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Multivariate event detection 

Spatial time series data from 

spatial locations si (e.g. zip codes) 

Time series of counts 

ci,m
t for each zip code si 

for each data stream dm. 

d1 = respiratory ED 

d2 = constitutional ED 

d3 = OTC cough/cold 

d4 = OTC anti-fever 

Outbreak detection 

(etc.) 

Main goals:  

Detect any emerging events. 

Pinpoint the affected subset of 

locations and time duration. 

Characterize the event by 

identifying the affected streams. 

Compare hypotheses: 

H1(D, S, W) 

D = subset of streams                           

S = subset of locations                         

W = time duration 

vs. H0: no events occurring 
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Expectation-based scan statistics 
(Kulldorff, 1997; Neill and Moore, 2005) 

We search for spatial regions 

(subsets of locations) where the 

recently observed counts for 

some subset of streams are 

significantly higher than expected. 

Expected 

counts 

Historical 

counts 

Current counts 

(3 day duration) 

We perform time series analysis 

to compute expected counts 

(“baselines”) for each location and 

stream for each recent day. 

We then compare the actual and 

expected counts for each subset 

(D, S, W) under consideration. 
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We find the subsets with highest 

values of a likelihood ratio statistic, 

and compute the p-value of each 

subset by randomization testing. 

Maximum subset 

score = 9.8 

2nd highest 

score = 8.4 

Significant! (p = .013) 

Not significant 

(p = .098) 

… 

F1* = 2.4 F2* = 9.1 F999* = 7.0 To compute p-value 

Compare subset score 

to maximum subset 

scores of simulated 

datasets under H0. 

Expectation-based scan statistics 
(Kulldorff, 1997; Neill and Moore, 2005) 
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Which regions to search? 
Typical approach: “spatial scan” (Kulldorff, 1997) 

Each search region S is a sub-region of space. 
• Choose some region shape (e.g. circles, rectangles) and 

consider all regions of that shape and varying size. 

• Low power for true events that do not correspond well to 
the chosen set of search regions (e.g. irregular shapes). 

Our approach: “subset scan” (Neill, 2012) 
Each search region S is a subset of locations. 

• Find the highest scoring subset, subject to some 
constraints (e.g. spatial proximity, connectivity). 

• For multivariate, also optimize over subsets of streams. 

• Exponentially many possible subsets, O(2N x 2M): 
computationally infeasible for naïve search. 



Fast subset scan 
• In certain cases, we can optimize F(S) over the 

exponentially many subsets of the data, while 
evaluating only O(N) rather than O(2N) subsets. 

• Many commonly used scan statistics have the 
property of linear-time subset scanning: 
• Just sort the data records (or spatial locations, etc.) from 

highest to lowest priority according to some function… 

• … then search over groups consisting of the top-k 
highest priority records, for k = 1..N. 

The highest scoring subset is 

guaranteed to be one of these! 

Sample result: we can find the most anomalous subset 

of Allegheny County zip codes in 0.03 sec vs. 1024 years. 
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Constrained fast subset scanning 

LTSS is a new and powerful tool for exact combinatorial optimization 

(as opposed to approximate techniques such as submodular function 

optimization).  But it only solves the “best unconstrained subset” 

problem, and cannot be used directly for constrained optimization. 

Much of our recent work has focused on how LTSS can be extended to the 

many real-world problems with (hard or soft) constraints on our search. 

Proximity constraints    Fast spatial scan (irregular regions) 

Multiple data streams    Fast multivariate scan 

Connectivity constraints   Fast graph scan 

Group self-similarity    Fast generalized subset scan 

7 



8 

Fast subset scan with spatial 

proximity constraints 
• Maximize a likelihood ratio statistic over all subsets of the 

“local neighborhoods” consisting of a center location si and 

its k-1  nearest neighbors, for a fixed neighborhood size k.  

• For each local neighborhood, naïve search requires O(2k) 

time and is computationally infeasible for k > 25, but LTSS 

enables us to perform this search in O(k) time. 

• In Neill (2012), we show that this approach dramatically 

improves the timeliness and accuracy of outbreak 

detection for irregularly-shaped disease clusters. 
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Multivariate fast subset scan 

• The LTSS property allows us to efficiently optimize over 

subsets of spatial locations for a given subset of data 

streams. 

