Large-Scale
Gaussian
Processes for
Spatiotemporal
Modeling of
Disease Incidence

Seth Flaxman

Large-Scale Gaussian Processes for Spatiotemporal Modeling of Disease Incidence

Seth Flaxman

11 August 2015

Seth Flaxman

Collaborators

- Flaxman, Wilson, Neill, Nickisch, and Smola. "Fast Kronecker Inference in Gaussian Processes with non-Gaussian Likelihoods," International Conference on Machine Learning 2015, Lille.
- Flaxman, Gelman, Neill, Smola, Vehtari, and Wilson, "Fast hierarchical Gaussian processes." [draft on my website]

Seth Flaxman

Outline

- Large-scale spatiotemporal GP modeling
- Approximate and exact inference
- Hyperparameter learning
- Timing results on synthetic datasets
- Application: disease incidence
- Implementation

Seth Flaxman

Gaussian process modeling

• Observations y(s) at space/time locations s

Seth Flaxman

Gaussian process modeling

Observations y(s) at space/time locations s
Learn f such that y(s) = f(s) + ε.

Seth Flaxman

Gaussian process modeling

- Observations y(s) at space/time locations s
- Learn f such that $y(s) = f(s) + \epsilon$.
- GPs give a Bayesian framework for specifying a prior:

$$f(s) \sim \mathcal{GP}(\mu(s), k(s, s'))$$

Seth Flaxman

Gaussian process modeling

- Observations y(s) at space/time locations s
- Learn f such that $y(s) = f(s) + \epsilon$.
- GPs give a Bayesian framework for specifying a prior:

$$f(s) \sim \mathcal{GP}(\mu(s), k(s, s'))$$

• Likelihood ("observation model"):

 $y(s)|f(s) \sim \mathcal{N}(f(s), \sigma^2 I)$

Seth Flaxman

Gaussian process modeling

- Observations y(s) at space/time locations s
- Learn f such that $y(s) = f(s) + \epsilon$.
- GPs give a Bayesian framework for specifying a prior:

$$f(s) \sim \mathcal{GP}(\mu(s), k(s, s'))$$

• Likelihood ("observation model"):

$$y(s)|f(s) \sim \mathcal{N}(f(s), \sigma^2 I)$$

• Likelihoods for count data:

 $\begin{aligned} y(s_i)|f(s_i) &\sim \mathsf{Poisson}\left(\exp(f(s_i))\right) \\ y(s_i)|f(s_i) &\sim \mathsf{NegBinom}\left(\exp(f(s_i)), r\right) \end{aligned}$

Seth Flaxman

Gaussian process modeling

- Observations y(s) at space/time locations s
- Learn f such that $y(s) = f(s) + \epsilon$.
- GPs give a Bayesian framework for specifying a prior:

$$f(s) \sim \mathcal{GP}(\mu(s), k(s, s'))$$

• Likelihood ("observation model"):

$$y(s)|f(s) \sim \mathcal{N}(f(s), \sigma^2 I)$$

• Likelihoods for count data:

 $\begin{aligned} y(s_i)|f(s_i) &\sim \mathsf{Poisson}\left(\exp(f(s_i))\right) \\ y(s_i)|f(s_i) &\sim \mathsf{NegBinom}\left(\exp(f(s_i)), r\right) \end{aligned}$

• Combine prior and likelihood to get posterior

Seth Flaxman

Why GPs for spatiotemporal data?

- Consistent non-parametric regression method [Choi & Schervish 2007, Van der Vaart and Van Zanten 2011]
- Rich structure in the mean function
- Flexible, expressive covariance functions
- Generalizes many spatial and time series models
- Inference can be as Bayesian as you like
- Much recent work on scaling up to large datasets
- Missing data and forecasting are automatic

Seth Flaxman

Why GPs for spatiotemporal data?

- Consistent non-parametric regression method [Choi & Schervish 2007, Van der Vaart and Van Zanten 2011]
- Rich structure in the mean function
- Flexible, expressive covariance functions
- Generalizes many spatial and time series models
- Inference can be as Bayesian as you like
- Much recent work on scaling up to large datasets
- Missing data and forecasting are automatic

Seth Flaxman

Expressive covariance functions

Spectral Mixture [Wilson & Adams 2013] kernel: scale-location mixture of $\mathcal{N}(\mu_q, v_q)$ in the spectral domain.

