public health officials to define events of interest based on their sur-
veillance needs, without compromising the model’s ability to learn
new syndrome types.

To incorporate practitioner feedback on a continuous basis into
our contrastive topic model, we add two new classes of topics: mon-
itored static topics and ignored static topics. As before, the model
includes historical static topics to capture common events and
emerging topics to capture rare diseases or novel biothreats. In ad-
dition, the model includes monitored static topics and ignored static
topics, which were learned by a previous iteration of the model and
marked by public health practitioners as events of high or low interest,
respectively. The historical, monitored, and ignored static topics are
all treated as known parameters by the contrastive topic model, and
the scan step searches over both the emerging topics and the moni-
tored static topics.
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Fig. 2. Results from a blinded user study comparing our MUSES approach (fixed model) to a competing, keyword-based approach. Each method’s top 500
highest-scoring clusters over a 6-year time period were rated as “meaningful and highly relevant,” “meaningful but not highly relevant,” or “not meaningful” by public
health epidemiologists at NYC DOHMH. (A) Number of meaningful clusters and (B) number of “highly relevant” meaningful clusters, detected by each method, assuming
that its top-k highest-scoring clusters were reported. Blue line: MUSES. Red line: keyword-based approach. For any fixed number of detected clusters, MUSES identifies
more meaningful clusters and more highly relevant meaningful clusters than the keyword-based approach.

SEMANTIC SCAN - & X
Update

Last Updated: Thursday, May 26, 2022

Summary of Detected Clusters

Score N Start Date End Date Words in Learned Syndrome Affected Locations Affected Age Range
S e S Y S -
37.7866 2014-11-28 19:52 2014-11-28 20:09 coffee tainted drank ingested HOSPO5 20-69

22775 2014-11-2513:22 2014-11-2515:13 headlice passed dazed complaining shaking woke headace abortion loss mor HOSP05 05-09, 15-34

18.0759 2014-11-27 08:27 2014-11-27 09:55 chronic rtleg drainage ulcer rtfacial chest Itleg attached states tightness HOSPOS 45-59

18.0759 2014-11-28 20:01 2014-11-28 20:09 tainted coffee drank ingested HOSPO5 25-49

18.0759 2014-11-26 09:04 2014-11-26 10:57 weeds times smoking toothache knee hurts cellulitis epilepsy HOSPO5 25-29, 50-64

14.6447 2014-11-27 13:01 2014-11-27 15:39 tos cough HOSPOS 00-09

13.9787 2014-11-27 12:15 2014-11-27 14:25 cough tos HOSPO5 00-09, 65-79

13.6839 2014-11-27 17:00 2014-11-27 19:24 per days mother day nasty metal HOSPO5 00-39 bodl

Details for Selected Cluster

Date Time Location Chief Complaint ICD-9 Sex Age Group VISIT ID
11/28/14 1804  HOSPOS | DRANK VODKA AND NEED DETOX. F 3539 1 o
11/28/14 1952 HOSPOS EVAUATION, DRANK COFFEE WITH CF M 45-49 1 3 @ coffee
11/28/14 19:53 HOSPOS DRANK TAINTED COFFEE M 65-69 1 < @ tainted
11/28/14 19:57  HOSPOS DRANK TAINTED COFFEE F 20-24 1 g * drank
11/28/14 19:59  HOSPOS INGESTED TAINTED COFFEE M 35-39 1 2 ® ingested
11/28/14 2001  HOSPO5 DRANK TAINTED COFFEE M 45-49 1 7
11/28/14 2003 HOSPO5 DRANK TAINTED COFFEE M 40-44 1 4

b INCLUDE SYNDROME IN FUTURE RUNS

Fig. 3. Screenshot of MUSES' visualization interface after a cluster of cases related to drinking tainted coffee was detected in the data. This cluster is the highest-scoring
cluster; thus, it appears first in the upper table. Because the user has clicked on this cluster, details about the cluster appear in the lower table and graph. The lower table
shows de-identified clinical data associated with the nine cases in this cluster (the “Visit ID” column has been intentionally obscured), and the pie chart visualizes the
learned syndrome’s distribution over words.
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To measure the impact of the PITL approach, NYC public health
officials participated in a second blinded experiment where they
evaluated clusters detected by two versions of MUSES: one in which
the model was iteratively updated with user feedback regarding
clusters to monitor or ignore in the future and one in which the
model remained fixed throughout the experiment. For each day in
the experiment, the practitioner indicated whether the five highest-
scoring clusters detected by each model represented collections of
cases “to monitor,” “to ignore”, or that were “meaningless.” Every
2 weeks, the PITL model used this feedback to update its collection of
monitored and ignored topics. DOHMH practitioners completed this
experimental procedure over 19 two-week periods, corresponding
to 9 months of historical data from January through September 2016,
and 3.5 million data records from 53 hospitals.

