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My research is focused at the intersection of                                                                     
machine learning and public policy, with two main goals: 

1) Develop new machine learning methods for better (more scalable and accurate) 
detection and prediction of events and other patterns in massive datasets.

2) Apply these methods to improve the quality of public health, safety, and security.

Medicine: Discovering new 
“best practices” of patient 

care, to improve outcomes 
and reduce costs.

Disease Surveillance: 
Very early and 

accurate detection of 
emerging outbreaks. 

Law Enforcement: 
Detection, prediction, 

and prevention of “hot-
spots” of violent crime.
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“CrimeScan was set up to run daily, 
completely autonomously.  Predictions were 
sent to police analysts, and messages were 
compiled into detailed intelligence reports 

disseminated through the chain of command.

Based upon deployment suggestions 
indicated in the CrimeScan reports,  

important arrests were effected, weapons 
were seized, and crimes were prevented.”



Pattern detection by subset scan
One key insight that underlies much of my work is that pattern 
detection can be viewed as a search over subsets of the data.

Statistical challenges: 
Which subsets to search?

Is a given subset anomalous?                            
Which anomalies are relevant?

Computational challenge: 
How to make this search over 
subsets efficient for massive, 

complex, high-dimensional data?

New algorithms and data structures make previously 
impossible detection tasks computationally feasible and fast.

New statistical methods enable more timely and more accurate 
detection by integrating multiple data sources, incorporating spatial
and temporal information, and using prior knowledge of a domain.

New machine learning methods enable our systems to 
learn from user feedback, modeling and distinguishing 

between relevant and irrelevant types of anomaly.
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Outline of this talk
• Subset scanning for pattern detection
• Multidimensional subset scan
• Application #1: Event detection
 outbreak detection, drug overdose surveillance

• Application #2: Discovery of heterogeneous 
treatment effects from observational data
 patterns of patient care that impact outcomes

• Application #3: Auditing black-box classifiers 
to discover systematic biases
 bias in criminal justice recidivism risk prediction
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Multivariate event detection

Spatial time series data from 
spatial locations si (e.g. zip codes)

Time series of counts 
ci,m

t for each zip code si
for each data stream dm.

d1 = respiratory ED
d2 = constitutional ED

d3 = OTC cough/cold

d4 = OTC anti-fever

Outbreak detection

(etc.)

Main goals: 

Detect any emerging events.

Pinpoint the affected subset of 
locations and time duration.

Characterize the event, e.g., by 
identifying the affected streams.

Compare hypotheses:

H1(D, S, W)

D = subset of streams                           
S = subset of locations                         

W = time duration

vs. H0: no events occurring
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Expectation-based scan statistics
(Kulldorff, 1997; Neill and Moore, 2005)

We search for spatial regions 
(subsets of locations) where the 

recently observed counts for 
some subset of streams are 

significantly higher than expected.

Expected 
counts

Historical 
counts

Current counts 
(3 day duration)

We perform time series analysis 
to compute expected counts 

(“baselines”) for each location and 
stream for each recent day.

We then compare the actual and 
expected counts for each subset 
(D, S, W) under consideration.
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We find the subsets with highest 
values of a likelihood ratio statistic, 
and compute the p-value of each 
subset by randomization testing.

Maximum subset 
score = 9.8

2nd highest 
score = 8.4

Significant! (p = .013)

Not significant 
(p = .098)

…
F1* = 2.4 F2* = 9.1 F999* = 7.0To compute p-value

Compare subset score 
to maximum subset 
scores of simulated 
datasets under H0.

Expectation-based scan statistics
(Kulldorff, 1997; Neill and Moore, 2005)
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Likelihood ratio statistics

Expectation-based Poisson Expectation-based Gaussian

H0: ci,m
t ~ Gaussian(bi,m

t, σi,m
t)H0: ci,m

t ~ Poisson(bi,m
t)

H1(S): ci,m
t ~ Poisson(qbi,m

t) H1(S): ci,m
t ~ Gaussian(qbi,m

t, σi,m
t)

Let C = ∑S ci,m
t and B = ∑S bi,m

t. Let C’ = ∑S ci,m
t bi,m

t  / (σi,m
t)2

and B’ = ∑S (bi,m
t)2 / (σi,m

t)2. 

Maximum likelihood: q = C / B. Maximum likelihood: q = C’ / B’.

F(S) = C log (C/B) + B – C F(S) = (C’)2 / 2B’ + B’/2 – C’

Many possibilities: exponential family, nonparametric, Bayesian…

For our expectation-based scan statistics, the null hypothesis 
H0 assumes “business as usual”: each count ci,m

t is drawn 
from some parametric distribution with mean bi,m

t.  H1(S) 
assumes a multiplicative increase for the affected subset S.
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Which regions to search?
Typical approach: “spatial scan” (Kulldorff, 1997)

Each search region S is a sub-region of space.
• Choose some region shape (e.g. circles, rectangles) and 

consider all regions of that shape and varying size.
• Low power for true events that do not correspond well to 

the chosen set of search regions (e.g. irregular shapes).

