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My research is focused at the intersection of                                                                     
machine learning and public policy, with two main goals: 

1) Develop new machine learning methods for better (more scalable and accurate) 
detection and prediction of events and other patterns in massive datasets.

2) Apply these methods to improve the quality of public health, safety, and security.

Medicine: Discovering new 
“best practices” of patient 

care, to improve outcomes 
and reduce costs.

Disease Surveillance: 
Very early and 

accurate detection of 
emerging outbreaks. 

Law Enforcement: 
Detection, prediction, 

and prevention of “hot-
spots” of violent crime.
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Our disease surveillance 
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This talk will focus on how we can scale up
event and pattern detection to address the                                  

size and complexity of real-world data:

1) New computational methods based on fast 
multidimensional subset scanning make            

pattern detection in massive datasets both 
computationally feasible and very fast.

2) New statistical approaches to modeling 
complex structure (online social networks) 

allow us to address important real-world 
problems ranging from rare outbreak         

detection to prediction of civil unrest.



5

Multivariate event detection

Spatial time series data from 
spatial locations si (e.g. zip codes)

Time series of counts 
ci,m

t for each zip code si
for each data stream dm.

d1 = respiratory ED
d2 = constitutional ED

d3 = OTC cough/cold

d4 = OTC anti-fever

Outbreak detection

(etc.)

Main goals: 

Detect any emerging events.

Pinpoint the affected subset of 
locations and time duration.

Characterize the event, e.g., by 
identifying the affected streams.

Compare hypotheses:

H1(D, S, W)

D = subset of streams                           
S = subset of locations                         

W = time duration

vs. H0: no events occurring
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Expectation-based scan statistics
(Kulldorff, 1997; Neill and Moore, 2005)

We search for spatial regions 
(subsets of locations) where the 

recently observed counts for 
some subset of streams are 

significantly higher than expected.

Expected 
counts

Historical 
counts

Current counts 
(3 day duration)

We perform time series analysis 
to compute expected counts 

(“baselines”) for each location and 
stream for each recent day.

We then compare the actual and 
expected counts for each subset 
(D, S, W) under consideration.
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We find the subsets with highest 
values of a likelihood ratio statistic, 
and compute the p-value of each 
subset by randomization testing.

Maximum subset 
score = 9.8

2nd highest 
score = 8.4

Significant! (p = .013)

Not significant 
(p = .098)

…
F1* = 2.4 F2* = 9.1 F999* = 7.0To compute p-value

Compare subset score 
to maximum subset 
scores of simulated 
datasets under H0.

Expectation-based scan statistics
(Kulldorff, 1997; Neill and Moore, 2005)
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Likelihood ratio statistics

Expectation-based Poisson Expectation-based Gaussian

H0: ci,m
t ~ Gaussian(bi,m

t, σi,m
t)H0: ci,m

t ~ Poisson(bi,m
t)

H1(S): ci,m
t ~ Poisson(qbi,m

t) H1(S): ci,m
t ~ Gaussian(qbi,m

t, σi,m
t)

Let C = ∑S ci,m
t and B = ∑S bi,m

t. Let C’ = ∑S ci,m
t bi,m

t  / (σi,m
t)2

and B’ = ∑S (bi,m
t)2 / (σi,m

t)2. 

Maximum likelihood: q = C / B. Maximum likelihood: q = C’ / B’.

F(S) = C log (C/B) + B – C F(S) = (C’)2 / 2B’ + B’/2 – C’

Many possibilities: exponential family, nonparametric, Bayesian…

For our expectation-based scan statistics, the null hypothesis 
H0 assumes “business as usual”: each count ci,m

t is drawn 
from some parametric distribution with mean bi,m

t.  H1(S) 
assumes a multiplicative increase for the affected subset S.
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Which regions to search?
Typical approach: “spatial scan” (Kulldorff, 1997)

Each search region S is a sub-region of space.
• Choose some region shape (e.g. circles, rectangles) and 

consider all regions of that shape and varying size.
• Low power for true events that do not correspond well to 

the chosen set of search regions (e.g. irregular shapes).