Evidence from this experiment supports four primary hypothe-
ses: (i) The PITL model outperforms the fixed model with respect to
precision and the number of detected events of interest; (ii) the per-
formance gap between the PITL and fixed models increases mono-
tonically as a function of the number of labeled clusters used as
training data by the PITL model; (iii) after an initial labeling of a
cluster as a topic to be ignored, the PITL model will avoid presenting
similar clusters to the user in the future, thus reducing false positives as
compared to the fixed model; and (iv) after an initial labeling of a
cluster as a relevant topic to be monitored, the PITL model will have
higher power to detect future instances of that topic. During the
19 periods included in the experiment, the PITL model detected 49
highly relevant clusters, a 53% increase over the 32 detected by the
fixed model. Figure 4A shows that the PITL model had identified
more events of interest during all periods of the experiment, but in
period 3, the PITL model had detected 18.1% more relevant clusters
(13 versus 11), whereas in period 10, this percent increase was 37.5%,
and in periods 14 to 18, this percent increase was greater than 50%
and significant at the 95% confidence level. To better understand
these results, we consider our third and fourth hypotheses, which
predict that the PITL model will present users with fewer clusters
similar to those that the practitioner has deemed irrelevant, and
more clusters similar to those in which they have expressed interest.
Figure 4B shows that the fixed model detected 78 total clusters similar
to those labeled “to ignore,” while the PITL model only identified
three such clusters (a 96.2% decrease). The difference between the
numbers of these clusters identified by the two models is significant
at the 95% level for periods 1 to 18. Moreover, Fig. 4C shows that the
PITL model detected 18 clusters similar to those labeled “to moni-
tor,” while the fixed model only identified 8 (a 125.0% increase), and
the difference between the numbers of monitored clusters detected
by the two models is statistically significant in periods 14 to 18.

Because the fixed model could relearn an emerging topic that is
similar to a monitored topic incorporated into the PITL model,
if the cluster’s signal is sufficiently strong, then both models will
detect the event. Nevertheless, as shown in Table 1, incorporating
monitored static topics markedly improved the model’s ability to
detect similar clusters in future iterations for five event types (falls,
rash, cold weather exposure, gas exposure, and carbon monoxide
exposure). In total, the PITL model detected 20 highly relevant clus-
ters of these five types, as compared to 8 for the fixed model. In
addition to detecting more examples of relevant clusters, Table 1
shows that the PITL model was also able to detect a greater variety
of event types that public health users considered relevant, 24 event
types as compared to 18 for the fixed model. Fifteen event types

Nobles et al., Sci. Adv. 8, eabm4920 (2022) 4 November 2022

were detected by both fixed and PITL models, including those that
may require emergency services (e.g., bathroom fire, pepper spray
attack, and electrocution) and those related to potentially serious
illness (e.g., meningitis, acute upper respiratory infection, and flu).
The PITL model detected nine event types that the fixed model did
not detect, while the fixed model only detected three events not
identified by PITL. Furthermore, many event types only detected by
the PITL model represent rare phenomena, like the cluster of four
children and one adult who reported being exposed to lead paint in
walls, or the cluster of six patients reporting “K2” (synthetic marijuana)
drug use and anemia. On the other hand, events detected by only
the fixed model include more common reasons for ED visits, like
requests for medication or dialysis.

Thus, we observe that the PITL MUSES model, incorporating
monitored and ignored topics learned from user feedback, has
improved ability to detect novel events, reduced false-positive rate,
and can present users with more examples of clusters in which they
have previously expressed high interest. Because PITL iteratively
adds ignored and monitored topics to the model, and the emerging
topics are chosen to be maximally different from these, it is able to
better distinguish novel events from the known syndromes and patterns
in the data. Furthermore, if the words in a cluster of documents are
well represented by an ignored topic, they have a high likelihood of
being assigned to this existing topic. Since we do not scan over sub-
sets that include the ignored static topics, these clusters are unlikely
to be shown to users, which reduce the false-positive rate. Conversely,
because any documents that are closely aligned to one of the moni-
tored topics have a high likelihood of being assigned to this monitored
topic, fewer cases will be required to detect and report these events.

Novel coronavirus (COVID-19) outbreak in NYC

The first wave of the COVID-19 pandemic hit NYC in March and
April 2020 with catastrophic public health impacts. The city’s first
COVID case was confirmed on 1 March, and by 30 April, there were
over 174,000 confirmed cases and nearly 15,000 deaths, approxi-
mately one-fourth of the entire U.S. death toll to that point (26).
Given the critical and long-lasting impacts of the pandemic, we retro-
spectively obtained (from NYC DOHMH) and analyzed ED chief
complaint data from the 53 NYC hospitals for that time period,
running MUSES (fixed model) for each hour of data from 1 March
through 30 June 2020, and reporting the highest-scoring clusters.
Additional ED data from 1 January through 29 February 2020 were
used to learn static topics and to compute baselines for the scan.

The U.S. Centers for Disease Control and Prevention list of common
symptoms of COVID-19 currently includes “fever or chills, cough,
shortness of breath or difficulty breathing, fatigue, muscle or body
aches, headache, new loss of taste or smell, sore throat, congestion
or runny nose, nausea or vomiting, and diarrhea” (27). We hypoth-
esized that because most of these (less severe) COVID symptoms are
similar to commonly occurring illnesses (influenza, the common cold,
and gastrointestinal illness), many COVID cases would be mapped
to static topics rather than forming their own novel emerging topics.
Thus, we labeled all of the static topics as “to monitor,” enabling
MUSES to report clusters corresponding to both static and emerg-
ing topics.