Our approach: “subset scan” (Neill, 2012)
Each search region S is a subset of locations.

• Find the highest scoring subset, subject to some 
constraints (e.g. spatial proximity, connectivity).

• For multivariate, also optimize over subsets of streams.
• Exponentially many possible subsets, O(2N x 2M): 

computationally infeasible for naïve search.
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Question: Why search over subsets?  
Answer: Simpler approaches can fail.

Top-down detection approaches Bottom-up detection approaches
Are there any globally interesting 

patterns?  If so, recursively search 
the most interesting sub-partition.

Two examples: bump hunting; 
“cluster then detect”.

Find individually (or locally) 
anomalous data points, and 

optionally, aggregate into clusters.

Two examples: anomaly/outlier 
detection; density-based clustering.

Top-down fails for small-scale 
patterns that are not evident 
from the global aggregates.

Bottom-up fails for subtle patterns that 
are only evident when a group of data 

records are considered collectively.
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Question: Why search over subsets?  
Answer: Simpler approaches can fail.

Top-down detection approaches Bottom-up detection approaches
Are there any globally interesting 

patterns?  If so, recursively search 
the most interesting sub-partition.

Two examples: bump hunting; 
“cluster then detect”.

Find individually (or locally) 
anomalous data points, and 

optionally, aggregate into clusters.

Two examples: anomaly/outlier 
detection; density-based clustering.

Top-down fails for small-scale 
patterns that are not evident 
from the global aggregates.

Bottom-up fails for subtle patterns that 
are only evident when a group of data 

records are considered collectively.

So here’s where we are so far:

Treating pattern detection as a subset 
scan problem is statistically desirable 
for maximizing detection power…

but computationally infeasible
(for exhaustive search at least).



Fast subset scan
• In certain cases, we can optimize F(S) over the 

exponentially many subsets of the data, while 
evaluating only O(N) rather than O(2N) subsets.

• Many commonly used scan statistics have the 
property of linear-time subset scanning:
• Just sort the data records (or spatial locations, etc.) from 

highest to lowest priority according to some function…
• … then search over groups consisting of the top-k 

highest priority records, for k = 1..N.

The highest scoring subset is 
guaranteed to be one of these!

Sample result: we can find the most anomalous subset 
of Allegheny County zip codes in 0.03 sec vs. 1024 years.

14

(Neill, 2012)
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Linear-time subset scanning
• Example: Expectation-Based Poisson statistic

• Sort data locations si by the ratio of observed to 
expected count, ci / bi. 

• Given the ordering s(1) … s(N), we can prove that the 
top-scoring subset F(S) consists of the locations s(1) … 
s(k) for some k, 1 ≤ k ≤ N.

• Key step: if there exists some location sout ∉ S with 
higher priority than some location sin ∈ S, then we can 
show that F(S) ≤ max(F(S U {sout}), F(S \ {sin})). 

• Theorem: LTSS holds for expectation-based scan 
statistics in any exponential family.

)(~:0 ii DistxH µ

)(~:1 ii qDistxH µ)|(
))(|(logmax)(

0
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(Speakman et al., 2016)
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Linear-time subset scanning
• Example: Expectation-Based Poisson statistic

• Sort data locations si by the ratio of observed to 
expected count, ci / bi. 

• Given the ordering s(1) … s(N), we can prove that the 
top-scoring subset F(S) consists of the locations s(1) … 
s(k) for some k, 1 ≤ k ≤ N.

• Key step: if there exists some location sout ∉ S with 
higher priority than some location sin ∈ S, then we can 
show that F(S) ≤ max(F(S U {sout}), F(S \ {sin})). 

• Even better theorem: We can also maximize the 
penalized scan statistic 𝐹𝐹 𝑆𝑆 + ∑𝑠𝑠𝑖𝑖∈𝑆𝑆 ∆𝑖𝑖 in O(N log 
N) time, evaluating only 2N of the 2N subsets.

(Speakman et al., 2016)



Constrained fast subset scanning
LTSS is a new and powerful tool for exact combinatorial optimization 
(as opposed to approximate techniques such as submodular function 

optimization).  But it only solves the “best unconstrained subset” 
problem, and cannot be used directly for constrained optimization.

Many of our recent papers have focused on how LTSS can be extended to 
the many real-world problems with (hard or soft) constraints on our search.

+ Proximity constraints  Fast spatial scan (irregular regions)
+ Multiple data streams  Fast multivariate scan
+ Connectivity constraints  Fast graph scan
+ Group self-similarity  Fast generalized subset scan

29

(Neill, JRSS-B, 2012) (Speakman et al., JCGS, 2015) (McFowland et al., JMLR, 2013)
(Neill et al., Stat. Med., 2013)



Constrained fast subset scanning
LTSS is a new and powerful tool for exact combinatorial optimization 
(as opposed to approximate techniques such as submodular function 

optimization).  But it only solves the “best unconstrained subset” 
problem, and cannot be used directly for constrained optimization.

Many of our recent papers have focused on how LTSS can be extended to 
the many real-world problems with (hard or soft) constraints on our search.

