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My research is focused at the intersection of machine learning and public policy. 

Increasingly critical importance of 

addressing global policy problems 

(disease pandemics, crime, terrorism…) 

Continuously increasing size and 

complexity of policy data, and rapid growth 

of new and transformative technologies. 

Machine learning has become increasingly essential for data-driven policy analysis 

and for the development of new, practical information technologies that can be 

directly applied for the public good (e.g. public health, safety, and security) 

My research in this area has two main goals:  

1) Develop new machine learning methods for better (more scalable and accurate) 

detection and prediction of events and other patterns in massive datasets. 

2) Apply these methods to improve the quality of public health, safety, and security. 
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Medicine: Discovering new 

“best practices” of patient 

care, to improve outcomes 

and reduce costs. 

Disease Surveillance: 

Very early and 

accurate detection of 

emerging outbreaks.  

Law Enforcement: 

Detection, prediction, 

and prevention of “hot-

spots” of violent crime. 

Our disease surveillance 

methods are currently in use for 

deployed systems in the U.S., 

Canada, India, and Sri Lanka. 

Our “CrimeScan” software has been in 

day-to-day operational use for 

predictive policing by the Chicago PD. 

“CityScan” is being evaluated for 

prediction and prevention of rodent 

infestations using 311 call data. 

Daniel B. Neill (neill@cs.cmu.edu) 

Associate Professor of Information Systems, Heinz College, CMU 

Director, Event and Pattern Detection Laboratory 

Courtesy Associate Professor of Machine Learning and Robotics 



Pattern detection by subset scan 
One key insight that underlies much of my work is that pattern 

detection can be viewed as a search over subsets of the data. 

Statistical challenges:  

Which subsets to search? 

Is a given subset anomalous?                            

Which anomalies are relevant? 

Computational challenge:  

How to make this search over 

subsets efficient for massive, 

complex, high-dimensional data? 

New algorithms and data structures make previously 

impossible detection tasks computationally feasible and fast. 

New statistical methods enable more timely and more accurate 

detection by integrating multiple data sources, incorporating spatial 

and temporal information, and using prior knowledge of a domain. 

New machine learning methods enable our systems to 

learn from user feedback, modeling and distinguishing 

between relevant and irrelevant types of anomaly. 
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1) Multivariate event detection 

Spatial time series data from 

spatial locations si (e.g. zip codes) 

Time series of counts 

ci,m
t for each zip code si 

for each data stream dm. 

d1 = respiratory ED 

d2 = constitutional ED 

d3 = OTC cough/cold 

d4 = OTC anti-fever 

Outbreak detection 

(etc.) 

Main goals:  

Detect any emerging events. 

Pinpoint the affected subset of 

locations and time duration. 

Characterize the event by 

identifying the affected streams. 

Compare hypotheses: 

H1(D, S, W) 

D = subset of streams                           

S = subset of locations                         

W = time duration 

vs. H0: no events occurring 
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Expectation-based scan statistics 
(Kulldorff, 1997; Neill and Moore, 2005) 

We search for spatial regions 

(subsets of locations) where the 

recently observed counts for 

some subset of streams are 

significantly higher than expected. 

Expected 

counts 

Historical 

counts 

Current counts 

(3 day duration) 

We perform time series analysis 

to compute expected counts 

(“baselines”) for each location and 

stream for each recent day. 

We then compare the actual and 

expected counts for each subset 

(D, S, W) under consideration. 
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We find the subsets with highest 

values of a likelihood ratio statistic, 

and compute the p-value of each 

subset by randomization testing. 

Maximum subset 

score = 9.8 

2nd highest 

score = 8.4 

Significant! (p = .013) 

Not significant 

(p = .098) 

… 

F1* = 2.4 F2* = 9.1 F999* = 7.0 To compute p-value 

Compare subset score 

to maximum subset 

scores of simulated 

datasets under H0. 

Expectation-based scan statistics 
(Kulldorff, 1997; Neill and Moore, 2005) 
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Likelihood ratio statistics 
For our expectation-based scan statistics, the null hypothesis 

H0 assumes “business as usual”: each count ci,m
t is drawn 

from some parametric distribution with mean bi,m
t.  H1(S) 

assumes a multiplicative increase for the affected subset S. 