In Table 2, we show the top 33 highest-scoring clusters detected
by MUSES (with 25 static and 25 emerging topics and scanning
over both static and emerging topics) during the first wave of the
COVID-19 pandemic in NYC, from 1 March through 30 June 2020.
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Fig. 4. Results from a blinded user study comparing the fixed and PITL models. Blue lines: PITL model. Red lines: fixed model. (A) Cumulative number of highly rele-
vant clusters detected by each method, after each 2-week time period. The performance gap between the PITL and fixed models increases monotonically as a function
of the number of labeled clusters used as training data by the PITL model. (B) Cumulative number of clusters detected by each method that were similar to clusters pre-
viously labeled “to ignore” by the user, after each 2-week time period. During the experiment, the fixed model detected 78 irrelevant clusters similar to those labeled “to
ignore,” while the PITL model only identified three such clusters. (C) Cumulative number of clusters detected by each method that were similar to clusters previously la-
beled “to monitor” by the user, after each 2-week time period. The PITL model identified a total of 18 highly relevant clusters that the practitioner had previously ex-

pressed interest in monitoring, as compared to 8 for the fixed model.

We observe that MUSES was able to detect numerous, large, high-
scoring clusters corresponding to the pandemic: 29 of the 33 clus-
ters were detected between 18 March and 5 April, all of which were
most likely due to COVID. These clusters included a range of
COVID symptoms, including cough, fever, sore throat, shortness of
breath, difficulty breathing, pneumonia, hypoxemia, body aches,
headaches, and diarrhea. Three of the four highest-scoring clusters
corresponded to a single hospital, with over 100 likely patients with
COVID (within a 10- to 12-hour period) each day from 27 to 29 March.
Some clusters described “screening,” “testing,” or “exposure,” but
only 10 of the 29 clusters explicitly used the terms “covid,” “19,” or
“coronavirus.” Of the remaining four of the 33 total clusters, the first
cluster (on 17 March) included 42 cases (over an 8-hour period)
complaining of smoke inhalation and/or coughing. As this is very
large for a smoke inhalation cluster, it is likely that some of these
cough cases were due to COVID rather than smoke inhalation. A
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second cluster (on 27 April) also included “covid screening” for
19 patients (over a 5-hour period) with cough, fever, and shortness
of breath. In May 2020, the number of active COVID cases in NYC
began to decline. Only two total clusters, unrelated to COVID, were
detected in May (13 patients over a 1-hour period complaining of
smoke inhalation) and June (9 patients over a 1-hour period com-
plaining of bilateral tinnitus), respectively.

Almost all of the detected clusters corresponded to the novel
emerging topics as opposed to the monitored static topics. If we had
only scanned over emerging topics, only one of the 33 clusters would
have been missed: a cluster of 28 patients over a 7-hour period on
March 31, complaining of influenza-like illness with respiratory mani-
festations. Thus, even without scanning over static topics, MUSES
would have detected numerous case clusters resulting from the first
wave of the COVID-19 pandemic in NYC. While one might expect
clusters that explicitly mention “covid,” “19,” or “coronavirus” to be
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Table 1. Results from a blinded user study comparing the fixed and PITL models. For each of the 27 distinct event types identified at least once by users as
highly relevant, the table compares the number of clusters of that type detected by the PITL and fixed models. The PITL model detected 49 highly relevant
clusters corresponding to 24 distinct event types, while the fixed model detected 32 highly relevant clusters corresponding to 18 distinct event types. Clusters
detected by the PITL model were further divided into those detected as “novel” clusters from emerging topics, and those detected from “monitored” static
topics added by practitioner feedback. For five event types, incorporating monitored static topics improved the PITL model’s ability to detect similar clusters in
future iterations.

PITL model

Event type Fixed model
(Novel + Monitored = Total)

Falls 2 + 3 = 5 1
Rash 1 + 1
Cold weather

expo!

Gas exposure 1
Carbon monoxide
exposure

Smoke inhalation 1 + 7
Toxic inhalation/
fume!

Meningitis
exposure

Pepper spray

Acute upper
respiratory 1 + 0 = 1 1
infection

Child medication
ingestion

Syncope during
marathon

Syncope among
employees,
possible

Substance abuse 1
Chemical burn 1

Gastroenteritis 1

EEE NN

Intoxication 1

Respiratory
distress

=
+
o
]
=
o

Lead-based paint
exposure

Drug use anemia 1 + 0

Gunshot wound 1 + 0
Chemical
exposure

Needs dialysis 0 + 0

Medication refill 0 + 0

Total 31 + 18 = 49 32
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Table 2. Results from MUSES runs on ED chief complaint data from NYC DOHMH during the first wave of the novel coronavirus (COVID-19) pandemic
in NYC, 1 March through 30 June 2020. Highest-scoring clusters found with 25 static and 25 emerging topics, scanning over both static and emerging topics.
For each cluster, we report the date, de-identified hospital ID, number of cases, cluster duration in hours, whether the cluster is COVID-related, the most
common chief complaints, and the cluster’s log-likelihood ratio score. ICD-10 diagnosis codes were noted when used consistently to describe cases in the
cluster (9 of 33 clusters). At least 30 of the 33 detected clusters were COVID-related. Thirty of 33 clusters occurred during the peak of the pandemic in NYC

(17 March through 5 April), and 32 of 33 clusters corresponded to emerging topics rather than static topics.