• But it also allows us to efficiently optimize over subsets of 

streams for a given subset of locations… 

• So we can jointly optimize over subsets of streams and 

locations by iterating between these two steps! 

• For general pattern detection problems, a similar approach 

can be used to jointly optimize over subsets of data 

records and attributes in our Fast Generalized Subset 

Scan approach (McFowland et al., JMLR, 2013). 

(Neill, McFowland, and Zheng, 2013) 
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Incorporating soft constraints 

• So far we have talked about hard constraints (i.e., 

restrictions on the search space, ruling out some subsets). 

• What about soft constraints?  

• We would like to search over all subsets, but reward more likely 

subsets and penalize those that are less likely. 

 

 

(Speakman, Somanchi, McFowland, and Neill, 2014, submitted) 
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For functions satisfying the Additive Linear Time Subset Scanning 

property, conditioning on the relative risk, q, allows the function to be 

written as an additive set function over the data elements si in S. 

Expectation-based scan statistics in a one-parameter exponential family 
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Penalized Fast Subset Scanning 
For functions satisfying the Additive Linear Time Subset Scanning 

property, conditioning on the relative risk, q, allows the function to be 

written as an additive set function over the data elements si in S. 

Consequence #1:  Extremely easy to maximize F(S) over subsets, for 

a given q, by including all “positive” elements and excluding “negative”. 

Consequence #2:  Additional, element-specific penalty terms may be 

added to the scoring function while maintaining the additive property. 

Expectation-based Poisson: 
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Penalized Fast Subset Scanning 
For functions satisfying the Additive Linear Time Subset Scanning 

property, conditioning on the relative risk, q, allows the function to be 

written as an additive set function over the data elements si in S. 

Consequence #1:  Extremely easy to maximize F(S) over subsets, for 

a given q, by including all “positive” elements and excluding “negative”. 

Consequence #2:  Additional, element-specific penalty terms may be 

added to the scoring function while maintaining the additive property. 

“Total Contribution” γi of record si for fixed risk, q 

Expectation-based Poisson: 



13 

Penalized Fast Subset Scanning 
For functions satisfying the Additive Linear Time Subset Scanning 

property, conditioning on the relative risk, q, allows the function to be 

written as an additive set function over the data elements si in S. 

Consequence #1:  Extremely easy to maximize F(S) over subsets, for 

a given q, by including all “positive” elements and excluding “negative”. 

Consequence #2:  Additional, element-specific penalty terms may be 

added to the scoring function while maintaining the additive property. 

How to optimize efficiently over all values of q, not just a given q??? 

Theorem: the optimal subset S* = arg maxS Fpen(S) for a penalized 

expectation-based scan statistic satisfying the ALTSS property may                       

be found by evaluating only O(N) of the 2N subsets of data records. 
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“Proof by picture” 
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“Proof by picture” 
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“Proof by picture” 
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“Proof by picture” 
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“Proof by picture” 
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“Proof by picture” 
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Penalized Fast Subset Scanning 

Penalized Fast Subset Scanning is a general framework 

for scalable pattern detection with soft constraints. 

• Exactness:  The most anomalous (highest scoring) 

subset is guaranteed to be identified. 

• Efficiency:  Only O(N) subsets must be scanned in 

order to identify the most anomalous penalized subset 

in a dataset containing N  elements. 

• Interpretability: Soft constraints may be viewed as the 

prior log-odds for a given record to be included in the 

most anomalous penalized subset. 
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Detecting and Tracking Dynamic Patterns 

Most subset scan methods have 

difficulty dealing with dynamic 

patterns, where the affected 

subset changes over time. 

Optimizing each time step 

independently fails, as does 

neglecting event dynamics. 

Our solution, Dynamic Subset 

Scan, uses soft constraints on 

temporal consistency to pass 

information between time steps. 
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Detecting and Tracking Dynamic Patterns 

Dynamic Subset Scan algorithm 

1) Identify subsets St independently 

for each time step t, using 

unpenalized fast subset scan. 

2) Repeat until convergence: 

a) Choose a time step t. 

b) Compute i
t for each location si, 

given subsets St-1 and St+1.  

c) Find new optimal subset St 

using penalized fast subset 

scan with the given i
t. 

Generative model 
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Prior log-

odds that 

location si 

affected on 

time step t. 