By Bochner's theorem, SM kernels can approximate any stationary covariance function.

$$k(\tau) = \sum_{q=1}^{Q} w_q \exp(-2\pi^2 \tau^2 v_q) \cos(2\pi \tau \mu_q)$$

 w_q is the weight, $1/\mu_q$ is the period, and $1/\sqrt{v_q}$ is the length-scale.

Seth Flaxman

Scaling up (the view from ML)

- Naively GP models are $\mathcal{O}(n^3)$ time complexity and $\mathcal{O}(n^2)$ space complexity
- Inducing points methods [see survey by Quiñonero-Candela and Rasmussen 2005]
- Variational inference [Titsias 2009, Hensman et al 2013]
- Kronecker methods: Bonilla et al. [2007], Finley et al. [2009], Stegle et al. [2011], Saati [2011], Gilboa et al. [2013], Riihimki and Vehtari [2014], Wilson et al. [2014], Groot et al. [2014]
- ...and many other ideas in spatial statistics!

Seth Flaxman

Kronecker methods

Multivariate Gaussian distribution:

$$(2\pi)^{-n/2}|K|^{-1/2}e^{-\frac{1}{2}(x-\mu)^{\top}K^{-1}(x-\mu)}$$

Costly terms:

|K| and K^{-1} Assume observations on a grid and separable covariance:

$$egin{aligned} &\mathcal{K}=\mathcal{K}_{s}\otimes\mathcal{K}_{t}\ &k((s,t),(s',t'))=k(s,s')k(t,t') \end{aligned}$$

Then:

$$\det(K) = \prod_i \det(K_s)^m \det(K_t)^n$$

 $K^{-1}v = (K_s^{-1} \otimes K_t^{-1})v$

Seth Flaxman

Kronecker methods

Eigendecomposition
$$K_s = Q_1^{\top} \Lambda_1 Q_1$$
, $K_t = Q_2^{\top} \Lambda_2 Q_2$
 $K_s \otimes K_t = (Q_1^{\top} \otimes Q_2^{\top})(\Lambda_1 \otimes \Lambda_2)(Q_1 \otimes Q_2)$
 $K_s \otimes K_t + \sigma^2 I = (Q_1^{\top} \otimes Q_2^{\top})(\Lambda_1 \otimes \Lambda_2 + \sigma^2 I)(Q_1 \otimes Q_2)$
 $\log |K_s \otimes K_t + \sigma^2 I| = N_1 N_2 \sum_{ij} \log(\Lambda_{1ii} \Lambda_{2jj} + \sigma^2)$
 $(K_s \otimes K_t + \sigma^2 I)^{-1} y =$
 $((Q_1^{\top} \otimes Q_2^{\top})(\Lambda_1 \otimes \Lambda_2 + \sigma^2 I)^{-1}(Q_1 \otimes Q_2)) y$

Seth Flaxman

Kronecker methods

- Runtime is nearly linear time: \$\mathcal{O}(Dn^{\frac{D+1}{D}})\$ for \$n\$ observations and \$D\$ dimensions.
- Memory requirements are negligible: $\mathcal{O}(Dn^{\frac{2}{D}}) \leq \mathcal{O}(n).$
- Non-Gaussian observation models can be handled by the Laplace approximation (with an extra approximation for the log-determinant): Flaxman, Wilson, Neill, Nickisch, and Smola. "Fast Kronecker Inference in Gaussian Processes with non-Gaussian Likelihoods," ICML 2015.

Seth Flaxman

Hyperparameter learning

• Back to our basic model:

$$f(\boldsymbol{s}) \sim \mathcal{GP}(\mu(\boldsymbol{s}), \textit{k}_{\theta}(\boldsymbol{s}, \boldsymbol{s'}))$$

• How can we learn kernel hyperparameters?

$$k_{\theta}(\tau) = \sum_{q=1}^{Q} w_q \exp(-2\pi^2 \tau^2 v_q) \cos(2\pi \tau \mu_q)$$

• Answer 1: empirical Bayes aka maximize the marginal likelihood

$$rg\max_{ heta} p(y| heta) = rg\max_{ heta} \int p(y|m{f}) p(m{f}| heta) dm{f}$$