Our approach: “subset scan” (Neill, 2012)
Each search region S is a subset of locations.

• Find the highest scoring subset, subject to some 
constraints (e.g. spatial proximity, connectivity).

• For multivariate, also optimize over subsets of streams.
• Exponentially many possible subsets, O(2N x 2M): 

computationally infeasible for naïve search.
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Question: Why search over subsets?  
Answer: Simpler approaches can fail.

Top-down detection approaches Bottom-up detection approaches
Are there any globally interesting 

patterns?  If so, recursively search 
the most interesting sub-partition.

Two examples: bump hunting; 
“cluster then detect”.

Find individually (or locally) 
anomalous data points, and 

optionally, aggregate into clusters.

Two examples: anomaly/outlier 
detection; density-based clustering.

Top-down fails for small-scale 
patterns that are not evident 
from the global aggregates.

Bottom-up fails for subtle patterns that 
are only evident when a group of data 

records are considered collectively.
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Question: Why search over subsets?  
Answer: Simpler approaches can fail.

Top-down detection approaches Bottom-up detection approaches
Are there any globally interesting 

patterns?  If so, recursively search 
the most interesting sub-partition.

Two examples: bump hunting; 
“cluster then detect”.

Find individually (or locally) 
anomalous data points, and 

optionally, aggregate into clusters.

Two examples: anomaly/outlier 
detection; density-based clustering.

Top-down fails for small-scale 
patterns that are not evident 
from the global aggregates.

Bottom-up fails for subtle patterns that 
are only evident when a group of data 

records are considered collectively.

So here’s where we are so far:

Treating pattern detection as a subset 
scan problem is statistically desirable 
for maximizing detection power…

but computationally infeasible
(for exhaustive search at least).



Fast subset scan
• In certain cases, we can optimize F(S) over the 

exponentially many subsets of the data, while 
evaluating only O(N) rather than O(2N) subsets.

• Many commonly used scan statistics have the 
property of linear-time subset scanning:
• Just sort the data records (or spatial locations, etc.) from 

highest to lowest priority according to some function…
• … then search over groups consisting of the top-k 

highest priority records, for k = 1..N.

The highest scoring subset is 
guaranteed to be one of these!

Sample result: we can find the most anomalous subset 
of Allegheny County zip codes in 0.03 sec vs. 1024 years.

12

(Neill, 2012)
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Linear-time subset scanning
• Example: Expectation-Based Poisson statistic

• Sort data locations si by the ratio of observed to 
expected count, ci / bi. 

• Given the ordering s(1) … s(N), we can prove that the 
top-scoring subset F(S) consists of the locations s(1) … 
s(k) for some k, 1 ≤ k ≤ N.

• Key step: if there exists some location sout ∉ S with 
higher priority than some location sin ∈ S, then we can 
show that F(S) ≤ max(F(S U {sout}), F(S \ {sin})). 

• Theorem: LTSS holds for expectation-based scan 
statistics in any exponential family.
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Linear-time subset scanning
•

(Speakman et al., 2016)



Constrained fast subset scanning
LTSS is a new and powerful tool for exact combinatorial optimization 
(as opposed to approximate techniques such as submodular function 

optimization).  But it only solves the “best unconstrained subset” 
problem, and cannot be used directly for constrained optimization.

Many of our recent papers have focused on how LTSS can be extended to 
the many real-world problems with (hard or soft) constraints on our search.

+ Proximity constraints  Fast spatial scan (irregular regions)
+ Multiple data streams  Fast multivariate scan
+ Connectivity constraints  Fast graph scan
+ Group self-similarity  Fast generalized subset scan

15

(Neill, JRSS-B, 2012) (Speakman et al., JCGS, 2015) (McFowland et al., JMLR, 2013)
(Neill et al., Stat. Med., 2013)



Constrained fast subset scanning
LTSS is a new and powerful tool for exact combinatorial optimization 
(as opposed to approximate techniques such as submodular function 

optimization).  But it only solves the “best unconstrained subset” 
problem, and cannot be used directly for constrained optimization.