Expectation-based Poisson Expectation-based Gaussian 

H0: ci,m
t ~ Gaussian(bi,m

t, si,m
t) H0: ci,m

t ~ Poisson(bi,m
t) 

H1(S): ci,m
t ~ Poisson(qbi,m

t) H1(S): ci,m
t ~ Gaussian(qbi,m

t, si,m
t) 

Let C = ∑S ci,m
t and B = ∑S bi,m

t. 
Let C’ = ∑S ci,m

t bi,m
t  / (si,m

t)2  

and B’ = ∑S (bi,m
t)2 / (si,m

t)2.  

Maximum likelihood: q = C / B. Maximum likelihood: q = C’ / B’. 

F(S) = C log (C/B) + B – C F(S) = (C’)2 / 2B’ + B’/2 – C’ 

Many possibilities: exponential family, nonparametric, Bayesian… 
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Which regions to search? 
Typical approach: “spatial scan” (Kulldorff, 1997) 

Each search region S is a sub-region of space. 
• Choose some region shape (e.g. circles, rectangles) and 

consider all regions of that shape and varying size. 

• Low power for true events that do not correspond well to 
the chosen set of search regions (e.g. irregular shapes). 

Our approach: “subset scan” (Neill, 2012) 
Each search region S is a subset of locations. 

• Find the highest scoring subset, subject to some 
constraints (e.g. spatial proximity, connectivity). 

• For multivariate, also optimize over subsets of streams. 

• Exponentially many possible subsets, O(2N x 2M): 
computationally infeasible for naïve search. 



2) General pattern detection 

Set of data records Ri 

(e.g., container shipments) 

Attribute value vij for each 

attribute Aj for each record Ri. 

Main goals:  

Detect any anomalous patterns. 

Pinpoint the affected                                       

subset of data records. 

Characterize the pattern                                             

by identifying the affected                                   

subset of attributes. 

Compare hypotheses: 

H1(R, A) 

R = subset of records                           

A = subset of attributes 

vs. H0: no events occurring 

DATE F PORT US PORT COUNTRY LINE CARGO SIZE WEIGHT VALUE 

1-Jan TOKYO SEATTLE JAPAN CSCO EMPTY 20 5.6 27579 

1-Jan TOKYO SEATTLE JAPAN CSCO TIRES 40 13.43 9497 

1-Jan TOKYO SEATTLE JAPAN CSCO IODINE 20 17.68 251151 

… … … … … … … … … 



2) General pattern detection 

Set of data records Ri 

(e.g., container shipments) 

Attribute value vij for each 

attribute Aj for each record Ri. 

DATE F PORT US PORT COUNTRY LINE CARGO SIZE WEIGHT VALUE 

1-Jan TOKYO SEATTLE JAPAN CSCO EMPTY 20 5.6 27579 

1-Jan TOKYO SEATTLE JAPAN CSCO TIRES 40 13.43 9497 

1-Jan TOKYO SEATTLE JAPAN CSCO IODINE 20 17.68 251151 

… … … … … … … … … 

Fast Generalized Subset Scan (McFowland et al., 2013): 

1) Learn Bayesian network structure and parameters from data. 

2) Compute conditional probability of each attribute value. 

3) Convert to empirical p-values (uniform on [0,1] under H0) 

4) Find subsets of records and attributes with higher than 

expected numbers of low (significant) empirical p-values. 

O(2N x 2M) subsets: computationally infeasible for naïve search! 
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Question: Why search over subsets?   

Answer: Simpler approaches can fail. 

Top-down detection approaches 

 

Bottom-up detection approaches 

Are there any globally interesting 

patterns?  If so, recursively search 

the most interesting sub-partition. 

Two examples: bump hunting; 

“cluster then detect”. 

Find individually (or locally) 

anomalous data points, and 

optionally, aggregate into clusters. 

Two examples: anomaly/outlier 

detection; density-based clustering. 

Top-down fails for small-scale 

patterns that are not evident 

from the global aggregates. 

Bottom-up fails for subtle patterns that 

are only evident when a group of data 

records are considered collectively. 
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Question: Why search over subsets?   

Answer: Simpler approaches can fail. 

Top-down detection approaches 

 

Bottom-up detection approaches 

Are there any globally interesting 

patterns?  If so, recursively search 

the most interesting sub-partition. 

Two examples: bump hunting; 

“cluster then detect”. 

Find individually (or locally) 

anomalous data points, and 

optionally, aggregate into clusters. 

Two examples: anomaly/outlier 

detection; density-based clustering. 

Top-down fails for small-scale 

patterns that are not evident 

from the global aggregates. 