+ Temporal dynamics  Spreading contamination in water supply
+ Hierarchical scanning  Prostate cancer in digital pathology slides
+ Scalable GP regression  Predicting and preventing rat infestations

30
(Speakman et al., ICDM 2013) (Somanchi & Neill, DMHI 2013) (Flaxman et al., 2015;

Neill et al., in preparation)
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Fast subset scan with spatial 
proximity constraints

• Maximize a likelihood ratio statistic over all subsets of the 
“local neighborhoods” consisting of a center location si and 
its k-1 nearest neighbors, for a fixed neighborhood size k. 

• Naïve search requires O(N · 2k) time and is 
computationally infeasible for k > 25.

• For each center, we can search over all subsets of its local 
neighborhood in O(k) time using LTSS, thus requiring a 
total time complexity of O(Nk) + O(N log N) for sorting the 
locations.

• In Neill (2012), we show that this approach dramatically 
improves the timeliness and accuracy of outbreak 
detection for irregularly-shaped disease clusters.



Multivariate fast subset scan
(Neill, McFowland, and Zheng, 2013)
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• The LTSS property allows us to 
efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.



Multivariate fast subset scan
(Neill, McFowland, and Zheng, 2013)

(Score = 7.5)
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Multivariate fast subset scan
(Neill, McFowland, and Zheng, 2013)

(Score = 8.1)
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• The LTSS property allows us to 
efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.

• But it also allows us to efficiently 
optimize over subsets of streams
for a given subset of locations…



Multivariate fast subset scan
(Neill, McFowland, and Zheng, 2013)
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• The LTSS property allows us to 
efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.

• But it also allows us to efficiently 
optimize over subsets of streams
for a given subset of locations…

• So we can jointly optimize over 
subsets of streams and locations 
by iterating between these steps!



Multivariate fast subset scan
• The LTSS property allows us to 

efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.

• But it also allows us to efficiently 
optimize over subsets of streams
for a given subset of locations…

• So we can jointly optimize over 
subsets of streams and locations 
by iterating between these steps!

(Neill, McFowland, and Zheng, 2013)
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Multivariate fast subset scan
(Neill, McFowland, and Zheng, 2013)
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• The LTSS property allows us to 
efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.

• But it also allows us to efficiently 
optimize over subsets of streams
for a given subset of locations…

• So we can jointly optimize over 
subsets of streams and locations 
by iterating between these steps!

• Converges to local maximum: we 
do multiple random restarts to 
approach the global maximum.

• For general datasets, a similar 
approach* can be used to jointly 
optimize over subsets of data 
records and attributes. *McFowland, Speakman, and Neill, JMLR, 2013



Outline of this talk
• Subset scanning for pattern detection
• Multidimensional subset scan
• Application #1: Event detection
 outbreak detection, drug overdose surveillance

• Application #2: Discovery of heterogeneous 
treatment effects from observational data
 patterns of patient care that impact outcomes

• Application #3: Auditing black-box classifiers 
to discover systematic biases
 bias in criminal justice recidivism risk prediction
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Multivariate event detection

Spatial time series data from 
spatial locations si (e.g. zip codes)

Time series of counts 
ci,m

t for each zip code si
for each data stream dm.

d1 = respiratory ED
d2 = constitutional ED

d3 = OTC cough/cold

d4 = OTC anti-fever

Outbreak detection

(etc.)

Main goals: 

Detect any emerging events.

Pinpoint the affected subset of 
locations and time duration.

Characterize the event, e.g., by 
identifying the affected streams.

Compare hypotheses:

H1(D, S, W)

D = subset of streams                           
S = subset of locations                         

W = time duration

vs. H0: no events occurring



Multidimensional event detection

Spatial time series data from 
spatial locations si (e.g. zip codes)

Time series of counts 
ci,m

t for each zip code si
for each data stream dm.

d1 = respiratory ED
d2 = constitutional ED

d3 = OTC cough/cold

d4 = OTC anti-fever

(etc.)

Additional goal: identify any differentially affected 
subpopulations P of the monitored population.

Gender (male, female, both)
Age groups (children, adults, elderly)

Ethnic or socio-economic groups
Risk behaviors: e.g. intravenous drug 

use, multiple sexual partners

More generally, assume that we have a set 
of additional discrete-valued attributes 

A1..AJ observed for each individual case.

We identify not only the affected streams, 
locations, and time window, but also a 

subset of values for each attribute.

Outbreak detection



• Our MD-Scan framework (Neill & Kumar, 2013) 
extends LTSS to the multidimensional case:  
• For each time window and spatial neighborhood 

(center + k-nearest neighbors), we do the following:

1. Start with randomly chosen subsets of locations S, 
streams D, and values Vj for each attribute Aj (j=1..J).

2. Choose an attribute A (randomly or sequentially) and 
use LTSS to find the highest scoring subset of values, 

locations, or streams, conditioned on all other attributes.  
*** Linear rather than exponential in arity of A ***

3. Iterate step 2 until convergence to a local maximum of 
the score function F(D,S,W, {Vj}), and use multiple                     

restarts to approach the global maximum.