Many of our recent papers have focused on how LTSS can be extended to 
the many real-world problems with (hard or soft) constraints on our search.

+ Temporal dynamics  Spreading contamination in water supply
+ Hierarchical scanning  Prostate cancer in digital pathology slides
+ Scalable GP regression  Predicting and preventing rat infestations

16
(Speakman et al., ICDM 2013) (Somanchi & Neill, DMHI 2013) (Flaxman et al., 2015;

Neill et al., in preparation)
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Fast subset scan with spatial 
proximity constraints

• Maximize a likelihood ratio statistic over all subsets of the 
“local neighborhoods” consisting of a center location si and 
its k-1 nearest neighbors, for a fixed neighborhood size k. 

• Naïve search requires O(N · 2k) time and is 
computationally infeasible for k > 25.

• For each center, we can search over all subsets of its local 
neighborhood in O(k) time using LTSS, thus requiring a 
total time complexity of O(Nk) + O(N log N) for sorting the 
locations.

• In Neill (2012), we show that this approach dramatically 
improves the timeliness and accuracy of outbreak 
detection for irregularly-shaped disease clusters.



Multivariate fast subset scan
(Neill, McFowland, and Zheng, 2013)

Data streams d1..dM
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• The LTSS property allows us to 
efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.
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Multivariate fast subset scan
(Neill, McFowland, and Zheng, 2013)

(Score = 7.5)

Data streams d1..dM

Sp
at

ia
l l

oc
at

io
ns

  s
1..

s N

• The LTSS property allows us to 
efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.
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Multivariate fast subset scan
(Neill, McFowland, and Zheng, 2013)

(Score = 8.1)
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Data streams d1..dM

• The LTSS property allows us to 
efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.

• But it also allows us to efficiently 
optimize over subsets of streams
for a given subset of locations…
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Multivariate fast subset scan
(Neill, McFowland, and Zheng, 2013)

(Score = 9.0)
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• The LTSS property allows us to 
efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.

• But it also allows us to efficiently 
optimize over subsets of streams
for a given subset of locations…

• So we can jointly optimize over 
subsets of streams and locations 
by iterating between these steps!

26



Multivariate fast subset scan
• The LTSS property allows us to 

efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.

• But it also allows us to efficiently 
optimize over subsets of streams
for a given subset of locations…

• So we can jointly optimize over 
subsets of streams and locations 
by iterating between these steps!

(Neill, McFowland, and Zheng, 2013)

(Score = 9.3)
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Data streams d1..dM
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Multivariate fast subset scan
(Neill, McFowland, and Zheng, 2013)

(Score = 11.0)
Sp

at
ia

l l
oc

at
io

ns
  s

1..
s N

Data streams d1..dM

• The LTSS property allows us to 
efficiently optimize over subsets 
of spatial locations for a given 
subset of streams.

• But it also allows us to efficiently 
optimize over subsets of streams
for a given subset of locations…

• So we can jointly optimize over 
subsets of streams and locations 
by iterating between these steps!

• Converges to local maximum: we 
do multiple random restarts to 
approach the global maximum.

• For general datasets, a similar 
approach* can be used to jointly 
optimize over subsets of data 
records and attributes. *McFowland, Speakman, and Neill, JMLR, 2013
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Multivariate event detection

Spatial time series data from 
spatial locations si (e.g. zip codes)

Time series of counts 
ci,m

t for each zip code si
for each data stream dm.

d1 = respiratory ED
d2 = constitutional ED

d3 = OTC cough/cold

d4 = OTC anti-fever

Outbreak detection

(etc.)

Main goals: 

Detect any emerging events.