Bottom-up fails for subtle patterns that 

are only evident when a group of data 

records are considered collectively. 

So here’s where we are so far: 

 

Treating pattern detection as a subset 

scan problem is statistically desirable  

for maximizing detection power… 

 

but computationally infeasible 

(for exhaustive search at least). 

 

 



Fast subset scan 
• In certain cases, we can optimize F(S) over the 

exponentially many subsets of the data, while 
evaluating only O(N) rather than O(2N) subsets. 

• Many commonly used scan statistics have the 
property of linear-time subset scanning: 
• Just sort the data records (or spatial locations, etc.) from 

highest to lowest priority according to some function… 

• … then search over groups consisting of the top-k 
highest priority records, for k = 1..N. 

The highest scoring subset is 

guaranteed to be one of these! 

Sample result: we can find the most anomalous subset 

of Allegheny County zip codes in 0.03 sec vs. 1024 years. 

14 
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Linear-time subset scanning 
• Example: Expectation-Based Poisson statistic 

• Sort data locations si by the ratio of observed to 

expected count, ci / bi.  

• Given the ordering s(1) … s(N), we can prove that the 

top-scoring subset F(S) consists of the locations s(1) … 

s(k) for some k, 1 ≤ k ≤ N. 

• Key step: if there exists some location sout ∉ S with 

higher priority than some location sin ∈ S, then we can 

show that F(S) ≤ max(F(S U {sout}), F(S \ {sin})).  

• Theorem: LTSS holds for convex functions of two 

additive sufficient statistics. 

• Theorem: LTSS holds for all expectation-based 

scan statistics in any separable exponential family. 



Constrained fast subset scanning 

LTSS is a new and powerful tool for exact combinatorial optimization 

(as opposed to approximate techniques such as submodular function 

optimization).  But it only solves the “best unconstrained subset” 

problem, and cannot be used directly for constrained optimization. 

Much of our recent work has focused on how LTSS can be extended to the 

many real-world problems with (hard or soft) constraints on our search. 

Proximity constraints    Fast spatial scan (irregular regions) 

Multiple data streams    Fast multivariate scan 

Connectivity constraints   Fast graph scan 

Group self-similarity    Fast generalized subset scan 

16 
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Fast subset scan with spatial 

proximity constraints 
• Maximize a likelihood ratio statistic over all subsets of the 

“local neighborhoods” consisting of a center location si and 

its k-1  nearest neighbors, for a fixed neighborhood size k.  

• Naïve search requires O(N · 2k) time and is 

computationally infeasible for k > 25. 

• For each center, we can search over all subsets of its local 

neighborhood in O(k) time using LTSS, thus requiring a 

total time complexity of O(Nk) + O(N log N) for sorting the 

locations. 

• In Neill (2012), we show that this approach dramatically 

improves the timeliness and accuracy of outbreak 

detection for irregularly-shaped disease clusters. 
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Multivariate fast subset scan 

• The LTSS property allows us to efficiently optimize over 

subsets of spatial locations for a given subset of data 

streams. 

• But it also allows us to efficiently optimize over subsets of 

streams for a given subset of locations… 

• So we can jointly optimize over subsets of streams and 

locations by iterating between these two steps! 

• Convergence to local (conditional) maximum  need to do 

multiple restarts to approach the global maximum. 

• For general pattern detection problems, a similar approach 

can be used to jointly optimize over subsets of data 

records and attributes in our FGSS approach. 

(Neill, McFowland, and Zheng, 2013) 
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Incorporating connectivity constraints 

Proximity-constrained subset scans may                                                      

return a disconnected subset of the data.   

In some cases this may be undesirable, or we might have 

non-spatial data so proximity constraints cannot be used. 

Example: tracking 

disease spread from 

person-to-person contact. 

Example: identifying a 

connected subset of zip codes 

(Allegheny County, PA) 
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Our GraphScan algorithm* can 

efficiently and exactly identify the 

highest-scoring connected subgraph: 

- Can incorporate multiple data streams 

- With or without proximity constraints 

- Graphs with several hundred nodes 

Proximity-constrained subset scans may                                                      

return a disconnected subset of the data.   

In some cases this may be undesirable, or we might have 

non-spatial data so proximity constraints cannot be used. 

We can use the LTSS property to rule out subgraphs that are 

provably suboptimal, dramatically reducing our search space. 

