
Efficient Pattern Detection in Web-
Scale Graphs by Subcore-Tree

Decomposition and Subset Scanning
Daniel B. Neill, Ph.D.

Event and Pattern Detection Laboratory
Carnegie Mellon University
E-mail: neill@cs.cmu.edu

Joint work with Chunpai Wang, Feng Chen,
and Daniel Hono (SUNY Albany).

Motivation for this work
• “Scaling up” pattern detection to large, real-world graphs

• Online social networks such as Twitter, Amazon purchases, etc.

• Extending our past work on Twitter event detection (Chen
and Neill, 2014, 2015).
• Can accurately detect, and sometimes predict, specific event types

of interest (civil unrest, rare disease outbreaks, human rights…)
• Dramatically reduces effective graph size– but what if we don’t

know what we’re looking for a priori?

Motivation for this work
Identifying and addressing challenges of big graphs:

Computational: efficiently
identifying the highest-

scoring connected subgraph

Statistical: distinguishing
affected subgraphs
from random noise

Performance metrics:

Run time
(as a function of graph size
and other characteristics)

Approximation ratio
(detected subgraph score /
maximum subgraph score)

Performance metrics:

Detection power
(distinguishing graphs with and
without an affected subgraph)

Precision and recall
(precisely identifying the
affected subset of nodes)

Challenging because there
are 2|V| subsets of nodes.

Challenging because there are many
(α|V|) significant nodes even under H0.

Problem setting
• Standard problem setup, as in Chen and Neill (2014):

• Known graph G = (V,E)
• One or more quantities monitored at each graph node vi

anomalousness of each node represented by empirical p-value pi.
• pi ~ Uniform[0,1] under H0.
• Under H1(S), some subset of nodes S ⊆ V will have a higher than

expected number of low (significant) empirical p-values.

• Likelihood ratio score: F(S) = P(Data | H1(S)) / P(Data | H0).
• Report the subset with highest score, S* = arg maxS F(S),

and compute its statistical significance by randomization.

Nonparametric scan statistics
Subgraph

Berk-Jones (BJ) statistic:

Kullback-Liebler divergence:

Significance level
Number of nodes in S

Number of nodes in S with p-values ≤α.

p

p

f(p)

f(p)

0

0

1

1

α

H0

H1

Real-world graphs
Very large and very sparse, with a distinct core-periphery structure.

Network Vertices Edges Density Core
Nodes

Core
Density

Tree
Density

slashdot 82168 504230 1.49 × 10−4 10591 4.61 × 10−3 4.48 × 10−5

twitter 81306 1342296 4.06 × 10−4 17337 4.10 × 10−3 1.76 × 10−4

dblp 317080 1049866 2.09 × 10−5 22093 5.57 × 10−4 1.42 × 10−5

1) We can use core-tree decomposition to partition the
graph into a denser core and a low-treewidth periphery.

2) We can further detect communities or “sub-cores”
within the core. These tend to have densities an
order of magnitude larger than the core’s density.

Q1: How can we efficiently detect
patterns in such large graphs?

Q2: How can we accurately detect
patterns in such large graphs?

Web-Scale Subset Scan
Our current algorithmic approach, WSSS, first performs

subcore-tree decomposition (core-tree + community detection).
We then employ this decomposition by:
1) greedily merging significant tree nodes into the core;
2) identifying high-scoring clusters within each subcore;
3) merging high-scoring clusters across subcores.

Steps 2 and 3 first merge adjacent significant nodes in the
core, then use color coding, an approximation algorithm for

identifying the highest-scoring subset of cardinality <= |k|,
requiring time O(M log N x (2e)k) rather than O(Nk).

Step 1 exploits the low treewidth of the periphery and the fact
that most tree nodes are adjacent to at least one core node.

Since complexity scales rapidly with k, we use a small value (e.g., k = 3).
Each merged node can represent many nodes of the original graph.

Using k > 1 allows us to find subgraphs with some non-significant nodes.

Evaluation setup

CDF of p-values
under H0 (uniform)

CDF of p-values
under H1: µ = 2

µ = 3
For each of the three real-

world graphs, we created 150
datasets using that graph

structure: 50 each of H0, H1
with µ = 2, and H1 with µ = 3.

Under H0, all p-values were
drawn i.i.d. from U[0,1].

Under H1, 1000 “affected”
vertices were chosen by a
random walk on the graph.

Affected p-values were
drawn i.i.d. from the

distributions shown here.

We used WSSS to identify the highest-
scoring subgraph for each dataset, and

evaluated run time, detection power, and
accuracy (precision, recall, and overlap).

Evaluation setup
For each of the three real-

world graphs, we created 150
datasets using that graph

structure: 50 each of H0, H1
with µ = 2, and H1 with µ = 3.

Under H0, all p-values were
drawn i.i.d. from U[0,1].

Under H1, 1000 “affected”
vertices were chosen by a
random walk on the graph.

Affected p-values were
drawn i.i.d. from the

distributions shown here.

We used WSSS to identify the highest-
scoring subgraph for each dataset, and

evaluated run time, detection power, and
accuracy (precision, recall, and overlap).

Results (part 1)
The good news:

Efficiency: WSSS can find
very high-scoring subgraphs

in a reasonable time.
20 to 40 minutes for k = 1

and exact refinement;
1 to 6 hours for k = 3 and
approximate refinement.

Detection power is close
to perfect, i.e., we can
accurately distinguish

between graphs with and
without affected subgraphs.