Date Hosp ID No. of cases No. of hours coviD Description Score

“Covid 19
exposure,”
flu-like
27 March 31 164 12 Y 244
symptoms,
testing, cough,
sob

Testing, exposure,
28 March 31 152 10 Y cough, sore 178
throat, syncope

“Coronavirus”
[ICD-10: B97.29],
cough, fever,

headache, sob

25 March 19 43 6 Y 75

Testing, exposure,
cough, fever,
diarrhea,
pneumonia

29 March 31 111 11 Y 69

Influenza-like

1 April 40 26 3 Y respiratory 69
[ICD-10:J10.1]
Smoke inhalation

17 March 7 42 8 ? [ICD-10: J70.5], 65

cough
“Covid”, cough, sore
throat, body
ache, measured
02

26 March 1 14 3 Y 58

screening for viral

disease [ICD-10:

Z11.59], cough,
fever, sob

“Covid 19
27 April 7 19 5 Y screening”, 53
cough, fever, sob

2 April 52 64 1 Y 54

Respiratory, 53

24 March 4 30 6 Y headache

Respiratory,
vomiting,
diarrhea,
headache

20 March 4 17 3 Y 52

“Covid”, “wants
24 March 14 14 3 Y covid”, cough, 52
fever

4 April 38 14 4 Y Covid 1?9 covis 50
“Covid 19 exposed”,
26 March 31 23 5 Y testing, flu-like 50
symptoms

“Coronavirus”
[ICD-10: B97.29],
cough, fever,
sore throat

23 March 17 26 3 Y Cough, fever 42

24 March 19 43 8 Y 49

continued on next page
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Date Hosp ID No. of cases No. of hours coviD Description Score
14 May 39 13 1 N Smoke inhalation 41
“19 testing”,
30 March 31 37 4 Y difficulty 41

21 March 14 47 7
23 March 9 23 4
24 March 14 25 3
19 March 17 15 5
31 March 40 28 7
1 April

9 June 34 9 1
1 April 52 22 4
18 March 15 29 4
20 March 19 15 3
30 March 1 16 3
26 March 17 16 2

detected, since such terms were not present in the data used to learn
static topics, it is interesting that commonly occurring terms like
“cough,” “fever,” and “flu-like symptoms” were detected as “novel”
clusters as well. For much of the dataset, cases containing these terms
were indeed mapped to static rather than emerging topics, and we
would expect this to reduce the detection power of MUSES for sub-
tle, emerging outbreaks with common rather than novel symptomology.
However, when a large cluster of cases emerges, as we observed in
the COVID pandemic, MUSES learns emerging topics that are more
precisely focused on common complaints for that cluster (e.g., cough
and fever) and maps those cases to the emerging topics, enabling
the cluster to be detected.

As a robustness check, we evaluated MUSES with three different
numbers of static topics (10, 25, and 50) and compared the clusters

Nobles et al., Sci. Adv. 8, eabm4920 (2022) 4 November 2022

32 1 4

breathing

Cough, fever, chills,

Y body ache 39
Y Cough, fever, sob, 39
face mask
Cough, fever,
Y headache, body 39
ache
Y Cough, fever, chills 39
Influenza-like
respiratory
Y [ICD-10:J10.1] 39
(monitored static
topic)
Y Flu-like symptoms 38

Bilateral tinnitus
[ICD-10: H93.13]
“Covid”, screening
for viral disease
[ICD-10: Z11.59],

cough, fever

Cough, fever, sickle
. 37
cell crisis

“Coronavirus”
Y [ICD-10: B97.29], 37
cough, fever

Cough, fever, sob,
pneumonia,
Y lower resp.
infection,
hypoxemia

37

Cough, fever,
Y headache, body
ache, diarrhea

37

detected (both for emerging topics and monitored static topics) in
each case. The three variants produced extremely similar sets of de-
tected clusters: The top 15 clusters for 10 and 25 static topics matched
exactly, with minor differences in score (and thus some reordering
of the cluster ranking), as well as minor differences in the age ranges
included (and thus some differences in the precise set of cases in-
cluded in each cluster). Fourteen of the top 17 clusters for 50 static
topics also matched these 15 clusters, again with minor differences
in score and cluster composition. While these results demonstrate
that the number of static topics did not substantially affect MUSES’
ability to detect novel emerging clusters, some differences were ob-
served in the clusters identified by scanning over monitored static
topics. For 25 and 50 static topics, the same cluster of influenza-like
respiratory illness on 31 March scored in the top 30 clusters, while
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for 10 static topics, no monitored static clusters scored even re-
motely close to the top 30. This difference was most likely due to the
more focused topic distributions learned for larger numbers of stat-
ic topics: Influenza-like respiratory illness formed its own topic for
25 and 50 static topics, while for 10 static topics, it was merged into
a single topic with flu-like symptoms, cough, and fever. In addition,
for 50 static topics, two other monitored clusters scored in the top
30: one cluster of 26 cases of flu-like symptoms in a 2-hour period
on 27 March, and one cluster of 18 cough and fever cases in a 3-hour
period on 21 March. Each of these two clusters was concurrent with
a large, high-scoring novel cluster in the same hospital. While the
assignment of COVID cases to static topics substantially reduced
the score of the novel cluster for 1 hour of data, MUSES identified
those cases as part of the larger novel cluster in the following hour,
and thus neither timeliness nor accuracy of detection was signifi-
cantly affected.