Pinpoint the affected subset of 
locations and time duration.

Characterize the event, e.g., by 
identifying the affected streams.

Compare hypotheses:

H1(D, S, W)

D = subset of streams                           
S = subset of locations                         

W = time duration

vs. H0: no events occurring



Multidimensional event detection

Spatial time series data from 
spatial locations si (e.g. zip codes)

Time series of counts 
ci,m

t for each zip code si
for each data stream dm.

d1 = respiratory ED
d2 = constitutional ED

d3 = OTC cough/cold

d4 = OTC anti-fever

(etc.)

Additional goal: identify any differentially affected 
subpopulations P of the monitored population.

Gender (male, female, both)
Age groups (children, adults, elderly)

Ethnic or socio-economic groups
Risk behaviors: e.g. intravenous drug 

use, multiple sexual partners

More generally, assume that we have a set 
of additional discrete-valued attributes 

A1..AJ observed for each individual case.

We identify not only the affected streams, 
locations, and time window, but also a 

subset of values for each attribute.

Outbreak detection



• Our MD-Scan framework (Neill & Kumar, 2013) 
extends LTSS to the multidimensional case:  
• For each time window and spatial neighborhood 

(center + k-nearest neighbors), we do the following:

1. Start with randomly chosen subsets of locations S, 
streams D, and values Vj for each attribute Aj (j=1..J).

2. Choose an attribute A (randomly or sequentially) and 
use LTSS to find the highest scoring subset of values, 

locations, or streams, conditioned on all other attributes.  
*** Linear rather than exponential in arity of A ***

3. Iterate step 2 until convergence to a local maximum of 
the score function F(D,S,W, {Vj}), and use multiple                     

restarts to approach the global maximum.

Multidimensional subset scan



• We first evaluated the detection performance of 
MD-Scan for detecting simulated disease 
outbreaks injected into real-world Emergency 
Department data from Allegheny County, PA.

• For outbreaks with differential effects by age and 
gender, MD-Scan demonstrated more timely
and more accurate detection, and accurately 
characterized the affected subpopulations.

Evaluation of MD-Scan



1) Identifying affected subpopulations
By the midpoint of the outbreak, MD-Scan is able to correctly 

identify the affected gender and age deciles with high 
probability, without reporting unaffected subpopulations. 

Proportions of correct and incorrect groups reported vs. time since start of outbreak.
Solid lines: affected gender and/or age deciles.  Dashed lines: unaffected.

Blue lines: outbreaks with differential effects by both age and gender (easier).
Red lines: outbreaks with differential effects by age or gender only (harder). 



2) Characterizing affected streams
As compared to the previous state of the art (multivariate linear-

time subset scanning), MD-Scan is better able to characterize the 
affected spatial locations and subset of the monitored streams.

Left: overlap coefficient between true and detected subsets of spatial locations.
Right: Proportions of correct and incorrect streams reported vs. day of outbreak.

Blue lines: outbreaks with differential effects by both age and gender (easier).
Red lines: outbreaks with differential effects by age or gender only (harder).

Green lines: MLTSS, ignoring age and gender information 



3) Timeliness of outbreak detection
MD-Scan achieved significantly more timely detection for 

outbreaks that were sufficiently biased by age and/or gender.

For outbreaks with strong age and 
gender biases, time to detection 

improved from 5.2 to 4.0 days at a 
fixed false positive rate of 1/month.

Smaller biases in age or gender were 
sufficient for significant improvements; even 
when no age/gender signal is present, MD-

Scan performs comparably to MLTSS.



• We first evaluated the detection performance of 
MD-Scan for detecting simulated disease 
outbreaks injected into real-world Emergency 
Department data from Allegheny County, PA.

• For outbreaks with differential effects by age and 
gender, MD-Scan demonstrated more timely
and more accurate detection, and accurately 
characterized the affected subpopulations.