Multidimensional subset scan



Outline of this talk
• Subset scanning for pattern detection
• Multidimensional subset scan
• Application #1: Event detection
 outbreak detection, drug overdose surveillance

• Application #2: Discovery of heterogeneous 
treatment effects from observational data
 patterns of patient care that impact outcomes

• Application #3: Auditing black-box classifiers 
to discover systematic biases
 bias in criminal justice recidivism risk prediction

42



• As in the multivariate scan case, we can aggregate 
counts and baselines and maximize the EBP scan 
statistic over subsets.  But how to get baselines?

• Original approach: compute separate baselines for 
each tensor cell (e.g., by 28-day moving average).
• Statistical challenge: data sparsity leads to increasingly 

poor baseline estimates. 
• Computational challenge: very large tensor, often with 

dozens of modes, so need sparse representation.
• We don’t really believe that any baselines are zero!

• Solution: tensor decomposition!
1) How to efficiently decompose?
2) How to efficiently compute baselines?

MD-Scan for event detection



• PARAFAC decomposition: approximate tensor by 
sum of outer products, 
X = ∑r=1..R (a(r) ◦ b(r) ◦ c(r) ◦ …)
or equivalently, xijk… = ∑r=1..R (ai

(r) bj
(r) ck

(r)…)

• Very large, sparse, high-order tensors: we want to 
run in time proportional to # of non-zero elements 
and independent of tensor size (product of arities).

Efficient factorization

# vectors = R * # modes
Each vector is of length =
arity of that mode (or # of 
values of that attribute).



• Partial solution: fast rank-1 tensor decomposition.

• Easy to apply to sparse data.  For example:
• Step (a)(i). Zero u, then for each data point (i, j, k, value) add 

value*vj*wk to ui, then normalize u.
• Step (b).  Zero d, then for each data point (i, j, k, value) add 

value*ui*vj*wk to d.
• Good news: linear in # non-zeros of X.
• Bad news: for successive components after the first, X is 

no longer sparse!

Tensor power method

Compute successive 
rank-1 components by 
block coordinate-wise 
computation, subtract 

out, repeat on residuals.



• Partial solution: fast rank-1 tensor decomposition.

• Do not modify X, but change update steps to take previous 
components into account.  For example:
• Step (a)(i). Initialize u, then for each data point (i, j, k, value) add 

value*vj*wk to ui, then normalize u.
• Initialization: Zero u(r), then for each previous component j=1..r-1, 

subtract ψ(j) u(j) from u(r), where ψ(j) = (v(j) ∙ v(r)) (w(j) ∙ w(r)).
• Now X remains sparse, and we remain independent of 

tensor size for arbitrary # of PARAFAC components.

Improved tensor power method

Compute successive 
rank-1 components by 
block coordinate-wise 
computation, subtract 

out, repeat on residuals.



• Given PARAFAC representation, the aggregate 
baseline of subset S = S1 x S2 x … SM is: 
B = ∑r=1..R ∏m=1..M ∑i ∈Sm ui,m

(r), 
where ui,m

(r) is the ith value of the mth-mode vector 
of the rth PARAFAC component. 

• Example of why this works, for three modes:
B = ∑i ∈ S1 ∑j ∈ S2 ∑k ∈ S3 bijk

= ∑i ∈ S1 ∑j ∈ S2 ∑k ∈ S3 ∑r=1..R ui
(r) vj

(r) wk
(r)

= ∑r=1..R (∑i ∈ S1 ui
(r)) (∑j ∈ S2 vj

(r)) (∑k ∈ S3 wk
(r))

• By writing the sum of products as a product of 
sums, we can compute in time proportional to |S1| 
+ |S2| + … + |SM| rather than |S1| x |S2| x … x |SM|.

Computing baselines



• We first evaluated the detection performance of 
MD-Scan for detecting simulated disease 
outbreaks injected into real-world Emergency 
Department data from Allegheny County, PA.

• For outbreaks with differential effects by age and 
gender, MD-Scan demonstrated more timely
and more accurate detection, and accurately 
characterized the affected subpopulations.

Evaluation of MD-Scan



1) Identifying affected subpopulations
By the midpoint of the outbreak, MD-Scan is able to correctly 

identify the affected gender and age deciles with high 
probability, without reporting unaffected subpopulations. 

Proportions of correct and incorrect groups reported vs. time since start of outbreak.
Solid lines: affected gender and/or age deciles.  Dashed lines: unaffected.

Blue lines: outbreaks with differential effects by both age and gender (easier).
Red lines: outbreaks with differential effects by age or gender only (harder). 



2) Characterizing affected streams
As compared to the previous state of the art (multivariate linear-

time subset scanning), MD-Scan is better able to characterize the 
affected spatial locations and subset of the monitored streams.

Left: overlap coefficient between true and detected subsets of spatial locations.
Right: Proportions of correct and incorrect streams reported vs. day of outbreak.

Blue lines: outbreaks with differential effects by both age and gender (easier).
Red lines: outbreaks with differential effects by age or gender only (harder).

