
Scalable Detection of
Anomalous Patterns with
Connectivity Constraints

Skyler Speakman, Ed McFowland III, Daniel B. Neill

Event and Pattern Detection Lab
H.J. Heinz III College

Carnegie Mellon University
This work was partially supported by NSF grants

IIS-0916345, IIS-0911032, and IIS-0953330

Biosurveillance

Daily health data from
thousands of hospitals and

pharmacies nationwide

Time series of counts ci
t

for each zip code si

Detect any emerging events (i.e. outbreaks of disease)

Pinpoint the affected areas

Use this data to detect
anomalous patterns

Expectation-Based Scan Statistics

(Kulldorff, 1997; Neill and Moore, 2005)

Scan over multiple regions to
detect where counts are

higher than expected

Aggregate the individual
counts from each location

within a region

Determine anomalousness of
region with a scoring function

)|Pr(

))(|Pr(
)(

0

1

HData

SHData
SF

CB

C

e
B

C
SF)(

S

t

i

S

t

i bBcC and

Expectation-Based Scan Statistics

(Kulldorff, 1997; Neill and Moore, 2005)

Scan over multiple regions to
detect where counts are

higher than expected

Aggregate the individual
counts from each location

within a region

Find the circle that maximizes
the score function of the
aggregated counts and

baselines

Choose a center location sc
and its k nearest neighbors

Circles

Expectation-Based Scan Statistics

(Kulldorff, 1997; Neill and Moore, 2005)

Circles are useful for detecting
tightly clustered outbreaks

However, they lose power to
detect abnormally shaped

clusters

Affected locations

Un-affected locations
contributing to region
score

Power to Detect

Connectivity Constraints

Tango & Takahashi, 2005

Flexible Scan statistic (FlexScan)

Increase power to detect
non-circular clusters

Create an adjacency graph of
the locations and score
connected subsets

Naively scores all connected
subsets

Infeasible for regions of >30
locations

Patil & Taillie, 2004

Upper Level Set Scan Statistic (ULS)

Uses a heuristic to determine
high scoring connected subsets
Is not guaranteed to find the

highest scoring connected subset

Subset Scanning

PROBLEM:
The number of subsets grows exponentially

with the size of the region 2N

This makes it computationally infeasible for regions
with more than ~30 locations

SOLUTION:
Exploit a property of scoring functions to
rule out subsets that cannot obtain the

highest score

This reduction in the search space allows for exact and efficient
calculation of the highest scoring

 unconstrained subset

(Neill, 2008)

EXTENSION:
Use this same property for exact and efficient

calculation of the highest scoring
 connected subset

Linear Time Subset Scanning

(Neill, 2008)

Sort the locations according to a
priority function

i

i
i

b

c
sG)(

For example,

We wish to maximize a
scoring function

Ss

i

Ss

i

ii

bcFSF ,

over all possible subsets, S

Works for expectation-based
Poisson (EBP)

Linear Time Subset Scanning

(Neill, 2008)
This location has the highest

count-to-baseline ratio

This location has the lowest
count-to-baseline ratio

4

3

2

5

N

1

We sort the locations according
to a relevance criteria

i

i
i

b

c
sG)(

For example,

We wish to maximize a
scoring function

Ss

i

Ss

i

ii

bcFSF ,

over all possible subsets, S

works for Expectation-based
Poisson (EBP)

This ranking allows
LTSS to take advantage
of properties of a large

number of scoring
functions

Linear Time Subset Scanning

(Neill, 2008)

4

3

2

5

N

1 The highest scoring subset is guaranteed to
be one of the following subsets

Decreases the search space from 2N to N

1

1

1

1

1

1

2

2

2

2

2

3

3

3

3

4

4

4

5

5 N

Linear Time Subset Scanning

1

1

1

1

1

1

2

2

2

2

2

3

3

3

3

4

4

4

5

5 N

1 2 4

Some Quick Intuition... (Neill, 2008)

?

LTSS with Connectivity Constraints

1 2 4

3 Priority Count Baseline

1 20 1

2 20 1

3 1001 1000

4 1 1

C=41 B=3

If the kth priority location is contained in the optimal subset

and if removing the location does not disconnect the subset then all higher priority adjacent locations
must also be in the optimal subset.