Evaluation of MD-Scan

Nice proof of 
concept…

But what can we learn 
about real patterns of 
interest to public health?



• We analyzed county medical examiner data for 
fatal accidental drug overdoses, 2008-2015.

• ~2000 cases: for each overdose victim, we have 
date, location (zip), age, gender, race, and the 
set of drugs present in their system.

• Reduced to 30 dimensions (age decile, gender, 
race, presence/absence of 27 common drugs) 
plus space and time.

• Clusters discovered by MD-Scan were shared 
with Allegheny County Dept. of Human Services.

Allegheny County Overdose Data



MD-Scan Overdose Results (1)
Fentanyl is a dangerous drug which has 

been a huge problem in western PA.  
It is often mixed with white powder 
heroin, or sold disguised as heroin.

40-100x more 
potent than 
heroin or 
morphine!

January 16-25, 2014: 
14 deaths county-wide 

from fentanyl-laced heroin. 

March 27 to April 21, 2015: 
26 deaths county-wide from 

fentanyl, heroin only present in 11.

Started in the SE suburbs of Pittsburgh, 
including a cluster of 5 cases around 

McKeesport between March 27 and April 8.

Cluster score became significant March 29th

(4 nearby cases, white males ages 20-49) 
and continued to increase through April 20th.

Fentanyl, heroin, and combined deaths 
remained high through end of June (>100).

January 10 to February 7, 2015: 
Cluster of 11 fentanyl-related 

deaths, mainly black males over 
58 years of age, centered in 

Pittsburgh’s downtown Hill District.
Very unusual demographic: 

common dealer / shooting gallery?



MD-Scan Overdose Results (2)

From 2013-2015: no M&X overdose 
clusters; 33% and 47% drops in yearly 

methadone and M&X deaths respectively. 

Another set of discovered overdose clusters each 
involved a combination of Methadone and Xanax.

Methadone: an opioid used 
for chronic pain relief and to 
treat heroin addiction, but 

also addictive and risk of OD.

Xanax (alprazolam):
a benzodiazepine 

prescribed for panic 
and anxiety disorders.

The combination produces a strong high but 
can be deadly (~30% of methadone fatal ODs).

From 2008-2012: multiple M&X OD clusters, 
3-7 cases each, localized in space and time.

Why did these deaths cluster, when methadone 
and methadone + other benzo deaths did not?

What factors could explain the dramatic 
reduction in M&X overdose clusters?



MD-Scan Overdose Results (2)
Another set of discovered overdose clusters each 
involved a combination of Methadone and Xanax.

Methadone: an opioid used 
for chronic pain relief and to 
treat heroin addiction, but 

also addictive and risk of OD.

Xanax (alprazolam):
a benzodiazepine 

prescribed for panic 
and anxiety disorders.

Why did these deaths cluster, when methadone 
and methadone + other benzo deaths did not?

What factors could explain the dramatic 
reduction in M&X overdose clusters?

Increased state oversight of methadone 
clinics and prescribing physicians after 
passage of the Methadone Death and 

Incident Review Act (Oct 2012).

Approval of generic suboxone 
(buprenorphine + naloxone) in early 2013 

lowered cost of suboxone treatment as 
an alternative to methadone clinics.



Incorporating unstructured data
Free-text ED chief complaint data from 
hospitals in NYC and North Carolina.

Key challenge: public health agencies must 
be able to identify relevant clusters of disease 

cases that may not correspond to known 
syndromes (e.g., rare or novel outbreaks)

Date/time Hosp. Age Complaint
Jan 1 08:00 A 19-24 runny nose
Jan 1 08:15 B 10-14 fever, chills
Jan 1 08:16 A 0-1 broken arm
Jan 2 08:20 C 65+ vomited 3x
Jan 2 08:22 A 45-64 high temp



From structured to unstructured…
nose caught in door nausea 

vomiting

rabies shot

food 
poisoning

tired weak

n v d

diarrhea

a fib

fever

Each ED case does not just contain 
structured information, but also free 
text: the patient’s chief complaint.  