DISCUSSION

While the above results demonstrate the potential utility of MUSES
for identifying rare and novel events of public health interest, we
now consider various limitations of the method that might reduce
its ability to facilitate targeted and timely public health interven-
tions. First, lags in data collection, preprocessing, analysis, or com-
munication of results may affect timeliness, and thus effective use of
MUSES depends both on a well-developed data infrastructure and
the availability of public health practitioners to respond rapidly to
the detected clusters. Second, false-positive clusters could result from
repeated typographical errors by a particular triage nurse, hospital
EHR changes and upgrades, or the use of new or unusual terminology
to describe cases within a given hospital. While such clusters can
easily be ignored, they may increase public health practitioners’
workload and potentially cause more relevant clusters to be over-
looked. Thus, we have implemented data cleaning, including cor-
rection of common misspellings, as a preprocessing step for MUSES
(as described below). Terminology changes could be incorporated
either by adding them as ignored topics in the PITL model or by
recomputing the static topics at regular intervals, as discussed be-
low. Third, false negatives (i.e., failure to detect an emerging event
of potential interest) could result from multiple sources of error. Chief
among these are sampling bias and recording bias, since not everyone
who has a particular symptom presents at the ED; those patients
who do present may describe their symptoms differently, and dif-
ferent triage nurses may record them differently. ED usage may differ
substantially between patient subpopulations depending on geo-
graphic, demographic, and socioeconomic characteristics, including
factors such as access to care and insurance coverage. Given these
biases, MUSES should not be used to perform population-level in-
ferences like burden-of-disease estimation, nor should absence of a
detected cluster be construed as an indicator that an event is not
present. Rather, MUSES should be used as an exploratory data anal-
ysis tool, to identify potentially relevant case clusters that public
health practitioners may otherwise have missed.

While MUSES does not assume or require a representative sample
for detection, its statistical power to detect a given event will depend
greatly on whether the affected subpopulation is overrepresented or
underrepresented in the ED data, as well as the extent to which the
resulting ED chief complaints use similar sets of words to describe
each case. For example, if a newly emerging event is referred to using
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different terminology in different hospitals, then cases from differ-
ent hospitals may be assigned to different emerging topics, poten-
tially leading to both missed cases (since each topic’s case cluster
will omit the cases assigned to other topics) and reduced detection
power (since fewer cases will result in a lower score). Similar losses
of power may occur due to typographical errors (though preprocessing
will correct some of these) or inconsistent usage within a single hos-
pital. However, if the distinct terms co-occur with each other (e.g.,
“headache - dolor de cabeza” in one hospital with a large Spanish-
speaking population) or co-occur with the same other terms (e.g.,
“shortness of breahth” [sic]), they are likely to get grouped together
into a single topic, mitigating this loss of detection power. In addi-
tion, an emerging pattern of cases may be grouped into an existing
static topic rather than forming its own emerging topic, if it has too
much overlap (in the sets of words used) with the existing topics.
This incorrect grouping will lead to false negatives since the static
topics are typically not included in the scan step. Possible solutions
include using presyndromic surveillance as a complement to exist-
ing syndromic surveillance systems, which can pick up patterns of
known syndromes, scanning over static as well as emerging topics,
or using the PITL approach to designate certain static topics to be
monitored rather than ignored. Last, our contrastive topic model-
ing approach is a randomized rather than deterministic algorithm,
and thus MUSES is not guaranteed to identify identical clusters
each time it is run on the same or similar data. However, we find in
practice that the topics, and the resulting detected clusters, are high-
ly consistent and robust to random variation when the amount of
training data is large (e.g., for learning static topics) and when the
signal is strong (e.g., the highest-scoring detected clusters are highly
consistent across runs). For example, we ran MUSES on a 90% sub-
sample of the original data from March to April 2020 and compared
the top 30 clusters in the original data with the top 30 clusters in the
subsampled data. We observed that 22 of 30 clusters in each list
matched a cluster in the other list (with the same hospital, date, and
time of day, and similar topics and cases), while the remaining clus-
ters either narrowly missed the top 30 in the other list, or were nar-
rowly beaten by a different cluster during that hour.

Given both the potential benefits and limitations of the method,
we now consider how MUSES might be used operationally by a local
health department, assuming both timely data availability and the
availability of public health epidemiologists to examine and respond
to the identified case clusters. Regular data feeds (e.g., daily or hourly)
from hospital EDs to health departments are necessary for both syn-
dromic and presyndromic surveillance and are already in place for
many jurisdictions. For example, NYC DOHMH’s Syndromic
Surveillance Unit in their Bureau of Communicable Disease collects
data on a daily basis from all 53 NYC EDs and monitors case counts
of common syndromes such as influenza-like illness, respiratory ill-
ness, and gastrointestinal illness. For presyndromic surveillance, the
critical data fields for each hospital to collect and send to their local
health department are the date, time, and free-text chief complaint
for each ED case; additional data such as ICD codes, and demographics
such as age and gender, can enhance both detection and follow-up
investigation of clusters. An automated process could run MUSES
daily on the most recent 24 hours of ED visit data, typically requir-
ing no more than 20 to 30 min for the contrastive topic modeling
and scanning steps and have results ready for practitioners to ana-
lyze each morning. Practitioners could peruse the top-scoring clusters,
and ideally provide feedback, through the visualization interface
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Fig. 5. Plate diagram for the Emerging Topic LDA model.
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each day, or only on days when the score exceeded some fixed thresh-
old. This process would take no more than a few minutes, unless a
cluster was deemed worthy of follow-up investigation. While moni-
tored and ignored topics would be updated automatically from user
feedback, it would also be desirable to update the static topics (re-
quiring several hours of run time) at regular intervals, e.g., once every
few months, to account for changes in case distribution or data en-
try practices. Last, we recommend using MUSES as a complement,
rather than a substitute, to existing practices such as notifiable dis-
ease reporting and syndromic surveillance, as these existing approaches
would be more effective for identifying patterns of known disease
types and commonly occurring syndromes respectively. The rela-
tive portions of the public health workflow devoted to these tasks
would be situationally dependent. For example, during the peak of
the COVID pandemic, public health resources were almost entirely
devoted to COVID response, while presyndromic surveillance could
have been used in a more limited and focused way to identify newly
emerging symptom patterns among patients with COVID.

