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& - Time series of counts ct
' for each zip code s;

Daily health data from _
thousands of hospitals and Use this data to detect
pharmacies nationwide anomalous patterns

Detect any emerging events (i.e. outbreaks of disease)
Pinpoint the affected areas

Biosurveillance




(Kulldorff, 1997; Neill and Moore, 2005)

Scan over multiple regions to
detect where counts are
higher than expected

Aggregate the individual
counts from each location
within a region

C=>candB=> b
S S

Determine anomalousness of
region with a scoring function

F(S) = Pr(Data| H,(S))
~ Pr(Data|H,)

F(S)= (%j R

Expectation-Based Scan Statistics




(Kulldorff, 1997; Neill and Moore, 2005)

Scan over multiple regions to
detect where counts are
higher than expected

Aggregate the individual
counts from each location
within a region

Circles

Choose a center location s
and its k nearest neighbors

Find the circle that maximizes
the score function of the
aggregated counts and
baselines

Expectation-Based Scan Statistics



(Kulldorff, 1997; Neill and Moore, 2005)

Power to Detect

Circles are useful for detecting
tightly clustered outbreaks

However, they lose power to
detect abnormally shaped
clusters

- Affected locations

Un-affected locations
contributing to region
score

Expectation-Based Scan Statistics



Create an adjacency graph of
the locations and score
connected subsets

Increase power to detect
non-circular clusters

Flexible Scan statistic (FlexScan)
Tango & Takahashi, 2005

Naively scores all connected
subsets

Infeasible for regions of >30

locations

high scormg connected subsets
Is not guaranteed to find the
highest scoring connected subset

Connectivity Constraints



(Neill, 2008)

PROBLEM:

The number of subsets grows exponentially
with the size of the region 2N

This makes it computationally infeasible for regions
with more than ~30 locations

SOLUTION:

Exploit a property of scoring functions to
rule out subsets that cannot obtain the
highest score

This reduction in the search space allows for exact and efficient
calculation of the highest scoring

unconstrained subset

EXTENSION:

Use this same property for exact and efficient
calculation of the highest scoring
connected subset

Subset Scanning



(Neill, 2008)
We wish to maximize a
scoring function

F6 = F(Zci,Zbi]

SiES SiES

over all possible subsets, S

Sort the locations according to a
priority function

For example,

C.

G(s) ==
( I) b

|
Works for expectation-based
Poisson (EBP)

Linear Time Subset Scanning



(Neill, 2008)
We wish to maximize a
scoring function

F6 = F(Zci,Zbi]

SiES SiES

g allows over all possible subsets, S
advantage
5 of a large . )
number of scoring We sort the locations according
functions to a relevance criteria

For example,

C.

G(s;)=—
( I) b

This location has the lowest \yorks for Expectation-based
count-to-baseline ratio .
Poisson (EBP)

Linear Time Subset Scanning




(Neill, 2008)

3st scoring subset is guaranteed to
e one of the following subsets

EEEEE.. O

Decreases the search space from 2N to N

Linear Time Subset Scanning




Some Quick Intuition.., e 2008
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Linear Time Subset Scanning



If the k" priority location is contained in the optimal subset

and if ren%@ﬂv@'l?ll?é%%%'ﬁrcHB’eQ‘?JBF%ﬁ&'&ﬁﬁE’@PFhe subset

must also be in the optimal subset.

_Priority | Count | Baseline
1 20 1
2 20 1
3 1001 1000
4 1 1

C=41 B=3
LTSS with Connectivity Constraints



Priority 1 2 3 45 6

Ranking
We represent groups of Bit 1 0 0 1 2 2
subsets as a string of String
O's, 1's, and ?’s The above bit string represents 4

possible subsets:
{1,4} {1,4,5} {1,4,6} {1,4,5,6}

A Naive approach would search all 2N subsets
and is computationally infeasible

1 2 345 6 123456‘123456
22 227 7 1?2 2?2 2?2 7?2 72 11 2?2 2?2 2?2 7
o? ?2 2?2 7?2 7 10 2?2 2?2 7?2 7

o ?»? 2 2?2 7?7 72

GraphScan Algorithm



Seed nodes have higher
priority than all of their
neighbors

We can rule out bit
strings whose highest
priority node is not a

seed node

1 2 3 4 5 6
s, 1 ? ? 2?2 2?2 2 Seed nodes provide
s, 0 1 ? ? ? ? starting locations for the
5500132322 following depth first
S, 0 0 0 1 ? 2 search
€s—0—0—00—1 ?
Sg6—0—000

GraphScan Algorlthm Seeds



GraphScan Algorithm: Propagation



Notice that 3 can be
removed and not
disconnect the subset

mCmCO

Provably sub-optimal
by LTSS Property

* 8380

GraphScan Algorithm: Propagation
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1 2 345 6 7 8

11.1011?1

2 is the lowest priority record However, 2 is not low
that can be removed without enough to rule out this
disconnecting the subset subset (compared to 4)

GraphScan Algorithm: Backtrack



mCmCO

_Priority | _Count | Baseline

1 9 1
3 9 3
4 3 1
5 3 3
7 2 3
1 2 3456 7 8 s 1 5
§ 1.1 . 2 and 6 have combined priority of
7+1 8
2 and 6 may be removed 131-3

simultaneously without ;
disconnecting the subset  stj|| not lower than 4's < priority

GraphScan Algorithm: Backtrack



_Priority | _Count | Baseline

1 1
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2, 6, and 5 have combined priority
E of
U 2,6, and 5 may be removed 7+1+3 11
E simultaneously without T+153 5 %%

disconnecting the subset
, 3 ..
lower than 4's T priority.

GraphScan Algorithm: Backtrack



If the domain provides spatial
information, we may use both
proximity and connectivity
constraints simultaneously

J Forming a
neighborhood of the

‘k nearest neighbors’

Proximity Constraints



Two years of admissions from
10 different Allegheny County
Emergency Departments

The patient’s home zip code
is used to tally the counts at
each location (node)

Only consider patients from
within Allegheny County

Evaluation:
Emergency Department Data



Run times per single day of Emergency
Department data
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Run time analysis for FlexScan and GraphScan with and without Branch and
Bounding. The x-axis denotes the “neighborhood size” as various values of k.

Evaluation: Run Times



Semi-synthetic injects were created by artificially increasing the
observed counts in selected zip codes. Zip codes adjacent to rivers
were selected as an example of realistic yet abnormally-shaped cluster.

Compare performance on detection power and time to detect for a
fixed false positive rate of 1 per month.
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Time to detect for outbreaks along rivers Detection power for outbreaks along rivers
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Average detection time and detection power for outbreaks along the rivers.

Results



Average run time on random graphs
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Run time performance of GraphScan on randomly generated Erdos-Renyi graphs
of varying size and edge probability. Labeled data points mark the proportion of
graphs where run time exceeded a 1-hour threshold.

Results: Random Graphs



This work provides...

Theoretical framework for ruling out connected subsets that
are provably suboptimal according to the LTSS property

Practical implementation of LTSS with connectivity
constraints through the GraphScan Algorithm

GraphScan has shown...

Extremely large speed improvements over FlexScan, while

still guaranteeing to identify the highest scoring connected
subset

Using connected subsets can increase detection power for
irregularly shaped disease clusters

Conclusions