• Answer 2: fully Bayesian inference, place priors on hyperparameters, use MCMC

Seth Flaxman

Experiments

space

Seth Flaxman

Experiments: Kronecker with Laplace

Run-time of our algorithm vs. competitors

of observations

Seth Flaxman

Experiments: Kronecker with Laplace

Accuracy of our algorithm vs. competitors

of observations

Seth Flaxman

Experiments: Kronecker with MCMC

number of observations in dataset

Seth Flaxman

Real data: disease incidence

- Measles incidence $K_s \otimes K_t$ yearly for 50 states, 1935-1965 (n = 1550) from Project Tycho¹
- Fit with Laplace approximation (learn hyperparameters by maximizing the marginal likelihood)
- K_s is Matérn-3/2, K_t is either Matérn-5/2 or SM-2

Method	Matérn	SM-2
Run-time	4.4 minutes	6 minutes
RMSE	8680	1977
Log-lik.	-14039	-12869

¹tycho.pitt.edu

Seth Flaxman

Results

years

Large-Scale Gaussian Processes for Spatiotemporal Modeling of Disease Incidence	Real data: sampling						
Seth Flaxman	• Time series of monthly population-adjusted incidence of hepatitis A, measles, mumps, pertussis and rubella from Project Tycho						
	• Categorical data: $K_t \otimes K_c$ where K_c is a cross-covariance matrix over diseases with a uniform prior (actually, Lkj prior)						
	Hepat	titis A	Mumps	Pertussis	Rubella		
Hepatitis	A	1	0.6 (0.4,0.8)	-0.3 (-0.6,-0.1)	0.4 (0.1,0.6)		
Mum	ps		1	-0.2 (-0.4,0.0)	0.6 (0.4,0.7)		
Pertus	sis			1	-0.2 (-0.5,-0.0)		
Rube	la				1		

Real data: sampling Factor analysis: $K_t \otimes K_s$ where $K_s = LL^{\top} + \sigma^2 I$, rows of L have a Dirichlet prior

Seth Flaxman

time (months)

Seth Flaxman

Conclusion³

- Motivated use of GPs for spatiotemporal modeling
- Many settings match the Kronecker $/\ {\rm grid}\ {\rm structure}$
- Fully Bayesian approach: priors over kernel hyperparameters, missing data, complex models, implemented in Stan (source code in Appendix to paper on my website)
- Approximate Laplace approach is part of latest version of GPML² package
- Future work: more efficient MC inference for non-Gaussian likelihoods, variational inference (in Stan!)

²www.gaussianprocess.org/gpml/code

³Funding acknowledgement: NSF grant IIS-0953330

Seth Flaxman

Non-Gaussian likelihoods: Inference

$$p(f|\mathbf{y}, X) \approx \mathcal{N}(f|\hat{f}, (K^{-1} + W)^{-1})$$

for $W = -\nabla \nabla \log p(\mathbf{y}|f)$.

- The problem: covariance in Laplace approximation $(K^{-1} + W)^{-1}$ is not Kronecker
- Matrix inverse with LCG: matrix-vector multiplications are still fast
- Small number of evaluations required, each efficient:

$$(K^{-1} + W)v$$

= $K^{-1}v + Wv$
= $(K_1^{-1} \otimes K_2^{-1})v + Wv$

Seth Flaxman

Non-Gaussian likelihoods: Learning

Laplace approximate marginal likelihood:

$$\log p(\mathbf{y}|X, \boldsymbol{\theta}) = \log \int \exp[\Psi(\boldsymbol{f})] d\boldsymbol{f}$$

$$\approx \log p(\mathbf{y}|\hat{\boldsymbol{f}}) - \frac{1}{2} \boldsymbol{\alpha}^{\top} \boldsymbol{K}^{-1} \boldsymbol{\alpha} - \frac{1}{2} \log |\boldsymbol{I} + \boldsymbol{K} \boldsymbol{W}|,$$

Tricky term: $\log |I + KW|$. For psd matrices U and V, Fiedler [1971]:

$$\prod_i (u_i + v_i) \leq |U + V| \leq \prod_i (u_i + v_{n-i+1})$$

where $u_1 \leq u_2 \leq \ldots \leq u_n$ and $v_1 \leq \ldots \leq v_n$ are the eigenvalues of U and V.