MUSES builds upon new methodological approaches for syn-
drome discovery, cluster detection, and learning from user feed-
back to offer an innovative, presyndromic surveillance system that
facilitates early detection and investigation of events of public health
concern. Evaluation results from NYC DOHMH demonstrate the power
of our detection methodology for accurately identifying clusters
that are meaningful and relevant to local public health users, sub-
stantially improving the accuracy and specificity of detection as com-
pared to existing state-of-the-art approaches. With the potential to
enhance day-to-day situational awareness, to enable early detection
of emerging biothreats during an emergency, and to provide a “safety
net” to identify and investigate newly emerging and previously un-
seen events that existing systems would fail to detect, presyndromic
surveillance is a critical next step for improved public health practice.

MATERIALS AND METHODS

Cleaning ED data

To clean the data, we first used the Emergency Medical Text Proces-
sor (EMT-P), an open-source, natural language preprocessing sys-
tem (28). EMT-P standardizes chief complaint data by referring to
the Unified Medical Language System, a thesaurus published by the
U.S. National Library of Medicine to assist in linking terms in vari-
ous electronic health systems. EMT-P was validated on 203,509 ED
visits and an expert panel review of output found that the system’s
corrections were 96% accurate (28). We also applied a spell checker
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trained on commonly occurring words in the chief complaint data
and used a simple dynamic programming approach to infer if a word
was missing a space (i.e., “COLDCOUGH”) and correct the error.
Last, if an ICD-9 or ICD-10 code is included in the patient’s chief
complaint field, we replace the numeric code with a textual descrip-
tion of the code provided by the Center for Medicare and Medicaid
Services. Some NYC nurses include the emergency room diagnosis
ICD code when recording chief complaints, and while these emer-
gency room diagnosis ICD codes may differ from the final ICD codes
assigned for billing purposes, they provide information about a patient’s
observed symptoms.

Learning syndrome categories

MUSES uses a contrastive topic model to learn syndromes that cor-
respond to rare diseases or novel emerging biothreats. This extension
of the LDA topic model learns two sets of topics: a set of K “static”
topics over the historical data and a set of K “emerging” topics over
only the most recent data. Each topic represents a probability distri-
bution over words (i.e., a vector of length V, where V is the vocabu-
lary size), learned from the data.

We learn the static topics by fitting a topic model to historical
data using the standard LDA approach. To define a statistical model
of the topics’ distributions over words and the documents’ distribu-
tions over topics, LDA makes a set of assumptions about how the
data were generated. The standard generative model used in LDA
assumes that each topic k’s distribution over words, @i, and each
document d’s distribution over the Kg static topics, 6 are drawn
from Dirichlet distributions with hyperparameters  and o, respec-
tively. The Dirichlet is a distribution over the probability simplex and
is the conjugate prior of the multinomial distribution. From there,
each word n in each document d is assumed to be generated by first
drawing a topic assignment z;,, ~ multinomial(8,) and then a word
assignment w,, ~ multinomial(¢, d’n) (12). These assumptions define
the joint distribution P(@, 6, z, w).

The topic-word distributions @ and document-topic distribu-
tions 0 are latent (unobserved) and must be inferred from the data
through the conditional distribution P(@, 6, z | w). While this pos-
terior cannot be found through exact methods, there are a variety of
methods that can be used to perform inference. MUSES uses collapsed
Gibbs sampling, a common Markov Chain Monte Carlo approach,
which is widely used for LDA models (29). This inference method
starts by making random topic assignments z;, for each word w,,,
where wy, is the nth word in document d. Then, for every topic k
and word j, we compute

0 _ ng)+[3

= (1)
P ”;{) + VB

where n,(j) is the number of times word j is assigned to topic k, ni') is
the number of times any word is assigned to topic k, and V is the
vocabulary size, or the number of distinct words in the corpus. Sim-
ilarly, for every document d and topic k, we compute

nfjk) +0

ok _
d nfi') + Ksa

)

where n;k) is the number of times words in document d are assigned

to topic k, nfj') is the number of times words in document d are
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assigned to any topic, and Kg is the total number of static topics.
Following a common rule of thumb for LDA models, we use hyper-
parameters = 1/V and a = 1/Kg, where V'is the vocabulary size and
Kg is the number of static topics. Once we have these initial esti-
mates of @ and 6, we loop through the words in each of the docu-
ments. In each iteration, we remove the topic assignment z,, of
word wy ., the nth word in document d. We update the estimates of
¢ and 0 using Eqs. 1 and 2. Then, we estimate the likelihood that the
word is assigned to each topic k by calculating
P(zgn = k)~ @y 6} (3)
We draw a sample from this distribution to get the new topic
assignment z,;, and re-update the estimates of ¢ and 0 using Eqgs. 1
and 2. This process continues until the topic-word and document-
topic distributions converge.