Green lines: MLTSS, ignoring age and gender information 



3) Timeliness of outbreak detection
MD-Scan achieved significantly more timely detection for 

outbreaks that were sufficiently biased by age and/or gender.

For outbreaks with strong age and 
gender biases, time to detection 

improved from 5.2 to 4.0 days at a 
fixed false positive rate of 1/month.

Smaller biases in age or gender were 
sufficient for significant improvements; even 
when no age/gender signal is present, MD-

Scan performs comparably to MLTSS.



• We first evaluated the detection performance of 
MD-Scan for detecting simulated disease 
outbreaks injected into real-world Emergency 
Department data from Allegheny County, PA.

• For outbreaks with differential effects by age and 
gender, MD-Scan demonstrated more timely
and more accurate detection, and accurately 
characterized the affected subpopulations.

Evaluation of MD-Scan

Nice proof of 
concept…

But what can we learn 
about real patterns of 
interest to public health?



• We analyzed county medical examiner data for 
fatal accidental drug overdoses, 2008-2015.

• ~2000 cases: for each overdose victim, we have 
date, location (zip), age, gender, race, and the 
set of drugs present in their system.

• Reduced to 30 dimensions (age decile, gender, 
race, presence/absence of 27 common drugs) 
plus space and time.

• Clusters discovered by MD-Scan were shared 
with Allegheny County Dept. of Human Services.

Allegheny County Overdose Data



MD-Scan Overdose Results (1)
Fentanyl is a dangerous drug which has 

been a huge problem in western PA.  
It is often mixed with white powder 
heroin, or sold disguised as heroin.

40-100x more 
potent than 
heroin or 
morphine!

January 16-25, 2014: 
14 deaths county-wide 

from fentanyl-laced heroin. 

March 27 to April 21, 2015: 
26 deaths county-wide from 

fentanyl, heroin only present in 11.

Started in the SE suburbs of Pittsburgh, 
including a cluster of 5 cases around 

McKeesport between March 27 and April 8.

Cluster score became significant March 29th

(4 nearby cases, white males ages 20-49) 
and continued to increase through April 20th.

Fentanyl, heroin, and combined deaths 
remained high through end of June (>100).

January 10 to February 7, 2015: 
Cluster of 11 fentanyl-related 

deaths, mainly black males over 
58 years of age, centered in 

Pittsburgh’s downtown Hill District.
Very unusual demographic: 

common dealer / shooting gallery?



MD-Scan Overdose Results (2)

From 2013-2015: no M&X overdose 
clusters; 33% and 47% drops in yearly 

methadone and M&X deaths respectively. 

Another set of discovered overdose clusters each 
involved a combination of Methadone and Xanax.

Methadone: an opioid used 
for chronic pain relief and to 
treat heroin addiction, but 

also addictive and risk of OD.

Xanax (alprazolam):
a benzodiazepine 

prescribed for panic 
and anxiety disorders.

The combination produces a strong high but 
can be deadly (~30% of methadone fatal ODs).

From 2008-2012: multiple M&X OD clusters, 
3-7 cases each, localized in space and time.

Why did these deaths cluster, when methadone 
and methadone + other benzo deaths did not?

What factors could explain the dramatic 
reduction in M&X overdose clusters?



MD-Scan Overdose Results (2)
Another set of discovered overdose clusters each 
involved a combination of Methadone and Xanax.

Methadone: an opioid used 
for chronic pain relief and to 
treat heroin addiction, but 

also addictive and risk of OD.

Xanax (alprazolam):
a benzodiazepine 

prescribed for panic 
and anxiety disorders.

Why did these deaths cluster, when methadone 
and methadone + other benzo deaths did not?

What factors could explain the dramatic 
reduction in M&X overdose clusters?

Increased state oversight of methadone 
clinics and prescribing physicians after 
passage of the Methadone Death and 

Incident Review Act (Oct 2012).

Approval of generic suboxone 
(buprenorphine + naloxone) in early 2013 

lowered cost of suboxone treatment as 
an alternative to methadone clinics.



Outline of this talk
• Subset scanning for pattern detection
• Multidimensional subset scan
• Application #1: Event detection
 outbreak detection, drug overdose surveillance

• Application #2: Discovery of heterogeneous 
treatment effects from observational data
 patterns of patient care that impact outcomes

• Application #3: Auditing black-box classifiers 
to discover systematic biases
 bias in criminal justice recidivism risk prediction

58



Case study #2: Discovering 
anomalous patterns of care

• Given health insurance claims data, we wish to 
identify a treatment and corresponding sub-
population for whom that treatment leads to 
significantly better or worse outcomes.
• Observational data; multiple treatments.
• Population characteristics vary on multiple dimensions.
• Identify most significant combinations of treatment 

and sub-population. 

“For males over 50 with congestive heart failure and certain co-
morbidities, taking Carvidilol is associated with longer stay in hospital.” 
– Patrick, EPD Lab healthcare analyst (after significant manual effort)

Joint work with Sriram Somanchi and Edward McFowland III



Problem formulation
• Let X = (𝑋𝑋1, 𝑋𝑋2, … , 𝑋𝑋𝑁𝑁) be the set of 

observed covariates for a patient 
(demographics, diagnoses, etc.)