Seth Flaxman

Fiedler bound

K has eigenvalues
$$e_1 \leq e_2 \leq \ldots \leq e_n$$
.
W has eigenvalues $w_1 \leq w_2 \leq \ldots \leq w_n$.

$$egin{aligned} \log |I + \mathcal{K}\mathcal{W}| &= \log(|\mathcal{K} + \mathcal{W}^{-1}||\mathcal{W}|) \ &\leq \log \prod_i (e_i + w_i^{-1}) \prod_i w_i \ &= \sum_i \log(1 + e_i w_i) \end{aligned}$$

Final bound on log-marginal likelihood:

$$\log p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{\theta}) \geq \log p(\boldsymbol{y}|\hat{\boldsymbol{f}}) - \frac{1}{2} \hat{\boldsymbol{\alpha}}^{\top} \boldsymbol{\mathcal{K}}^{-1} \hat{\boldsymbol{\alpha}} - \frac{1}{2} \sum_{i} \log(1 + e_{i} w_{i})$$

Seth Flaxman

Experiments: synthetic data

Accuracy of our marginal likelihood approximation

of observations

Seth Flaxman

Experiments: synthetic data

Accuracy of our log-determinant approximation

of observations

Seth Flaxman

Experiments: synthetic data

Run-time of our log-determinant approximation

27

Seth Flaxman

Laplace approximation

- Posterior inference: $p(f|y, X) \propto p(y|f)p(f|X)$
- Newton's method to find \hat{f}
- Taylor expansion of log posterior at \hat{f}
- The result is a Gaussian approximation

$$\mathcal{D}(oldsymbol{f}|oldsymbol{y},X)pprox\mathcal{N}(oldsymbol{f}|\widehat{oldsymbol{f}},(oldsymbol{K}^{-1}+W)^{-1})$$

for $W = -\nabla \nabla \log p(\boldsymbol{y}|\boldsymbol{f})$.

Seth Flaxman

Kronecker methods for non-Gaussian likelihoods with Laplace approximation

 $p(\boldsymbol{f}|\boldsymbol{y}, X) \approx \mathcal{N}(\boldsymbol{f}|\hat{\boldsymbol{f}}, (K^{-1} + W)^{-1})$

for $W = -\nabla \nabla \log p(\mathbf{y}|\mathbf{f})$.

- The problem: covariance in Laplace approximation $(K^{-1} + W)^{-1}$ is not Kronecker
- Matrix inverse with LCG: matrix-vector multiplications are still fast
- Upper-bound log-determinant using eigenvalues of *K* and *W* (diagonal)

Seth Flaxman

Results

Seth Flaxman

```
data {
  int < lower=1> n1;
  int < lower=1> n2:
  vector[n1] x1;
  vector[n2] x2;
  matrix[n1,n2] y;
  real sigma2;
}
parameters {
  real<lower=0> bw1;
  real <lower=0> bw2;
  real<lower=0> var1;
}
```

Source code

Seth Flaxman

```
model -
  matrix [n1, n1] Sigma1;
  matrix[n2, n2] Sigma2:
  matrix [n1, n1] Q1;
  matrix [n2, n2] Q2;
  vector[n1] L1;
 vector[n2] L2;
  matrix[n1,n2] eigenvalues;
  for (i in 1:n1) {
   Sigma1[i, i] <- var1;
    for (j in (i+1):n1) {
     Sigma1[i, j] <- var1 * exp(-(x1[i]-x1[j])^2*bw1);
     Sigma1[i, i] <- Sigma1[i, j];
  }
  for (i in 1:n2) {
   Sigma2[i, i] <- 1;
    for (j in (i+1):n2) {
     Sigma2[i, j] <- \exp(-(x2[i]-x2[j])^2 * bw2);
     Sigma2[i, i] \leq Sigma2[i, i];
 Q1 <- eigenvectors_sym(Sigma1);
 Q2 <- eigenvectors_sym(Sigma2);
 L1 <- eigenvalues_sym(Sigma1);
 L2 <- eigenvalues_sym(Sigma2);
  eigenvalues <- calculate_eigenvalues(L1,L2,n1,n2,sigma2);
  var1 ~ lognormal(0,1);
 bw1 ~ cauchy(0,2.5);
 bw2 ~ cauchy(0,2.5);
  sigma2 ~ lognormal(0,1);
  (01 02
```

Source code