Learning rare syndrome categories

To learn emerging topics that capture rare or novel biothreats, after

we learn the set of static topics, we perform inference over our

Emerging Topic Model, which is illustrated in Fig. 5 and makes the

following generative model assumptions:

1) Each static topic @ is a probability distribution over words (a vector
of length V) that is observed and remains fixed at the levels learned
by the static LDA model.

2) Each emerging topic @f is a probability distribution over words
(a vector of length V) that is given by ¢f ~Dirichlet(B).

3) Each document d has a distribution 64 over static and emerging
topics (a vector of length Ks + Kg) that is given by 6, ~ Dirichlet(a,).

4) For each word wg, in document d, a topic assignment z,, is
drawn from Multinomial(8,). If the topic assignment corre-
sponds to a static topic, a word assignment is drawn from Multi-
nomial(@g,,). If the topic assignment corresponds to an emerging
topic, a word assignment is drawn from Multinomial(qg,,).

Note that the presence of the fixed static topics distinguishes this
model and set of assumptions from standard topic modeling. Given
these generative assumptions, the joint distribution is

P(w,z,0,¢'[ @, 0,B) = p(z|6) p(8 [ ) p(@' | B) p(W [ 2,9, @) (4)

To learn the emerging topics’ distribution over words and the
documents’ distributions over static and emerging topics, we per-

form Gibbs sampling with a few modifications. Here, we consider a

total of K = Ks + Kg topics. Typically, we assume Kg = 25 static topics

and Kg = 25 emerging topics. The initial topic assignments are
based on the topics ¢ learned by performing inference on the his-
torical corpus and the most recent collection of documents. That is,

P(zqu = k)~q@;*", where wg, is the nth word in document d, z4,, is

the topic assignment of wg,, and @ is determined as follows: If k is

a historical static topic, @k was learned by applying standard LDA to

a large set of historical data, and if k is an emerging topic, @, was

learned by applying standard LDA to the most recent set of data.

After making the initial topic assignments, we proceed with the

Gibbs sampling procedure described in the previous section, using

the combined set of static and emerging topics, but only update

@r using Eq. 1 if k is an emerging topic, thus keeping all static topics

fixed throughout the learning process. When this inference is

complete, we refer to the second set of re-optimized ¢’ as emerg-
ing topics.
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We note that time is not explicitly represented in the Emerging
Topic LDA Model (Fig. 5). Rather, the model can be used prospec-
tively, running regularly (e.g., hourly) to detect emerging clusters. A
moving window (typically 3 hours in length), stretching back from
the current time, defines the “recent” data from which the emerging
topics are learned and clusters are detected, thus producing a new
set of detected clusters each hour.

Incorporating practitioner feedback
It is straightforward to incorporate ignored and monitored static
topics into the Emerging Topic Model. We assume that each ignored

and monitored static topic k has a distribution over words @}, or @'
that is observed and remains fixed at the levels specified by the prac-
titioner. These topics were learned by a previous iteration of the con-
trastive LDA model, and the practitioner may make manual changes
to the ignored or monitored topic’s distribution over words before
adding it to the model. To learn emerging topics, we use the modi-
fied Gibbs sampling procedure described above and treat ignored
and monitored topics as static topics.

Scoring the anomalousness of detected clusters

After learning newly emerging syndromes from the chief complaint
data, we use a multidimensional extension of spatial scan statistics
to identify localized case clusters corresponding to these topics.
Kulldorff’s spatial scan approach considers circular geographic
search regions that are centered at each monitored location and
have varying radii, allowing for detection of both spatially compact
and dispersed clusters. Extensions to this method consider a variety
of types of geographic search regions, including rectangles, ellipses,
and more general search regions over subsets of the data (30, 31). In
this study, each group of patients that we wish to consider can be
represented by a temporal-spatial-demographic search group S

S = {¢, 0MIx (tstarts tena) X {h1, oy .. B} X
{811,812 -+ ,81,p}% ... X {8;,1,8)2, ...,8}

A patient is included in search group S if and only if the patient
was seen at one of the hospitals in {h;, hy, ..., h,} during the time
window (fstart> fend), has demographic characteristics included in
81,1, 81,25 .05 O1p} X ... X {81, 8j2, ..., j s}, and has a chief complaint
that maps to a given emerging topic or monitored static topic (note
that we do not scan over the historical or ignored static topics). To
map each chief complaint to one of the learned syndromes, we fol-
low (13), and first compute the probability of each word in the chief
complaint being assigned to each topic, using the current values of
@ and 6. Then, the values of 6 are updated on the basis of the com-
puted probabilities, and the process iterates. Once convergence has
been reached, the chief complaint is assigned to the topic with the
highest probability in 6.