Q: How can we use this unstructured
data to enhance detection?

Possible approach: map ED cases to 
broad syndrome categories 

(“prodromes”) and do a 
multidimensional scan.



Where do existing methods fail?
The typical syndromic 

surveillance approach can 
effectively detect emerging 
outbreaks with commonly 
seen, general patterns of 

symptoms (e.g. ILI).

Mapping specific chief complaints 
to a broader symptom category 
can dilute the outbreak signal, 

delaying or preventing detection.

What happens when something 
new and scary comes along?
- More specific symptoms 

(“coughing up blood”)
- Previously unseen 

symptoms (“nose falls off”)

If we were monitoring these 
particular symptoms, it would only 
take a few such cases to realize 

that an outbreak is occurring!



The typical syndromic 
surveillance approach can 
effectively detect emerging 
outbreaks with commonly 
seen, general patterns of 

symptoms (e.g. ILI).

Where do existing methods fail?

Mapping specific chief complaints 
to a broader symptom category 
can dilute the outbreak signal, 

delaying or preventing detection.

What happens when something 
new and scary comes along?
- More specific symptoms 

(“coughing up blood”)
- Previously unseen 

symptoms (“nose falls off”)

If we were monitoring these 
particular symptoms, it would only 
take a few such cases to realize 

that an outbreak is occurring!

Our solution is to combine text-
based (topic modeling) and event 
detection (multidimensional scan) 
approaches, to detect emerging 

patterns of keywords.



Time series of hourly counts for 
each combination of hospital and 

age group, for each topic φj.

Classify cases to topics φ1: vomiting, nausea, diarrhea, …
φ2: dizzy, lightheaded, weak, … 

φ3: cough, throat, sore, … 

β

α

Φ1 … ΦKTopics

Topic 
prior

Case 
prior

θ1 … θN
Distribution 
over topics 
per case

wij Observed 
words

Bayesian inference 
using LDA model

The semantic scan statistic
Date/time Hosp. Age Complaint

Jan 1 08:00 A 19-24 runny nose
Jan 1 08:15 B 10-14 fever, chills
Jan 1 08:16 A 0-1 broken arm
Jan 2 08:20 C 65+ vomited 3x
Jan 2 08:22 A 45-64 high temp

Now we can do a 
multidimensional scan, using 
the learned topics instead of 

pre-specified syndromes!



Multidimensional scanning
For each hour of data:
For each combination S of:

• Hospital
• Time duration 
• Age range
• Topic

Count: C(S) = # of cases in that time interval matching on 
hospital, age range, topic.
Baseline: B(S) = expected count (28-day moving average).
Score: F(S) = C log (C/B) + B – C, if C > B, and 0 otherwise
(using the expectation-based Poisson likelihood ratio statistic)

We return cases corresponding to each top-scoring subset S.



NC DOH evaluation results
We compared the top 500 clusters found by semantic scan and a 

keyword-based scan on data provided by the NC DOH in a blinded 
evaluation, with DOH labeling each cluster as “relevant” or “not relevant”.

Semantic scan: for 10 true clusters, had to report 12; 
for 30 true clusters, had to report 54.

Keyword scan: for 10 true clusters, had to report 21;
for 30 true clusters, had to report 83.



NYC DOHMH dataset
• New York City’s Department of Health and Mental Hygiene 

provided us with 5 years of data (2010-2014) consisting of 
~20M chief complaint cases from 50 hospitals in NYC.

• For each case, we have data on the patient’s chief 
complaint (free text), date and time of arrival, age group, 
gender, and discharge ICD-9 code. 

• Substantial pre-processing of the chief complaint field was 
necessary because of size and messiness of data (typos, 
abbreviations, etc.).
• Standardized using the Emergency Medical Text Processor (EMTP) 

developed by Debbie Travers and colleagues at UNC.
• Spell checker for typo correction.
• If ICD-9 code in chief complaint field, convert to corresponding text.