• Let 𝑇𝑇1, 𝑇𝑇2, … , 𝑇𝑇𝑀𝑀 be the set of available 
treatments.

• Let Y be the scalar outcome of interest (for 
example, number of hospitalizations in some 
time period following treatment).

60



Our goals
• Estimate the distribution of 

potential outcomes, for 
treatment assignments 𝑇𝑇𝑗𝑗 = 1
and 𝑇𝑇𝑗𝑗 = 0 respectively, for     
any given subpopulation 𝑆𝑆:

𝑓𝑓𝑗𝑗𝑗,𝑆𝑆 = 𝑓𝑓 𝑦𝑦(1) 𝑥𝑥 ∈ 𝑆𝑆)
𝑓𝑓𝑗𝑗𝑗,𝑆𝑆 = 𝑓𝑓 𝑦𝑦(0) 𝑥𝑥 ∈ 𝑆𝑆)

• Find the combination of 
treatment and subpopulation 
that maximizes some measure 
of divergence, 𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝑗𝑗𝑗,𝑆𝑆, 𝑓𝑓𝑗𝑗𝑗,𝑆𝑆 .
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Male Female

<30

30-40

40-50

>50

Age 

𝑌𝑌2𝑀𝑀 𝑌𝑌2𝐹𝐹

𝑌𝑌3𝑀𝑀 𝑌𝑌3𝐹𝐹

𝑌𝑌4𝑀𝑀 𝑌𝑌4𝐹𝐹

𝑌𝑌5𝑀𝑀 𝑌𝑌5𝐹𝐹

𝑇𝑇1
𝑇𝑇2
𝑇𝑇3

𝑇𝑇𝑀𝑀



Anomalous Patterns of Care Scan 
1. Start with a random sub-

population 𝑆𝑆
2. For each 𝑇𝑇𝑗𝑗

a. Compute propensity scores
b. Reweight outcome distributions
c. Compute divergence 𝐹𝐹𝑗𝑗,𝑆𝑆

3. Choose treatment: 𝑗𝑗∗ = argmax𝑗𝑗𝐹𝐹𝑗𝑗,𝑆𝑆

4. Reweight entire population 
outcomes based on 𝑇𝑇𝑗𝑗∗

5. Use MD-Scan to identify
𝑆𝑆∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑆𝑆𝐹𝐹𝑗𝑗∗,𝑆𝑆

6. Set 𝑆𝑆 = 𝑆𝑆∗ and repeat steps 2 to 5 
until score stops increasing 

7. Repeat steps 1-6 for R times 
8. Compute statistical significance 

by randomization testing 
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𝑇𝑇1
𝑇𝑇2
𝑇𝑇3

𝑇𝑇𝑀𝑀

Male Female
<30

30-40

40-50

>50

Age 

𝑌𝑌2𝑀𝑀 𝑌𝑌2𝐹𝐹

𝑌𝑌3𝑀𝑀 𝑌𝑌3𝐹𝐹

𝑌𝑌4𝑀𝑀 𝑌𝑌4𝐹𝐹

𝑌𝑌5𝑀𝑀 𝑌𝑌5𝐹𝐹

Male Female
<30

30-40

40-50

>50

Age 

𝑌𝑌2𝑀𝑀 𝑌𝑌2𝐹𝐹

𝑌𝑌3𝑀𝑀 𝑌𝑌3𝐹𝐹

𝑌𝑌4𝑀𝑀 𝑌𝑌4𝐹𝐹

𝑌𝑌5𝑀𝑀 𝑌𝑌5𝐹𝐹

𝑇𝑇1 =1

𝑇𝑇1 = 0

𝑓𝑓11,𝑆𝑆

𝑓𝑓10,𝑆𝑆

𝐹𝐹1,𝑆𝑆 = 𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓11,𝑆𝑆, 𝑓𝑓10,𝑆𝑆

𝑇𝑇2 =1

𝑇𝑇2 = 0

𝑓𝑓21,𝑆𝑆

𝑓𝑓20,𝑆𝑆

𝐹𝐹2,𝑆𝑆 = 𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓21,𝑆𝑆, 𝑓𝑓20,𝑆𝑆

𝑇𝑇𝑀𝑀 =1

𝑇𝑇𝑀𝑀 = 0

𝑓𝑓𝑀𝑀𝑀,𝑆𝑆

𝑓𝑓𝑀𝑀𝑀,𝑆𝑆

𝐹𝐹𝑀𝑀,𝑆𝑆 = 𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝑀𝑀𝑀,𝑆𝑆, 𝑓𝑓𝑀𝑀𝑀,𝑆𝑆

𝑓𝑓21

𝑓𝑓20

Iterative Ascent algorithm between sub-populations and treatments 



Challenges for APC-Scan
• We use the expectation-based Poisson 

scan statistic, scanning over the treatment 
individuals.  Each has an observed count 
(number of visits) and an expected count 
estimated from the control individuals.

