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Motivation for this work
• “Scaling up” pattern detection to large, real-world graphs

• Online social networks such as Twitter, Amazon purchases, etc.

• Extending our past work on Twitter event detection (Chen 
and Neill, 2014, 2015).
• Can accurately detect, and sometimes predict, specific event types 

of interest (civil unrest, rare disease outbreaks, human rights…)
• Dramatically reduces effective graph size– but what if we don’t 

know what we’re looking for a priori?



Motivation for this work
Identifying and addressing challenges of big graphs:

Computational: efficiently 
identifying the highest-

scoring connected subgraph

Statistical: distinguishing 
affected subgraphs 
from random noise

Performance metrics: 

Run time
(as a function of graph size 
and other characteristics)

Approximation ratio 
(detected subgraph score / 
maximum subgraph score)

Performance metrics: 

Detection power 
(distinguishing graphs with and 
without an affected subgraph)

Precision and recall
(precisely identifying the 
affected subset of nodes)

Challenging because there 
are 2|V| subsets of nodes.

Challenging because there are many 
(α|V|) significant nodes even under H0.



Problem setting
• Standard problem setup, as in Chen and Neill (2014):

• Known graph G = (V,E)
• One or more quantities monitored at each graph node vi 

anomalousness of each node represented by empirical p-value pi.
• pi ~ Uniform[0,1] under H0.  
• Under H1(S), some subset of nodes S ⊆ V will have a higher than 

expected number of low (significant) empirical p-values.

• Likelihood ratio score: F(S) = P(Data | H1(S)) / P(Data | H0).
• Report the subset with highest score, S* = arg maxS F(S),  

and compute its statistical significance by randomization.



Nonparametric scan statistics
Subgraph

Berk-Jones (BJ) statistic:

Kullback-Liebler divergence:

Significance level
Number of nodes in S

Number of nodes in S with p-values ≤α.
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Real-world graphs
Very large and very sparse, with a distinct core-periphery structure. 

Network Vertices Edges Density Core
Nodes

Core 
Density

Tree 
Density

slashdot 82168 504230 1.49 × 10−4 10591 4.61 × 10−3 4.48 × 10−5

twitter 81306 1342296 4.06 × 10−4 17337 4.10 × 10−3 1.76 × 10−4

dblp 317080 1049866 2.09 × 10−5 22093 5.57 × 10−4 1.42 × 10−5

1) We can use core-tree decomposition to partition the 
graph into a denser core and a low-treewidth periphery.

2) We can further detect communities or “sub-cores” 
within the core.  These tend to have densities an                 
order of magnitude larger than the core’s density.

Q1: How can we efficiently detect 
patterns in such large graphs?

Q2: How can we accurately detect 
patterns in such large graphs?



Web-Scale Subset Scan
Our current algorithmic approach, WSSS, first performs 

subcore-tree decomposition (core-tree + community detection).
We then employ this decomposition by:
1) greedily merging significant tree nodes into the core;
2) identifying high-scoring clusters within each subcore;
3) merging high-scoring clusters across subcores.

Steps 2 and 3 first merge adjacent significant nodes in the 
core, then use color coding, an approximation algorithm for 

identifying the highest-scoring subset of cardinality <= |k|, 
requiring time O(M log N x (2e)k) rather than O(Nk).

Step 1 exploits the low treewidth of the periphery and the fact 
that most tree nodes are adjacent to at least one core node.

Since complexity scales rapidly with k, we use a small value (e.g., k = 3). 
Each merged node can represent many nodes of the original graph.

Using k > 1 allows us to find subgraphs with some non-significant nodes.



Evaluation setup

CDF of p-values 
under H0 (uniform)

CDF of p-values 
under H1: µ = 2

µ = 3
For each of the three real-

world graphs, we created 150 
datasets using that graph 

structure: 50 each of H0, H1
with µ = 2, and H1 with µ = 3.

Under H0, all p-values were 
drawn i.i.d. from U[0,1].

Under H1, 1000 “affected” 
vertices were chosen by a 
random walk on the graph.

Affected p-values were 
drawn i.i.d. from the 

distributions shown here.

We used WSSS to identify the highest-
scoring subgraph for each dataset, and 

evaluated run time, detection power, and 
accuracy (precision, recall, and overlap).
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Results (part 1)
The good news:

Efficiency: WSSS can find 
very high-scoring subgraphs 

in a reasonable time.
20 to 40 minutes for k = 1 

and exact refinement; 
1 to 6 hours for k = 3 and 
approximate refinement.

Detection power is close               
to perfect, i.e., we can 
accurately distinguish 

between graphs with and 
without affected subgraphs. 

The bad news:
Precision of the detected 

subgraph is very low.
WSSS identifies a subgraph 

that is much larger and 
higher-scoring than the true 
affected subgraph, including 

many nodes that are 
significant just by chance.

This happens regardless of 
parameter settings, and for 

comparison methods such as the 
upper level set (ULS) scan as well.

What’s happening: huge graphs have many significant p-values 
even under H0, and enforcing connectivity does not sufficiently 

constrain the search from just picking out many significant values. 
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This overfitting problem is worse for larger α
thresholds, so when we scan over α, the largest α
value considered often gives the maximum score.



Some possible solutions
Possible solution #1: Consider only 
values of α up to some lower αmax.

Possible solution #2: Eliminate nodes 
that are not significant at level αmax.

Key insight from percolation: randomly removing more than a proportion of 
nodes 𝜆𝜆 = 1 − 𝑘𝑘

𝑘𝑘2 − 𝑘𝑘
, where 𝑘𝑘 is avg. node degree and 𝑘𝑘2 is avg. 

squared degree, leads to the breakdown of the giant component of a graph.

Under H0, p-values are uniform on [0,1], so removing p-values 
greater than 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 = 1 − λ = 𝑘𝑘

𝑘𝑘2 − 𝑘𝑘
should disconnect the graph. 

Under H1, for the affected subgraph the fraction of p-values greater than 
1 − 𝜆𝜆 should be much lower than 𝜆𝜆, keeping the subgraph connected. 

This overfitting problem is worse for larger α
thresholds, so when we scan over α, the largest α
value considered often gives the maximum score.
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Results (part 2)
Comparison on Twitter dataset 

(µ = 3; exact refinement with k = 1)



Results (part 2)
Comparison on Slashdot dataset 
(µ = 3; exact refinement with k = 1)



Results (part 2)
Comparison on DBLP dataset 

(µ = 3; exact refinement with k = 1)



Conclusions
Pattern detection in huge real-world graphs is challenging 
because of both computational complexity and the large 
number of individually significant “false positive” nodes. 

We can exploit the core-periphery structure of real-world 
graphs to enable efficient (approximate) maximization of        

a likelihood ratio statistic over connected subgraphs.

Naïve maximization of the likelihood ratio statistic leads                
to detecting overly large, low precision subgraphs.

Using the percolation threshold of the graph to                   
reduce overfitting can enable more accurate detection.
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Core-periphery structure: Leskovec et al., Internet Math., 2009.
Core-tree decomposition: Maehara et al., VLDB, 2014.
Color coding: Cadena, Chen, and Vullikanti, SDM 2017.
Graphs obtained from SNAP: https://snap.stanford.edu/data/index.html

https://snap.stanford.edu/data/index.html
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