The bad news:
Precision of the detected

subgraph is very low.
WSSS identifies a subgraph

that is much larger and
higher-scoring than the true
affected subgraph, including

many nodes that are
significant just by chance.

This happens regardless of
parameter settings, and for

comparison methods such as the
upper level set (ULS) scan as well.

What’s happening: huge graphs have many significant p-values
even under H0, and enforcing connectivity does not sufficiently

constrain the search from just picking out many significant values.

Results (part 1)
The good news:

Efficiency: WSSS can find
very high-scoring subgraphs

in a reasonable time.
20 to 40 minutes for k = 1

and exact refinement;
1 to 6 hours for k = 3 and
approximate refinement.

Detection power is close
to perfect, i.e., we can
accurately distinguish

between graphs with and
without affected subgraphs.

The bad news:
Precision of the detected

subgraph is very low.
WSSS identifies a subgraph

that is much larger and
higher-scoring than the true
affected subgraph, including

many nodes that are
significant just by chance.

This happens regardless of
parameter settings, and for

comparison methods such as the
upper level set (ULS) scan as well.

This overfitting problem is worse for larger α
thresholds, so when we scan over α, the largest α
value considered often gives the maximum score.

Some possible solutions
Possible solution #1: Consider only
values of α up to some lower αmax.

Possible solution #2: Eliminate nodes
that are not significant at level αmax.

Key insight from percolation: randomly removing more than a proportion of
nodes 𝜆𝜆 = 1 − 𝑘𝑘

𝑘𝑘2 − 𝑘𝑘
, where 𝑘𝑘 is avg. node degree and 𝑘𝑘2 is avg.

squared degree, leads to the breakdown of the giant component of a graph.

Under H0, p-values are uniform on [0,1], so removing p-values
greater than 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 = 1 − λ = 𝑘𝑘

𝑘𝑘2 − 𝑘𝑘
should disconnect the graph.

Under H1, for the affected subgraph the fraction of p-values greater than
1 − 𝜆𝜆 should be much lower than 𝜆𝜆, keeping the subgraph connected.

This overfitting problem is worse for larger α
thresholds, so when we scan over α, the largest α
value considered often gives the maximum score.

Some possible solutions

Resulting αmax values are .006, .008, and .05 for
Twitter, Slashdot, and DBLP graphs respectively.

Possible solution #1: Consider only
values of α up to some lower αmax.

Possible solution #2: Eliminate nodes
that are not significant at level αmax.

Key insight from percolation: randomly removing more than a proportion of
nodes 𝜆𝜆 = 1 − 𝑘𝑘

𝑘𝑘2 − 𝑘𝑘
, where 𝑘𝑘 is avg. node degree and 𝑘𝑘2 is avg.

squared degree, leads to the breakdown of the giant component of a graph.

Under H0, p-values are uniform on [0,1], so removing p-values
greater than 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 = 1 − λ = 𝑘𝑘

𝑘𝑘2 − 𝑘𝑘
should disconnect the graph.

Under H1, for the affected subgraph the fraction of p-values greater than
1 − 𝜆𝜆 should be much lower than 𝜆𝜆, keeping the subgraph connected.

Results (part 2)
Comparison on Twitter dataset

(µ = 3; exact refinement with k = 1)

Results (part 2)
Comparison on Slashdot dataset
(µ = 3; exact refinement with k = 1)

Results (part 2)
Comparison on DBLP dataset

(µ = 3; exact refinement with k = 1)

Conclusions
Pattern detection in huge real-world graphs is challenging
because of both computational complexity and the large
number of individually significant “false positive” nodes.

We can exploit the core-periphery structure of real-world
graphs to enable efficient (approximate) maximization of

a likelihood ratio statistic over connected subgraphs.

Naïve maximization of the likelihood ratio statistic leads
to detecting overly large, low precision subgraphs.

Using the percolation threshold of the graph to
reduce overfitting can enable more accurate detection.

18

References
Non-parametric scan statistics and subset scanning:
• D.B. Neill. Fast subset scan for spatial pattern detection. Journal of the Royal

Statistical Society (Series B: Statistical Methodology) 74(2): 337-360, 2012.
• E. McFowland III, S. Speakman, and D.B. Neill. Fast generalized subset scan

for anomalous pattern detection. Journal of Machine Learning Research, 14:
1533-1561, 2013.

• F. Chen and D.B. Neill. Non-parametric scan statistics for event detection and
forecasting in heterogeneous social media graphs. Proc. 20th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 1166-1175, 2014.

• F. Chen and D.B. Neill. Human rights event detection from heterogeneous
social media graphs. Big Data 3(1): 34-40, 2015.

Core-periphery structure: Leskovec et al., Internet Math., 2009.
Core-tree decomposition: Maehara et al., VLDB, 2014.
Color coding: Cadena, Chen, and Vullikanti, SDM 2017.
Graphs obtained from SNAP: https://snap.stanford.edu/data/index.html

https://snap.stanford.edu/data/index.html

	Slide Number 1
	Motivation for this work
	Motivation for this work
	Problem setting
	Nonparametric scan statistics
	Real-world graphs
	Web-Scale Subset Scan
	Evaluation setup
	Evaluation setup
	Results (part 1)
	Results (part 1)
	Some possible solutions
	Some possible solutions
	Results (part 2)
	Results (part 2)
	Results (part 2)
	Conclusions
	References