• Challenge 1: data sparsity.  May be few or 
no controls who match the treated individual.
• Solution: learn a predictive model for y | x from 

control individuals, then use to predict y for each 
treatment individual.
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Challenges for APC-Scan
• We use the expectation-based Poisson 

scan statistic, scanning over the treatment 
individuals.  Each has an observed count 
(number of visits) and an expected count 
estimated from the control individuals.

• Challenge 2: selection into treatment.             
A treatment could have worse outcomes just 
because it is typically given to sicker patients.
• Partial solution: use inverse propensity score 

weighting to account for observable differences 
between treatments and controls.
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Inverse propensity score weighting
• We are estimating average treatment effect on the 

treated (ATT), which is a weighted average of the 
conditional average treatment effects weighted by 
probability of treatment.

• Control individuals are weighted by 𝑝𝑝
1−𝑝𝑝

, where the 
estimated treatment probability 𝑝𝑝 = Pr 𝑇𝑇𝑗𝑗 = 1 | 𝑥𝑥 .

• We learn baselines for each treated individual using 
the weighted control data, then scan over the 
(unweighted) treated individuals.

• This produces an unbiased estimate of ATT if 
unconfoundedness holds, i.e., if 𝑦𝑦(0), 𝑦𝑦(1) ⊥ 𝑇𝑇𝑗𝑗 | 𝑥𝑥. 
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Highmark claims data
• ~125K patients with primary or admission 

diagnosis as “diseases of the circulatory 
system” during 2008-2014.
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Time

First Hospitalization 
(Input covariates 𝑋𝑋)

6 months 6 months

Drugs Therapeutic Class
(Treatments 𝑇𝑇)

Number of Hospitalizations
(Outcome 𝑌𝑌)



Highmark claims data
• Covariates (𝑋𝑋) included:

• Demographics 
• Median income in patient’s home zip code
• Diagnosis (primary and secondary)
• Charlson Comorbidity Index
• Length of current stay
• Previous outpatient visits

• Treatments (𝑇𝑇𝑗𝑗)
• Drug Therapeutic Class

• Outcome (𝑌𝑌)
• Number of hospitalizations
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Bronchial Dilators 
Glucocorticoids 

Thyroid Preparations 
Diabetic Therapy 

Lipotropics
Hypotensives
Vasodilators 

Digitalis Preparations 
Cardiovascular 
Preparations 

Anticoagulants 
Diuretics 



Highest scoring detected pattern

• Identified subpopulation 
characteristics (N = 1,977):
• Gender = Male
• Hypertension = Yes
• Diabetes = Yes or No
• BMI = Obese or Overweight
• Age Ranges = 40-60 or 60-80
• Primary diagnosis = Ischemic 

heart disease, Heart failure, or 
Cerebrovascular heart disease.

• Secondary diagnosis = Endocrine
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Glucocorticoids
Yes                   No

Number of Patients 264 1713

Mean Number of 
Hospitalizations

0.606
(0.069)

0.280
(0.016)

Glucocorticoids significantly increase mean number of 
hospitalizations following treatment in the subpopulation of 

hypertensive, overweight/obese males with endocrine disorders.



Validation of our results 
• There is a growing literature in the medical 

community relating glucocorticoids with 
cardiovascular issues:
• Association using 10 years of observational data 

(Heart, 2004)
• Metabolic and tissue level effects in heart 

(European Journal of Endocrinology, 2007)
• Experiments at micro level analysis of 

glucocorticoids signaling certain receptors in 
heart for mice (J. Biochem. Molec. Biol., 2015)

• But no results on heterogeneity of effect 
across subpopulations!
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Regression analysis
• We randomly split the data into: 

• 60% for running our APC Scan
• 40% for running the regression analysis

• Regression with outcome 𝑌𝑌 as number of 
hospitalizations with Glucocorticoids as one 
of the independent variables 𝑋𝑋, for:
• The entire population
• The entire population with a dummy for the 

subpopulation identified by APC Scan
• The subpopulation identified by APC Scan
• The complementary subpopulation 

71



Regression analysis (Poisson) on held-out data
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Number of Hospitalizations
(1)                       (2)

Glucocorticoids 0.101***
(0.007)

0.099***
(0.007)

Glucocorticoids∗
Subpopulation

0.265***
(0.088)

Subpopulation -0.313***
(0.068)

Age 0.079***
(0.004)

0.079***
(0.004)

Females 0.116***
(0.008)

0.113***
(0.008)

Hypertensive -0.163***
(0.008)

-0.161***
(0.008)

Diabetic 0.286***
(0.008)

0.286***
(0.008)

Obesity 0.007
(0.013)

0.020
(0.013)

… ... ...

Constant -0.773***
(0.044)

-0.772***
(0.044)

Observations 49,658 49,658

(2) (3) (4)
50.6%

Number of Hospitalizations
(3) (4)

0.410***
(0.089)

0.099***
(0.007)

-0.040
(0.079)

0.080***
(0.004)

0.113***
(0.008)

-0.161***
(0.008)

0.193***
(0.089)

0.287***
(0.008)

0.020
(0.013)

... ...