* Speakman, McFowland, and Neill, 2013 (submitted) 

Incorporating connectivity constraints 
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Evaluation: run times 
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Evaluation: detection power 
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Incorporating soft constraints 

• So far we have talked about hard constraints (i.e., 

restrictions on the search space, ruling out some subsets). 

• What about soft constraints?  

• We would like to search over all subsets, but reward more likely 

subsets and penalize those that are less likely. 

 

 

(Speakman, Somanchi, McFowland, and Neill, 2014, submitted) 
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For functions satisfying the Additive Linear Time Subset Scanning 

property, conditioning on the relative risk, q, allows the function to be 

written as an additive set function over the data elements si in S. 

Expectation-based scan statistics in a one-parameter exponential family 
(not just separable exponential family!) 
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Penalized Fast Subset Scanning 
For functions satisfying the Additive Linear Time Subset Scanning 

property, conditioning on the relative risk, q, allows the function to be 

written as an additive set function over the data elements si in S. 

Consequence #1:  Extremely easy to maximize F(S) over subsets, for 

a given q, by including all “positive” elements and excluding “negative”. 

Consequence #2:  Additional, element-specific penalty terms may be 

added to the scoring function while maintaining the additive property. 

Expectation-based Poisson: 
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Penalized Fast Subset Scanning 
For functions satisfying the Additive Linear Time Subset Scanning 

property, conditioning on the relative risk, q, allows the function to be 

written as an additive set function over the data elements si in S. 

Consequence #1:  Extremely easy to maximize F(S) over subsets, for 

a given q, by including all “positive” elements and excluding “negative”. 

Consequence #2:  Additional, element-specific penalty terms may be 

added to the scoring function while maintaining the additive property. 

“Total Contribution” γi of record si for fixed risk, q 

Expectation-based Poisson: 
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Penalized Fast Subset Scanning 
For functions satisfying the Additive Linear Time Subset Scanning 

property, conditioning on the relative risk, q, allows the function to be 

written as an additive set function over the data elements si in S. 

Consequence #1:  Extremely easy to maximize F(S) over subsets, for 

a given q, by including all “positive” elements and excluding “negative”. 

Consequence #2:  Additional, element-specific penalty terms may be 

added to the scoring function while maintaining the additive property. 

How to optimize efficiently over all values of q, not just a given q??? 

Theorem: the optimal subset S* = arg maxS Fpen(S) for a penalized 

expectation-based scan statistic satisfying the ALTSS property may                       

be found by evaluating only O(N) of the 2N subsets of data records. 
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“Proof by picture” 
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“Proof by picture” 
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“Proof by picture” 
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“Proof by picture” 
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“Proof by picture” 
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“Proof by picture” 
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“Proof by picture” 
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“Proof by picture” 
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“Proof by picture” 
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Penalized Fast Subset Scanning 

Penalized Fast Subset Scanning is a general framework 

for scalable pattern detection with soft constraints. 

• Exactness:  The most anomalous (highest scoring) 

subset is guaranteed to be identified. 

• Efficiency:  Only O(N) subsets must be scanned in 

order to identify the most anomalous penalized subset 

in a dataset containing N  elements. 

• Interpretability: Soft constraints may be viewed as the 

prior log-odds for a given record to be included in the 

most anomalous penalized subset. 
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Detecting and Tracking Dynamic Patterns 

Most subset scan methods have 

difficulty dealing with dynamic 

patterns, where the affected 

subset changes over time. 

Optimizing each time step 

independently fails, as does 

neglecting event dynamics. 

Our solution, Dynamic Subset 

Scan, uses soft constraints on 

temporal consistency to pass 

information between time steps. 
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Detecting and Tracking Dynamic Patterns 

Dynamic Subset Scan algorithm 

1) Identify subsets St independently 

for each time step t, using 

unpenalized fast subset scan. 

2) Repeat until convergence: 

a) Choose a time step t. 

b) Compute i
t for each location si, 

given subsets St-1 and St+1.  

c) Find new optimal subset St 

using penalized fast subset 

scan with the given i
t. 

Generative model 
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Computing i
t is complicated, 

since we must incorporate 

both Pr(St generated from St-1) 

and Pr(St generates St+1). 
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Tracking Contaminant Plumes 
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Dynamic Subset Scan improves event tracking, as measured 

by overlap coefficient between the true and detected regions. 
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Detecting Contaminant Plumes 
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Dynamic Subset Scan improves event detection, as 

measured by average number of hours needed to detect. 



