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Collaborators

• Flaxman, Wilson, Neill, Nickisch, and Smola. “Fast
Kronecker Inference in Gaussian Processes with
non-Gaussian Likelihoods,” International Conference
on Machine Learning 2015, Lille.

• Flaxman, Gelman, Neill, Smola, Vehtari, and
Wilson, “Fast hierarchical Gaussian processes.”
[draft on my website]
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Outline

• Large-scale spatiotemporal GP modeling

• Approximate and exact inference

• Hyperparameter learning

• Timing results on synthetic datasets

• Application: disease incidence

• Implementation
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Gaussian process modeling
• Observations y(s) at space/time locations s

• Learn f such that y(s) = f (s) + ε.

• GPs give a Bayesian framework for specifying a prior:

f (s) ∼ GP(µ(s), k(s, s ′))

• Likelihood (“observation model”):

y(s)|f (s) ∼ N (f (s), σ2I )

• Likelihoods for count data:

y(si )|f (si ) ∼ Poisson (exp(f (si )))

y(si )|f (si ) ∼ NegBinom (exp(f (si )), r)

• Combine prior and likelihood to get posterior
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Why GPs for spatiotemporal data?

• Consistent non-parametric regression method [Choi
& Schervish 2007, Van der Vaart and Van Zanten
2011]

• Rich structure in the mean function

• Flexible, expressive covariance functions

• Generalizes many spatial and time series models

• Inference can be as Bayesian as you like

• Much recent work on scaling up to large datasets

• Missing data and forecasting are automatic
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Expressive covariance functions

Spectral Mixture [Wilson & Adams 2013] kernel:
scale-location mixture of N (µq, vq) in the spectral
domain.
By Bochner’s theorem, SM kernels can approximate any
stationary covariance function.

k(τ) =
Q∑

q=1

wq exp(−2π2τ 2vq) cos(2πτµq)

wq is the weight, 1/µq is the period, and 1/
√
vq is the

length-scale.
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Scaling up (the view from ML)

• Naively GP models are O(n3) time complexity and
O(n2) space complexity

• Inducing points methods [see survey by
Quiñonero-Candela and Rasmussen 2005]

• Variational inference [Titsias 2009, Hensman et al
2013]

• Kronecker methods: Bonilla et al. [2007], Finley et
al. [2009], Stegle et al. [2011], Saati [2011], Gilboa
et al. [2013], Riihimki and Vehtari [2014], Wilson et
al. [2014], Groot et al. [2014]

• ...and many other ideas in spatial statistics!
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Kronecker methods

Multivariate Gaussian distribution:

(2π)−n/2|K |−1/2e−
1
2
(x−µ)>K−1(x−µ)

Costly terms:
|K | and K−1

Assume observations on a grid and separable covariance:

K = Ks ⊗ Kt

k((s, t), (s ′, t ′)) = k(s, s ′)k(t, t ′)

Then:
det(K ) =

∏
i

det(Ks)
m det(Kt)

n

K−1v = (K−1s ⊗ K−1t )v
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Kronecker methods

Eigendecomposition Ks = Q>1 Λ1Q1, Kt = Q>2 Λ2Q2

Ks ⊗ Kt = (Q>1 ⊗ Q>2 )(Λ1 ⊗ Λ2)(Q1 ⊗ Q2)

Ks ⊗ Kt + σ2I = (Q>1 ⊗ Q>2 )(Λ1 ⊗ Λ2 + σ2I )(Q1 ⊗ Q2)

log |Ks ⊗ Kt + σ2I | = N1N2

∑
ij

log(Λ1iiΛ2jj + σ2)

(Ks ⊗ Kt + σ2I )−1y =(
(Q>1 ⊗ Q>2 )(Λ1 ⊗ Λ2 + σ2I )−1(Q1 ⊗ Q2)

)
y
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Kronecker methods

• Runtime is nearly linear time: O(Dn
D+1
D ) for n

observations and D dimensions.

