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Biosurveillance 

Daily health data from 
thousands of hospitals and 

pharmacies nationwide 

Time series of counts ci
t 

for each zip code si  

Detect any emerging events (i.e. outbreaks of disease) 

Pinpoint the affected areas 

Use this data to detect  
anomalous patterns 



Expectation-Based Scan Statistics 

(Kulldorff, 1997; Neill and Moore, 2005) 

Scan over multiple regions to 
detect where counts are 

higher than expected 

Aggregate the individual 
counts from each location 

within a region 

Determine anomalousness of 
region with a scoring function  
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Expectation-Based Scan Statistics 

(Kulldorff, 1997; Neill and Moore, 2005) 

Scan over multiple regions to 
detect where counts are 

higher than expected 

Aggregate the individual 
counts from each location 

within a region 

Find the circle that maximizes 
the score function of the 
aggregated counts and 

baselines 

Choose a center location sc  
and its k nearest neighbors 

Circles 



Expectation-Based Scan Statistics 

(Kulldorff, 1997; Neill and Moore, 2005) 

Circles are useful for detecting 
tightly clustered outbreaks 

However, they lose power to 
detect abnormally shaped 

clusters 

Affected locations 

Un-affected locations 
contributing to region 
score 

Power to Detect 



Connectivity Constraints 

Tango & Takahashi, 2005 

Flexible Scan statistic (FlexScan) 

Increase power to detect 
non-circular clusters 

Create an adjacency graph of 
the locations and score 
connected subsets  

Naively scores all connected 
subsets 

Infeasible for regions of >30 
locations 

Patil & Taillie, 2004 

Upper Level Set Scan Statistic (ULS) 

Uses a heuristic to determine 
high scoring connected subsets  
Is not guaranteed to find the 

highest scoring connected subset 



Subset Scanning 

PROBLEM: 
The number of subsets grows exponentially 

with the size of the region 2N 

This makes it computationally infeasible for regions 
with more than ~30 locations 

SOLUTION: 
Exploit a property of scoring functions to 
rule out subsets that cannot obtain the 

highest score 

This reduction in the search space allows for exact and efficient 
calculation of the highest scoring 

 unconstrained subset  

(Neill, 2008) 

EXTENSION: 
Use this same property for exact and efficient 

calculation of the highest scoring 
 connected subset 



Linear Time Subset Scanning 

(Neill, 2008) 

Sort the locations according to a 
priority function 
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For example, 

We wish to maximize a 
scoring function 

Ss

i

Ss

i
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bcFSF ,

over all possible subsets, S 

Works for expectation-based 
Poisson (EBP) 



Linear Time Subset Scanning 

(Neill, 2008) 
This location has the highest 

count-to-baseline ratio 

This location has the lowest 
count-to-baseline ratio 

4 

3 

2 

5 

N 
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We sort the locations according 
to a relevance criteria 
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For example, 

We wish to maximize a 
scoring function 

Ss

i

Ss

i

ii

bcFSF ,

over all possible subsets, S 

works for Expectation-based 
Poisson (EBP) 

This ranking allows 
LTSS to take advantage 
of properties of a large 

number of scoring 
functions 



Linear Time Subset Scanning 

(Neill, 2008) 
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5 

N 

1 The highest scoring subset is guaranteed to 
be one of the following subsets 

Decreases the search space from 2N to N 
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Linear Time Subset Scanning 
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Some Quick Intuition...  (Neill, 2008) 

? 



LTSS with Connectivity Constraints 

1 2 4 

3 Priority Count Baseline 

1 20 1 

2 20 1 

3 1001 1000 

4 1 1 

C=41     B=3 

If the kth priority location is contained in the optimal subset 

and if removing the location does not disconnect the subset then all higher priority adjacent locations  
must also be in the optimal subset. 



GraphScan Algorithm 

We represent groups of 
subsets as a string of 

 0’s, 1’s, and ?’s  

Priority 

Ranking 
1 2 3 4 5 6 

Bit 

String 
1 0 0 1 ? ? 

The above bit string represents 4 
possible subsets: 

{1,4} {1,4,5} {1,4,6} {1,4,5,6} 

1 2 3 4 5 6 

? ? ? ? ? ? 

1 2 3 4 5 6 

1 ? ? ? ? ? 

0 ? ? ? ? ? 

1 2 3 4 5 6 

1 1 ? ? ? ? 