41 

Source-Tracing Contaminant Plumes 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5 7 9 11

Sp
at

ia
l O

ve
rl

ap
 

Hours from t0 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5 7 9 11
Hours from t0 

Easy (TPR = 0.9, FPR = 0.1) Hard (TPR = 0.8, FPR = 0.2) 

Dynamic Subset Scan improves accuracy for locating the source of the 

event, as measured by overlap between true and detected regions. 
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Scaling up to even bigger data… 

Currently the fast subset scan scales 

to datasets with millions of records. 

Spatial constraints (FSS) 

Similarity constraints (FGSS) 

Soft constraints (PFSS) 

But enforcing certain hard 

constraints (e.g., graph connectivity) 

dramatically impacts scalability. 

GraphScan: 250 nodes 

Additive Graphscan : 25K nodes 

How to scale up to 

larger graphs with 

millions of nodes? 

How to scale up to 

datasets with billions 

or trillions of records? 

ongoing 

EPD Lab 

research 

Many possible answers! 

Parallelization 

Sampling 

Randomization Hierarchy 

Summarization 
Problem Partitioning 

Sublinear-Time Algorithms 

Locality-Sensitive Hashing 
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Idea #1: Massive parallelization 
For example, what if we have a trillion records but a million processors? 

Certain aspects of fast subset scan are trivially parallelizable: 

  Randomization testing, to determine statistical significance. 

  Scanning over many local neighborhoods (with proximity constraints). 

  Scoring many subsets (but not exponentially many!). 

For unconstrained subset scan, we have the necessary pieces: 

  Parallel sorting (merge sort, sample sort): O(log N) with N processors. 

  “Scan” (accumulate sums of top-k elements by priority): O(log N). 

To incorporate spatial proximity or more general similarity constraints: 

  Locality-sensitive hashing  neighborhoods of similar elements.  

With more general constraints (e.g., graphs), we must develop new ways 

to partition the search space and merge solutions to sub-problems. 
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Idea #2: Incorporate hierarchy 

Subsampling the raw data can miss a 

arbitrarily strong signal that affects a small 

enough proportion of the dataset. 

Possible solution: summarization. 

Represent the data hierarchically, maintain 

summary statistics at each level of hierarchy, 

and search over coarse and fine resolutions. 

Goal: find the most interesting subsets while 

only looking at a small fraction of the raw data. 

Challenge 1: building the hierarchy may be 

expensive (though parallelizable).  

Challenge 2: how to search the hierarchy, so 

that we are unlikely to miss small areas? 

Example: image data 

digital pathology slides, 

satellite images, etc. 

Hierarchical Linear-

Time Subset Scanning 

(Somanchi & Neill, DMHI 2013) 
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Idea #2: Incorporate hierarchy 

Example: image data 

digital pathology slides, 

satellite images, etc. 

Hierarchical Linear-

Time Subset Scanning 

(Somanchi & Neill, DMHI 2013) 

HLTSS has been successfully 

applied to detect regions of 

interest in digital pathology 

slides, and works surprisingly 

well to detect prostate cancer! 
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Idea #2: Incorporate hierarchy 

Better 

Better 

HLTSS improves both the accuracy of detecting which pixels 

within a slide are cancerous (left panel) and the ability to 

differentiate cancerous from non-cancerous slides (right panel). 
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Current application domains 
Biosurveillance: deployed 

systems in Ottawa, Grey-

Bruce, Sri Lanka, India. 

In progress: deployments 

in Canada for monitoring 

hospital-acquired illness, 

and patterns of harm 

related to drug abuse. 

Crime prediction in Chicago: 

Able to predict about 83% of 

“clustered” violent crimes and 

57% of all violent crimes, with 

15% false positive rate. 

Detecting anomalous patterns 

of care in UPMC hospitals: 

Our goal is to find atypical 

treatment conditions that 

improve patient outcomes 

(“best practices”) or harm 

patients (systematic errors, 

improper hygiene, etc.) 

Many more applications: 

•  Illicit container shipments 

•  Clusters of water pipe breaks 

•  Spreading water contamination 

•  Network intrusion detection 

•  Economic growth “outbreaks” 

•  Conflict, violence, human rights 

(predicting civil unrest using Twitter) 
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Interested? 
 

More details on our web site: 

http://epdlab.heinz.cmu.edu 

 

Or e-mail me at: 

neill@cs.cmu.edu 
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