Equals 1 

if location 

si affected 

on time 

step t-1.  

Fraction of 

neighbors

affected 

on time 

step t-1.  

See our ICDM 2013                       

paper for more details! 
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Tracking Contaminant Plumes 
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Dynamic Subset Scan improves event tracking, as measured 

by overlap coefficient between the true and detected regions. 
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Detecting Contaminant Plumes 
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Dynamic Subset Scan improves event detection, as 

measured by average number of hours needed to detect. 
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Source-Tracing Contaminant Plumes 
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Dynamic Subset Scan improves accuracy for locating the source of the 

event, as measured by overlap between true and detected regions. 
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Scaling up to even bigger data… 

Currently the fast subset scan scales 

to datasets with millions of records. 

Spatial constraints (FSS) 

Similarity constraints (FGSS) 

Soft constraints (PFSS) 

But enforcing certain hard 

constraints (e.g., graph connectivity) 

dramatically impacts scalability. 

GraphScan: 250 nodes 

Additive Graphscan : 25K nodes 

How to scale up to 

larger graphs with 

millions of nodes? 

How to scale up to 

datasets with billions 

or trillions of records? 

ongoing 

EPD Lab 

research 

Many possible answers! 

Parallelization 

Sampling 

Randomization Hierarchy 

Summarization 
Problem Partitioning 

Sublinear-Time Algorithms 

Locality-Sensitive Hashing 
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Idea #1: Massive parallelization 
For example, what if we have a trillion records but a million processors? 

Certain aspects of fast subset scan are trivially parallelizable: 

  Randomization testing, to determine statistical significance. 

  Scanning over many local neighborhoods (with proximity constraints). 

  Scoring many subsets (but not exponentially many!). 

For unconstrained subset scan, we have the necessary pieces: 

  Parallel sorting (merge sort, sample sort): O(log N) with N processors. 

  “Scan” (accumulate sums of top-k elements by priority): O(log N). 

To incorporate spatial proximity or more general similarity constraints: 

  Locality-sensitive hashing  neighborhoods of similar elements.  

With more general constraints (e.g., graphs), we must develop new ways 

to partition the search space and merge solutions to sub-problems. 
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Idea #2: Incorporate hierarchy 

Subsampling the raw data can miss a 

arbitrarily strong signal that affects a small 

enough proportion of the dataset. 

Possible solution: summarization. 

Represent the data hierarchically, maintain 

summary statistics at each level of hierarchy, 

and search over coarse and fine resolutions. 

Goal: find the most interesting subsets while 

only looking at a small fraction of the raw data. 

Challenge 1: building the hierarchy may be 

expensive (though parallelizable).  

Challenge 2: how to search the hierarchy, so 

that we are unlikely to miss small areas? 

Example: image data 

digital pathology slides, 

satellite images, etc. 

Hierarchical Linear-

Time Subset Scanning 

(Somanchi & Neill, DMHI 2013) 
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Idea #2: Incorporate hierarchy 

Example: image data 

digital pathology slides, 

satellite images, etc. 

Hierarchical Linear-

Time Subset Scanning 

(Somanchi & Neill, DMHI 2013) 

HLTSS has been successfully 

applied to detect regions of 

interest in digital pathology 

slides, and works surprisingly 

well to detect prostate cancer! 
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Current application domains 
Disease surveillance: 

Deployed systems in US,  

Canada, Sri Lanka, India. 

In progress: deployments 

in Canada for monitoring 

hospital-acquired illness. 

Crime prediction in Chicago: 

Able to predict about 83% of 

“clustered” violent crimes and 

57% of all violent crimes, with 

15% false positive rate. 

Predicting civil unrest events 

using Twitter data: 

By discovering anomalous 

subgraphs of nodes in the 

heterogeneous network 

formed by users, locations, 

nodes, tweets, etc., we can 

accurately predict events such 

as protests, strikes, and riots. 

Many more applications: 

•  Illicit container shipments 

•  Clusters of water pipe breaks 

•  Spreading water contamination 

•  Network intrusion detection 

•  Economic growth “outbreaks” 

•  Patient care practices 



Interested? 
 

More details on our web site: 

http://epdlab.heinz.cmu.edu 

 

Or e-mail me at: 

neill@cs.cmu.edu 
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