1 0 ? ? ? ? 

0 ? ? ? ? ? 

A Naïve approach would search all 2N subsets 
and is computationally infeasible  



GraphScan Algorithm: Seeds 

Seed nodes have higher 
priority than all of their 

neighbors   
 

We can rule out bit 
strings whose highest 
priority node is not a 

seed node 
 

Seed nodes provide 
starting locations for the 

following depth first 
search 

1 2 3 4 5 6 

S1 1 ? ? ? ? ? 

S2 0 1 ? ? ? ? 

S3 0 0 1 ? ? ? 

S4 0 0 0 1 ? ? 

S5 0 0 0 0 1 ? 

S6 0 0 0 0 0 1 

3 6 

1 2 

4 

5 

3 6 

1 2 

4 

5 



GraphScan Algorithm: Propagation 

1 2 3 4 5 6 7 

1 ? ? ? ? ? ? 

1 6 

3 7 

5 4 

2 

1 6 

3 7 

5 4 

2 

1 2 3 4 5 6 7 

1 ? ? ? ? 1 ? 

1 2 3 4 5 6 7 

1 ? 1 ? ? 1 ? 

1 2 3 4 5 6 7 

1 ? 1 ? ? 1 ? 

1 ? 0 ? 1 1 0 

Q 
U 
E 
U 
E 
 



GraphScan Algorithm: Propagation 

1 2 3 4 5 6 7 

1 ? 1 ? 1 1 0 

1 6 

3 7 

5 4 

2 

Q 
U 
E 
U 
E 
 

Notice that 3 can be 
removed and not 

disconnect the subset 

1 2 3 4 5 6 7 

1 1 1 ? 1 1 0 

Provably sub-optimal 
by LTSS Property 



GraphScan Algorithm: Backtrack 

1 2 3 4 5 6 7 8 

1 1 1 0 1 1 ? 1 

1 8 

6 2 

3 4 

5 

Q 
U 
E 
U 
E 
 

7 

2 is the lowest priority record 
that can be removed without 

disconnecting the subset 

However, 2 is not low 
enough to rule out this 
subset (compared to 4) 



GraphScan Algorithm: Backtrack 

1 2 3 4 5 6 7 8 

1 1 1 0 1 1 ? 1 

1 8 

6 2 

3 4 

5 

Q 
U 
E 
U 
E 
 

7 

Priority Count Baseline 

1 9 1 

2 7 1 

3 9 3 

4 3 1 

5 3 3 

6 1 1 

7 2 3 

8 1 2 

2 and 6 may be removed 
simultaneously without 

disconnecting the subset 



GraphScan Algorithm: Backtrack 

1 2 3 4 5 6 7 8 

1 1 1 0 1 1 ? 1 

1 8 

6 2 

3 4 

5 

Q 
U 
E 
U 
E 
 

7 

Priority Count Baseline 

1 9 1 

2 7 1 

3 9 3 

4 3 1 

5 3 3 

6 1 1 

7 2 3 

8 1 2 

2,6, and 5 may be removed 
simultaneously without 

disconnecting the subset 



Proximity Constraints 

If the domain provides spatial 
information, we may use both 

proximity and connectivity 
constraints simultaneously  

Forming a 
neighborhood of the 
‘k nearest neighbors’ 



Evaluation:  
Emergency Department Data 

Two years of admissions from 
10 different Allegheny County 

Emergency Departments 
 

The patient’s home zip code 
is used to tally the counts at 

each location (node) 
 
 

Only consider patients from 
within Allegheny County 



Evaluation: Run Times 



Evaluation: Injects 

Semi-synthetic injects were created by artificially increasing the 
observed counts in selected zip codes.  Zip codes adjacent to rivers 

were selected as an example of realistic yet abnormally-shaped cluster. 
 

Compare performance on detection power and time to detect for a 
fixed false positive rate of 1 per month.  





Results  



Results: Random Graphs 



Conclusions 

This work provides… 
 
Theoretical framework for ruling out connected subsets that 
are provably suboptimal according to the LTSS property 
 
Practical implementation of LTSS with connectivity 
constraints through the GraphScan Algorithm 

GraphScan has shown… 
 
Extremely large speed improvements over FlexScan, while 
still guaranteeing to identify the highest scoring connected 
subset 
 
Using connected subsets can increase detection power for 
irregularly shaped disease clusters 