For each search group, we compute the log-likelihood ratio score

Pr(Data | H((S))

Pr(Data| Hy) )

F(S)=log

where the null hypothesis Hj is that there is not a cluster of any
topic, and the alternative hypothesis H;(S) is that there is a cluster
of some (emerging or monitored static) topic affecting search group
S. We assume that if there is no cluster, count c;; of this topic at
time 4, location j, and among demographic group k will be distributed
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according to a Poisson distribution c;;x ~ Poisson (b;;x), where b jx
is a baseline or expected count for this topic during the same time
frame and among the same demographic group of patients. If these
patients are affected by a cluster, we expect that there will be a multi-
plicative increase in counts as compared to the baseline; i.e., the count
will be distributed as ¢;x ~ Poisson (qb;;x) for some constant g > 1,
where q is estimated by maximum likelihood. Given these assumptions,

the formula for the log-likelihood ratio score F(S) simplifies to

Q o
FS) - {ClogB+B CifC > B ©

0,ifC < B

Here,C = ) ; ik Cijik andB = ), ik b; Jj.k Tepresent aggregate case
counts and estimated baselines for the given topic over the search
group for the considered time period. Baselines (expected counts)
account for variations in case count by time of day. The baseline for
time period i is given by b; = (ACy, + ACop)/2, where AC,, is the
average hourly case count over the last 28 days during the same
hour as the hour in time period i, and ACop is the average hourly
case count over the last 28 days during all other hours of the day.
We use F(S) to identify the highest-scoring clusters of cases that
should be reported to users as potential events of interest.

We use the log-likelihood ratio scan statistics to identify anoma-
lous clusters in both MUSES and the keyword-based comparison
method. While keyword-based approaches have used a variety of
statistical methods for this task, this allows us to isolate and study
the impact of learning syndromes versus considering each keyword
individually.

Blinded user studies

For the first blinded user study, we ran both MUSES (fixed model)
and the competing keyword-based approach for each hour of data
over the entire 6-year period from 2010 to 2016. For a given hour of
data, we used a 3-hour moving window (that hour and the two pre-
vious hours) to learn emerging topics and scanned over clusters
from 1 to 3 hours in duration. The static model for the first case
study was learned from a 10% sample of the entire 6 years of data.
For this user study, we learned separate topic models for each NYC
hospital, with 25 static and 25 emerging topics for most of the hos-
pitals, and up to 50 static topics for hospitals with particularly large
patient populations.

For the second blinded user study, we ran both the fixed and
PITL models for each hour of data in 2-week increments from
1 January through 30 September 2016. For a given hour of data, we
used a 3-hour moving window (that hour and the two previous
hours) to learn emerging topics and scanned over clusters from 1 to
3 hours in duration. The initial static topic model (for both fixed and
PITL models) was learned from the previous year of data, 1 January
through 31 December 2015. For this user study, we learned a single
topic model across all NYC hospitals, using 25 static and 25 emerg-
ing topics. The PITL model’s static topics were updated after each
2-week period (adding monitored and ignored static topics as labeled
by the user), while the fixed model’s static topics were not updated.

Evaluating the impact of the PITL

To understand why the PITL model offers improvements over the
fixed model, we first consider our third hypothesis, which predicted
that after an initial labeling of a cluster as a topic to be ignored, the

Nobles et al., Sci. Adv. 8, eabm4920 (2022) 4 November 2022

PITL model will avoid presenting similar clusters to the user in the
future, thus reducing false positives as compared to the fixed model.
We evaluate this hypothesis by measuring the total number of clus-
ters detected by the model in each period that have topics similar to
a topic that was previously detected and labeled “to ignore” by the
public health practitioner. That is, the number of previously incor-
porated ignored (PII) topics shown to the user in period x is given by
PII(x) = Y it1 Xcer, Dterst, [(similarity(c, ) > 1) (7)
where cis a cluster, I; is the set of clusters detected by the model and
labeled “to ignore” by the practitioner in period i, f is a topic, IST; is
the set of ignored static topics at the start of period i, similarity is a
similarity measure, and 1 is a similarity threshold. Here, we measure
the similarity between a detected cluster ¢ (with a topic t,) and an
ignored topic ¢ by evaluating
similarity(c, t) = 3., min(e}, ;") (8)
where ¢} and @;" are the probabilities of word w in the cluster’s
topic and the ignored topic, respectively. For example, the similarity
between a detected cluster with a topic that places probabilities of
(0.4,0.4,0.2) on the words (motor, vehicle, crash) and an ignored topic
that places probabilities of (0.33,0.33,0.34) on the words (motor,
vehicle, accident) would be min(0.4,0.33) + min (0.4,0.33) + min
(0.2,0) + min (0,0.34) = 0.66. A similarity threshold of © = 0.6 was
used for this analysis.

Our final hypothesis predicts that after an initial labeling of a
cluster as a relevant topic to be monitored, the PITL model will have
higher power to detect future instances of that topic. We evaluate
whether the PITL model is able to identify more clusters that are
similar to those the practitioner has labeled “to monitor” than the
fixed model by measuring

PMI(x)= Y51 Y cem; 2 re mst, I(similarity(c, t) > 1) 9)
where M; is the set of clusters detected by the model and labeled “to
monitor” by the practitioner in period i, MST; is the set of moni-
tored static topics at the start of period i, and all other values are
defined as in Eq. 8.
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