• Memory requirements are negligible:
O(Dn

2
D ) ≤ O(n).

• Non-Gaussian observation models can be handled by
the Laplace approximation (with an extra
approximation for the log-determinant): Flaxman,
Wilson, Neill, Nickisch, and Smola. “Fast Kronecker
Inference in Gaussian Processes with non-Gaussian
Likelihoods,” ICML 2015.
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Hyperparameter learning
• Back to our basic model:

f (s) ∼ GP(µ(s), kθ(s, s ′))

• How can we learn kernel hyperparameters?

kθ(τ) =
Q∑

q=1

wq exp(−2π2τ 2vq) cos(2πτµq)

• Answer 1: empirical Bayes aka maximize the
marginal likelihood

arg max
θ

p(y |θ) = arg max
θ

∫
p(y |f )p(f |θ)df

• Answer 2: fully Bayesian inference, place priors on
hyperparameters, use MCMC
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Experiments
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Experiments: Kronecker with Laplace

Run-time of our algorithm vs. competitors
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Experiments: Kronecker with Laplace

Accuracy of our algorithm vs. competitors
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Experiments: Kronecker with MCMC

Kronecker HMCESS
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Real data: disease incidence

• Measles incidence Ks ⊗ Kt yearly for 50 states,
1935-1965 (n = 1550) from Project Tycho1

• Fit with Laplace approximation (learn
hyperparameters by maximizing the marginal
likelihood)

• Ks is Matérn-3/2, Kt is either Matérn-5/2 or SM-2

Method Matérn SM-2
Run-time 4.4 minutes 6 minutes

RMSE 8680 1977
Log-lik. -14039 -12869

1tycho.pitt.edu

tycho.pitt.edu
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Results
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Real data: sampling

• Time series of monthly population-adjusted
incidence of hepatitis A, measles, mumps, pertussis
and rubella from Project Tycho

• Categorical data: Kt ⊗ Kc where Kc is a
cross-covariance matrix over diseases with a uniform
prior (actually, Lkj prior)

Hepatitis A Mumps Pertussis Rubella
Hepatitis A 1 0.6 (0.4,0.8) -0.3 (-0.6,-0.1) 0.4 (0.1,0.6)

Mumps 1 -0.2 (-0.4,0.0) 0.6 (0.4,0.7)
Pertussis 1 -0.2 (-0.5,-0.0)

Rubella 1



Real data: sampling
Factor analysis: Kt ⊗ Ks where Ks = LL> + σ2I , rows of
L have a Dirichlet prior
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Posterior inference



Large-Scale
Gaussian

Processes for
Spatiotemporal
Modeling of

Disease Incidence

Seth Flaxman

21

Conclusion3

• Motivated use of GPs for spatiotemporal modeling

• Many settings match the Kronecker / grid structure

• Fully Bayesian approach: priors over kernel
hyperparameters, missing data, complex models,
implemented in Stan (source code in Appendix to
paper on my website)

• Approximate Laplace approach is part of latest
version of GPML2 package

• Future work: more efficient MC inference for
non-Gaussian likelihoods, variational inference (in
Stan!)

2www.gaussianprocess.org/gpml/code
3Funding acknowledgement: NSF grant IIS-0953330

www.gaussianprocess.org/gpml/code
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Non-Gaussian likelihoods: Inference

p(f |y ,X ) ≈ N (f |f̂ , (K−1 + W )−1)

for W = −∇∇ log p(y |f ).

• The problem: covariance in Laplace approximation
(K−1 + W )−1 is not Kronecker

• Matrix inverse with LCG: matrix-vector
multiplications are still fast

• Small number of evaluations required, each efficient:

(K−1 + W )v

= K−1v + Wv

= (K−11 ⊗ K−12 )v + Wv
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Non-Gaussian likelihoods: Learning

Laplace approximate marginal likelihood:

log p(y |X ,θ) = log

∫
exp[Ψ(f )]df

≈ log p(y |f̂ )− 1

2
α>K−1α− 1

2
log |I + KW | ,

Tricky term: log |I + KW |. For psd matrices U and V ,
Fiedler [1971]:∏

i

(ui + vi) ≤ |U + V | ≤
∏
i

(ui + vn−i+1)

where u1 ≤ u2 ≤ . . . ≤ un and v1 ≤ . . . ≤ vn are the
eigenvalues of U and V .
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Fiedler bound

K has eigenvalues e1 ≤ e2 ≤ . . . ≤ en.
W has eigenvalues w1 ≤ w2 ≤ . . . ≤ wn.