-1.634***
(0.120)

-0.772***
(0.044)

796 48,862

*p<0.1; **p<0.05; ***p<0.01

(1) Entire Population

(2) Entire Population
with dummy for the 

subpopulation

(3) Subpopulation 
identified by APC-

Scan

(4) Remaining 
subpopulation 
not identified 
by APC-Scan

10.6%



Outline of this talk
• Subset scanning for pattern detection
• Multidimensional subset scan
• Application #1: Event detection
 outbreak detection, drug overdose surveillance

• Application #2: Discovery of heterogeneous 
treatment effects from observational data
 patterns of patient care that impact outcomes

• Application #3: Auditing black-box classifiers 
to discover systematic biases
 bias in criminal justice recidivism risk prediction
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Source:
Julia Angwin, 
Jeff Larson, 
Surya Mattu and
Lauren Kirchner, ProPublica



Source: ProPublica



Broward County data
• Source: ProPublica’s data on criminal defendants in 

Broward County, FL, in 2013-2014
• Outcome: re-arrests (!) assessed through April 2016.
• Score:  COMPAS score from 1 (low risk) to 10 (high risk)

Sample averages (standard deviations)

<
>
>
>
>
>



Observed recidivism 
is higher among 

Black defendants.

Black 
defendants 

receive higher 
scores, but are 
also younger

and have 
worse criminal 

records.  



Observed recidivism 
is higher among 

Black defendants.

Black 
defendants 

receive higher 
scores, but are 
also younger

and have 
worse criminal 

records.  
Is COMPAS fair?



Observed recidivism 
is higher among 

Black defendants.

Black 
defendants 

receive higher 
scores, but are 
also younger

and have 
worse criminal 

records.  

Well, that depends on how you define fairness! 
There are at least three possibilities:

1) Group fairness: same proportions of each 
group should be classified as “high risk.” (?)

2) Disparate impacts: equalize impacts by 
balancing false positives and false negatives.

3) Calibration (unbiasedness): individual risk 
probabilities should be predicted accurately, 

without systematic biases based on race or 
any other combinations of attributes.



Bias scan
Our goal is to detect and correct any systematic biases in risk 

prediction that a classifier may have (i.e., over-predicting or under-
predicting risk for a specific attribute or combination of attributes).

We developed a new variant of the multidimensional subset scan to 
identify subgroups where classifier predictions are significantly biased.

Search space: subspaces 
defined by a subset of values 
for each attribute (e.g., “white 
and Asian males under 25”)

(Zhang and Neill, 2016)

𝐹𝐹 𝑆𝑆 = max𝑞𝑞 log �
𝑠𝑠𝑖𝑖∈𝑆𝑆

Pr 𝑦𝑦𝑖𝑖~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑞𝑞 �𝑝𝑝𝑖𝑖
1 − �𝑝𝑝𝑖𝑖 + 𝑞𝑞 �𝑝𝑝𝑖𝑖

Pr 𝑦𝑦𝑖𝑖~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 �𝑝𝑝𝑖𝑖



Bias scan
Our goal is to detect and correct any systematic biases in risk 

prediction that a classifier may have (i.e., over-predicting or under-
predicting risk for a specific attribute or combination of attributes).

We developed a new variant of the multidimensional subset scan to 
identify subgroups where classifier predictions are significantly biased.

Search space: subspaces 
defined by a subset of values 
for each attribute (e.g., “white 
and Asian males under 25”)

(Zhang and Neill, 2016)

For interpretability, we maximize the penalized score 𝐹𝐹 𝑆𝑆 − log ∏ 𝑆𝑆𝑗𝑗 , 
where attributes with no excluded values are ignored. For each conditional 

optimization, we can use the simple penalty, log 𝑆𝑆𝑗𝑗 1 𝑆𝑆𝑗𝑗 < arity 𝐴𝐴𝑗𝑗 . 



Results of bias scan on COMPAS
Start with maximum 

likelihood risk estimates for 
each COMPAS decile score.

Detection result 1: COMPAS 
underestimates the importance of 
prior offenses, overestimating risk 
for 0 priors, and underestimating 

risk for 5 or more priors.

Detection result 2: Even controlling for prior offenses, 
COMPAS still underestimates risk for males under 25, and 

overestimates risk for females who committed misdemeanors.  



Results of bias scan on COMPAS

After controlling for prior offenses and membership in the two detected 
subgroups, there are no significant systematic biases in prediction.

Thorny question: given individual risk predictions, what should                                              
we do with them (e.g., how to avoid disparate impacts)?



Conclusions
Real-world problems at the societal scale require new computational 

methods to deal with both the size and the complexity of data.

Fast multidimensional subset scanning can serve as a fundamental 
building block for scalable pattern detection in massive, complex data.

With slight extensions, the same multidimensional scan framework      
can be used effectively across a variety of problems ranging from      
event detection to causal inference to algorithmic fairness.

Potential benefits to the public good include more timely detection     
of emerging outbreaks and trends in drug overdoses, improved      

patient outcomes, and fairer use of algorithms in criminal justice.
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Thanks for listening!

More details on our web site: 
http://epdlab.heinz.cmu.edu

Or e-mail me at:
neill@cs.cmu.edu
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