Events identified by semantic scan

Motor vehicle
Ferry

School bus
Elevator

Meningitis
Scabies

Ringworm

Drug overdoses
Smoke inhalation
Carbon monoxide 

poisoning
Crime related, e.g., 

pepper spray attacks

Accidents Contagious 
Diseases

Other

Acute cases:
falls, SOB, leg Injuries

Mental health 
disturbances:

depression, anxiety

Burden on medical 
infrastructure:

methadone, dialysis

The progression of detected clusters after Hurricane Sandy 
impacted NYC highlights the variety of strains placed on 

hospital emergency departments following a natural disaster: 

Many other events of public health interest were identified:



This talk will focus on how we can scale up
event and pattern detection to address the                                  

size and complexity of real-world data:

1) New computational methods based on fast 
multidimensional subset scanning make            

pattern detection in massive datasets both 
computationally feasible and very fast.

2) New statistical approaches to modeling 
complex structure (online social networks) 

allow us to address important real-world 
problems ranging from rare outbreak         

detection to prediction of civil unrest.



Event Detection from Social Media
Protest in Mexico, 7/14/2012 2012 Washington D.C. Traffic Tweet Map for 2011 VA Earthquake

(Chen and Neill, KDD 2014)

Social media is a real-time “sensor” of large-scale population 
behavior, and can be used for early detection of emerging events...

… but it is very complex, noisy, and subject to biases.

We have developed a new event detection methodology: 
“Non-Parametric Heterogeneous Graph Scan” (NPHGS)

Applied to: civil unrest prediction, rare disease outbreak detection, 
and early detection of human rights events. 



Technical Challenges
Integration of multiple 

heterogeneous 
information sources!



Technical Challenges

Hashtag “#Megamarch” 
mentioned 1,000 times

Influential user “Zeka” 
posted 10 tweets

Mexico City has  
5,000 active users 

and 100,000  tweets

Tweets that have been 
re-tweeted 1,000 times

A specific link (URL) 
was mentioned                        

866 times 

Keyword “Protest” 
mentioned 5,000 times

One week before Mexico’s 2012 presidential election:



Technical Challenges
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"#MexicoExigeDemocracia“ 
http://t.co/MdG5T3z0 Twitterers help 
me with a RT?. See you on Saturday at 
15:00  in the #MegaMarcha.

"#MexicoExigeDemocracia""http://t.co/MdG5T3z
0 Twitterers help me with a RT?. See you on 
Saturday at 15:00

Ready to march, tweeting or filming 
tomorrow #MegaMarcha vs imposición. 
Hopefully many say #Vamon

#MexicoExigeDemocracia
http://t.co/MdG5T3z0 

Veracruz, Jalapa, Mérida, Tepotzotlan
add to the #MegaMarcha vs imposición. 
Tambien Los Ángeles. Who else says

imposición

# MegaMarchaSee you on Saturday at
15:00 in the #MegaMarcha

Mexico city

Benito Juarez

Ciudad

#Vamon

Twitter Heterogeneous Network
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Nonparametric Heterogeneous Graph Scan
1) We model the heterogeneous social network as a sensor network.

Each node senses its local neighborhood, computes multiple 
features, and reports the overall degree of anomalousness.

2) We compute an empirical p-value for each node: 
• Uniform on [0,1] under the null hypothesis of no events.
• We search for subgraphs of the network with a higher than 

expected number of low (significant) empirical p-values.

3) We can scale up to very large heterogeneous networks: 
• Heuristic approach: iterative subgraph expansion (“greedy 

growth” to subset of neighbors on each iteration).
• LTSS can efficiently find the best subset of neighbors, 

ensuring that the subset remains connected, at each step.