GraphScan Algorithm

We represent groups of
subsets as a string of

 0’s, 1’s, and ?’s

Priority

Ranking
1 2 3 4 5 6

Bit

String
1 0 0 1 ? ?

The above bit string represents 4
possible subsets:

{1,4} {1,4,5} {1,4,6} {1,4,5,6}

1 2 3 4 5 6

? ? ? ? ? ?

1 2 3 4 5 6

1 ? ? ? ? ?

0 ? ? ? ? ?

1 2 3 4 5 6

1 1 ? ? ? ?

1 0 ? ? ? ?

0 ? ? ? ? ?

A Naïve approach would search all 2N subsets
and is computationally infeasible

GraphScan Algorithm: Seeds

Seed nodes have higher
priority than all of their

neighbors

We can rule out bit
strings whose highest
priority node is not a

seed node

Seed nodes provide
starting locations for the

following depth first
search

1 2 3 4 5 6

S1 1 ? ? ? ? ?

S2 0 1 ? ? ? ?

S3 0 0 1 ? ? ?

S4 0 0 0 1 ? ?

S5 0 0 0 0 1 ?

S6 0 0 0 0 0 1

3 6

1 2

4

5

3 6

1 2

4

5

GraphScan Algorithm: Propagation

1 2 3 4 5 6 7

1 ? ? ? ? ? ?

1 6

3 7

5 4

2

1 6

3 7

5 4

2

1 2 3 4 5 6 7

1 ? ? ? ? 1 ?

1 2 3 4 5 6 7

1 ? 1 ? ? 1 ?

1 2 3 4 5 6 7

1 ? 1 ? ? 1 ?

1 ? 0 ? 1 1 0

Q
U
E
U
E

GraphScan Algorithm: Propagation

1 2 3 4 5 6 7

1 ? 1 ? 1 1 0

1 6

3 7

5 4

2

Q
U
E
U
E

Notice that 3 can be
removed and not

disconnect the subset

1 2 3 4 5 6 7

1 1 1 ? 1 1 0

Provably sub-optimal
by LTSS Property

GraphScan Algorithm: Backtrack

1 2 3 4 5 6 7 8

1 1 1 0 1 1 ? 1

1 8

6 2

3 4

5

Q
U
E
U
E

7

2 is the lowest priority record
that can be removed without

disconnecting the subset

However, 2 is not low
enough to rule out this
subset (compared to 4)

GraphScan Algorithm: Backtrack

1 2 3 4 5 6 7 8

1 1 1 0 1 1 ? 1

1 8

6 2

3 4

5

Q
U
E
U
E

7

Priority Count Baseline

1 9 1

2 7 1

3 9 3

4 3 1

5 3 3

6 1 1

7 2 3

8 1 2

2 and 6 may be removed
simultaneously without

disconnecting the subset

GraphScan Algorithm: Backtrack

1 2 3 4 5 6 7 8

1 1 1 0 1 1 ? 1

1 8

6 2

3 4

5

Q
U
E
U
E

7

Priority Count Baseline

1 9 1

2 7 1

3 9 3

4 3 1

5 3 3

6 1 1

7 2 3

8 1 2

2,6, and 5 may be removed
simultaneously without

disconnecting the subset

Proximity Constraints

If the domain provides spatial
information, we may use both

proximity and connectivity
constraints simultaneously

Forming a
neighborhood of the
‘k nearest neighbors’

Evaluation:
Emergency Department Data

Two years of admissions from
10 different Allegheny County

Emergency Departments

The patient’s home zip code
is used to tally the counts at

each location (node)

Only consider patients from
within Allegheny County

Evaluation: Run Times

Evaluation: Injects

Semi-synthetic injects were created by artificially increasing the
observed counts in selected zip codes. Zip codes adjacent to rivers

were selected as an example of realistic yet abnormally-shaped cluster.

Compare performance on detection power and time to detect for a
fixed false positive rate of 1 per month.

Results

Results: Random Graphs

Conclusions

This work provides…

Theoretical framework for ruling out connected subsets that
are provably suboptimal according to the LTSS property

Practical implementation of LTSS with connectivity
constraints through the GraphScan Algorithm

GraphScan has shown…

Extremely large speed improvements over FlexScan, while
still guaranteeing to identify the highest scoring connected
subset

Using connected subsets can increase detection power for
irregularly shaped disease clusters