log |I + KW | = log(|K + W−1||W |)

≤ log
∏
i

(ei + w−1i )
∏
i

wi

=
∑
i

log(1 + eiwi)

Final bound on log-marginal likelihood:

log p(y |X ,θ) ≥ log p(y |f̂ )−1

2
α̂>K−1α̂−1

2

∑
i

log(1+eiwi)
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Experiments: synthetic data

Accuracy of our marginal likelihood approximation
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Experiments: synthetic data

Accuracy of our log-determinant approximation
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Experiments: synthetic data

Run-time of our log-determinant approximation
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Laplace approximation

• Posterior inference: p(f |y ,X ) ∝ p(y |f )p(f |X )

• Newton’s method to find f̂
• Taylor expansion of log posterior at f̂
• The result is a Gaussian approximation

p(f |y ,X ) ≈ N (f |f̂ , (K−1 + W )−1)

for W = −∇∇ log p(y |f ).
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Kronecker methods for non-Gaussian

likelihoods with Laplace approximation

p(f |y ,X ) ≈ N (f |f̂ , (K−1 + W )−1)

for W = −∇∇ log p(y |f ).

• The problem: covariance in Laplace approximation
(K−1 + W )−1 is not Kronecker

• Matrix inverse with LCG: matrix-vector
multiplications are still fast

• Upper-bound log-determinant using eigenvalues of
K and W (diagonal)
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Results
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Source code

data {
i n t<l o w e r=1> n1 ;
i n t<l o w e r=1> n2 ;
v e c t o r [ n1 ] x1 ;
v e c t o r [ n2 ] x2 ;
m a t r i x [ n1 , n2 ] y ;
r e a l s igma2 ;

}

p a r a m e t e r s {
r e a l <l o w e r=0> bw1 ;
r e a l <l o w e r=0> bw2 ;
r e a l <l o w e r=0> v a r 1 ;

}
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Source code
model {

mat r i x [ n1 , n1 ] Sigma1 ;
mat r i x [ n2 , n2 ] Sigma2 ;
mat r i x [ n1 , n1 ] Q1 ;
mat r i x [ n2 , n2 ] Q2 ;
v e c t o r [ n1 ] L1 ;
v e c t o r [ n2 ] L2 ;
mat r i x [ n1 , n2 ] e i g e n v a l u e s ;

f o r ( i i n 1 : n1 ) {
Sigma1 [ i , i ] <− va r1 ;
f o r ( j i n ( i +1): n1 ) {

Sigma1 [ i , j ] <− va r1 ∗ exp(−(x1 [ i ]−x1 [ j ] )ˆ2∗bw1 ) ;
Sigma1 [ j , i ] <− Sigma1 [ i , j ] ;

}
}
f o r ( i i n 1 : n2 ) {

Sigma2 [ i , i ] <− 1 ;
f o r ( j i n ( i +1): n2 ) {

Sigma2 [ i , j ] <− exp(−(x2 [ i ]−x2 [ j ] )ˆ2∗bw2 ) ;
Sigma2 [ j , i ] <− Sigma2 [ i , j ] ;

}
}

Q1 <− e i g e n v e c t o r s s ym ( Sigma1 ) ;
Q2 <− e i g e n v e c t o r s s ym ( Sigma2 ) ;
L1 <− e i g e n v a l u e s s ym ( Sigma1 ) ;
L2 <− e i g e n v a l u e s s ym ( Sigma2 ) ;

e i g e n v a l u e s <− c a l c u l a t e e i g e n v a l u e s ( L1 , L2 , n1 , n2 , s igma2 ) ;
va r1 ˜ l ogno rma l ( 0 , 1 ) ;
bw1 ˜ cauchy ( 0 , 2 . 5 ) ;
bw2 ˜ cauchy ( 0 , 2 . 5 ) ;
s igma2 ˜ logno rma l ( 0 , 1 ) ;
i n c r emen t l o g p r o b ( −0.5 ∗ sum( y .∗ kron mvprod (Q1 ,Q2 ,

kron mvprod ( t r a n s p o s e (Q1) , t r a n s p o s e (Q2) , y ) . / e i g e n v a l u e s ) )
− . 5 ∗ sum( l og ( e i g e n v a l u e s ) ) ) ;

}