(Chen and Neill, KDD 2014)



empirical

calibration

empirical

calibration

Sensor network modeling

Object Type Features

User # tweets, # retweets, # followers, #followees, 
#mentioned_by,  #replied_by, 
diffusion graph depth, diffusion graph size

Tweet Klout, sentiment, replied_by_graph_size, reply_graph_size, 
retweet_graph_size, retweet_graph_depth

City, State, Country # tweets, # active users

Term # tweets

Link # tweets

Hashtag # tweets

Each node reports an empirical p-value measuring the current 
level of anomalousness for each time interval (hour or day). 

Individual p-value 
for each featureFeatures

Minimum 
empirical p-

value for 
each node

Overall p-value 
for each node

min



Nonparametric scan statistics
Subgraph

Berk-Jones (BJ) statistic:

Kullback-Liebler divergence:

Significance level
Number of nodes in S

Number of nodes in S with p-values ≤α.

p

p

f(p)

f(p)

0

0

1

1

α

H0

H1



Nonparametric graph scanning

0.09

0.05

0.20

0.03

0.11

0.02

0.08

0.06

0.09

0.01 0.02

0.04

0.11

0.05
0.25

0.30

0.40

0.36

0.38
0.45

We propose an approximate algorithm with time cost O(|V| log |V|).



NPHGS evaluation- civil unrest
Country # of tweets News source*
Argentina 29,000,000 Clarín; La Nación; Infobae
Chile 14,000,000 La Tercera; Las Últimas Notícias; El Mercurio

Colombia 22,000,000 El Espectador; El Tiempo; El Colombiano
Ecuador 6,900,000 El Universo; El Comercio; Hoy

Gold standard dataset: 918 civil unrest events between July and December 2012.

We compared the detection performance of our NPHGS approach 
to homogeneous graph scan methods and to a variety of state-of-
the-art methods previously proposed for Twitter event detection. 

Example of a gold standard event label:
PROVINCE = “El Loa” COUNTRY = “Chile”
DATE = “2012-05-18” LINK = “http://www.pressenza.com/2012/05/...”

DESCRIPTION = “A large-scale march was staged by inhabitants of the 
northern city of Calama, considered the mining capital of Chile, who 
demanded the allocation of more resources to copper mining cities”



NPHGS results- civil unrest

NPHGS outperforms existing representative techniques for both event 
detection and forecasting, increasing detection power, forecasting 

accuracy, and forecasting lead time while reducing time to detection.

Similar improvements in performance were observed on a second task: 

Early detection of rare disease outbreaks, using gold standard data 
about 17 hantavirus outbreaks from the Chilean Ministry of Health.



Temuco and Villarrica, Chile

Detected Hantavirus 
outbreak, 10 Jan 2013

First news report: 
11 Jan 2013

Locations
Users

Keywords
Hashtags

Links
Videos



NPHGS results- human rights
We performed an exploratory analysis of human rights-related 

events in Mexico from January 2013 to June 2014, using 
Twitter data (10% sample, filtered using relevant keywords).

The top 50 identified clusters over the entire study                                    
period were analyzed manually to identify: 

(1) whether the cluster was human rights related
(2) the types of human rights violations
(3) the victims of the violations
(4) the alleged perpetrators.

NPHGS was able to identify some human rights                                         
events of interest before international news sources…

… and in some cases, before local news sources.



Cluster characteristics
(top-50 detected clusters)

Note: not necessarily 
representative of true 
distribution of events!



Conclusions
Real-world problems at the societal scale require new computational 

methods to deal with both the size and the complexity of data.

massive
high-dimensional

multiple sources

unstructured text

network structure

Fast subset scanning (with constraints) can serve as a fundamental 
building block for efficient, scalable pattern detection in massive data.

Practical solutions to societal challenges also require an understanding 
of complex data (text, networks, images, streams, …), leading to new 

statistical and algorithmic tools for extracting relevant patterns.
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Thanks for listening!

More details on our web site: 
http://epdlab.heinz.cmu.edu

Or e-mail me at:
neill@cs.cmu.edu
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