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I Research questions:
1. What are the leading indicators of homicides?
2. How to do feature selection with
spatiotemporal data?

I Background: space-time interaction tests,
statistical tests for independence

I Methods: “Kernel Space-Time” (KST) interaction
test

I Applications: 911 call data, crime o�ense
reports from Chicago
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Chicago
I Population: 2.7 million

I Area: 234 square miles

I CrimeScan
(collaboration with
CPD): use anomaly
detection for
prediction

I Which types of calls to
911 are predictive of
homicides and
shootings nearby?
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Space-time interaction

Point patterns

P1 = {(x 1i , y 1i , t 1i ), i = 1, . . . , n1}, P2 = {(x2j , y2j , t2j ), j = 1, . . . , n2}
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I Residual space-time dependence, after controlling for purely spatial
and purely temporal dependence.

I When two events are close in space, are they also likely to be close in
time?
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I Residual space-time dependence, after controlling for purely spatial
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I Residual space-time dependence, after controlling for purely spatial
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Statistical tests for space-time interaction

Knox test [1964]
Put the N = n1 · n2 pairs of points into a contingency
table:

close in space far in space
close in time X a = Nt
far in time b c

= Ns

Test statistic: X
N −

Nt
N ·

Ns
N

6 Carnegie Mellon University
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Mantel test [1967]
Put the N pairs of points into two matrices:

space: K =


0 ‖s1 − s2‖ . . . ‖s1 − sn‖

‖s2 − s1‖ 0 . . . ‖s2 − sn‖
. . .

‖sn − s1‖ ‖sn − s2‖ . . . 0



time: L =


0 |t1 − t2| . . . |t1 − tn|

|t2 − t1| 0 . . . |t2 − tn|
. . .

|tn − t1| |tn − t2| . . . 0


Test statistic:

∑
i,j Ki,jLi,j
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Shortcomings

I Knox: discretizes using pre-specified cuto�s

I Mantel: linear measure of independence
(correlation)

I Focus is exclusively on interpoint (Euclidean)
distances

I No way to include covariates, more spatial or
temporal structure
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Mercer Kernels
I A kernel is a real-valued paired similarity function:
k(x, y) ∈ R. Larger values ⇒ more similar.

I Example: Gaussian k(x, y) = e−‖x−y‖
2

I Mathematical theory: kernels turn points into
infinite dimensional vectors, i.e. functions:
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Theory
I Given points P = {pi = (si , ti)} we have two ways of

measuring similarity:

k(pi , pj) := k(si , sj) (similarity in space)

`(pi , pj) := `(ti , tj) (similarity in time)

I Are these two notions of similarity independent?

I In Hilbert space we have vectors φ(s) := k(s, ·) and
ψ(t) = `(t, ·)

I Consider φ(s) and ψ(t) as random variables and ask:

Is φ(s) ⊥⊥ ψ(t)?

10 Carnegie Mellon University
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Kernel measures of independence

I Hilbert-Schmidt Independence Criterion [Gretton et al 2012]

I Given observations ∼ X × Y , is

Pr(X , Y ) = Pr(X)Pr(Y )?

I HSIC works in the RKHS: given a feature space embedding

φ(x) = k(x, ·) we can embed a distribution:

µx := Ex[φ(x)]

I µX ∈ HX , µY ∈ HY , µXY ∈ HX ⊗ HY

I HSIC measures distance between embedding of joint

distribution and marginal distributions in Hilbert space:

HSIC = ‖µXY − µXµY‖2HS

11 Carnegie Mellon University
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Kernel measures of independence

I If kernels are characteristic / universal1:

Theorem [Gretton et al 2012].

HSIC = 0 ⇐⇒ Pr(X , Y ) = Pr(X)Pr(Y )

I Simple estimators available:

ĤSIC =
1

n
trHKHL

where Kij = k(xi , xj), Lij = `(yi , yj), H = (I − 1
n 11

T ).

1Sriperumbudur 2011 discusses relationship between these notions
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Kernel Space-time interaction statistics

I Recall: space-time interaction means interpoint
spatial and temporal “distances” are independent.

I Our definition: work in Hilbert space and ask
whether for p = (s, t):

φ(s) ∼ X ⊥⊥ ψ(t) ∼ Y

I Measure distance in the RKHS!

KST = ‖µXY − µXµY‖2HS
I If kernels are stationary, then they’re a similarity
metric based on interpoint distances.

I But we could use non-stationary kernels, or
domain appropriate kernels from geostatistics,
time series literature
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Comparison with Mantel

I Mantel: ∑
i,j

KijLij

I K̂ST:
1

n2

∑
i,j

KijLij−
1

n3

∑
i,j,r

KijLir−
1

n3

∑
i,j,r

KijLrj+
1

n4

∑
i,j,q,r

KijLqr

I Notice: missing terms! Mantel is almost right, but
the centering is wrong. With Euclidean distances,
and correct centering, Mantel becomes dcor
(Szekely and Rizzo, 2014)

14 Carnegie Mellon University



Our Contributions

I New, more general way of thinking about space-time

interaction ⇒ new test for space-time interaction

I Extensions to bivariate (KST12) / forward in time cases

(KST1→2)

I Interesting connections with Mantel test, showing its

shortcomings and fix

I More flexible test: kernels can encode more than just

distance between points. KST tests for non-linear

dependencies.

15 Carnegie Mellon University



Experimental Setup

Synthetic data: draw n = 40 random cluster center
parents, draw k = 5 children with locations displaced
N(0, σ) from parent in every direction.

Easy example: σ = .05
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Experimental Setup

Synthetic data: draw n = 40 random cluster center
parents, draw k = 5 children with locations displaced
N(0, σ) from parent in every direction.

Hard example: σ = .2
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Synthetic Data: Results
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Experimental Setup: Crime Data

Question: which types of calls to 911 predict

homicides and aggravated battery with a handgun

(“shootings”)?

Data:

I Dispatcher calls from January 2007-May 2010, coded by

one of 271 types (≈ 9 million):

"01-01-2010","12:25:00","ARSON",1172456,1834562

"01-02-2010","19:55:00","THEFT",1173123,1831123

I All shootings / homicides from January 2007-May 2010

(9,087 total):

"01-01-2010","19:00:37","HOMICIDE",1172001,1834023

"01-07-2010","19:55:00","HOMICIDE",1173934,1831384
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Experimental Setup

I Calculate p-values for KST1→2 between each 911
call type and shootings

I Use Gaussian RBF kernels: bandwidth 1
4 mile, 14

days

I Permutation testing 500 times to calculate
p-values

I Evaluated TPR on held-out data from an
L1-regularized logistic regression model with
features pre-selected by KST1→2

21 Carnegie Mellon University



Results

p-value 911 call type p-value 911 call type
0.002 STREETS & SAN PINK CARD 0.002 MENTAL UNAUTH ABSENCE
0.002 PERSON SHOT 0.002 DEATH REMOVAL
0.002 WALK DOWN 0.002 SHOTS FIRED (OV)
0.002 ASSAULT IP 0.002 CRIMINAL TRES. (OV)
0.002 EVIDENCE TECHNICIAN (PRI. 1) 0.002 ARSON REPORT
0.002 AUTO THEFT IP 0.002 TASTE OF CHICAGO
0.002 EVIDENCE TECHNICIAN (PRI. 3) 0.002 AMBER ALERT
0.002 PERSON WITH A GUN 0.004 DETAIL
0.002 MISSION 0.004 GANG DISTURBANCE
0.002 PERSON WANTED 0.004 PURSUIT FOOT (OV)
0.002 PERSON STABBED 0.006 BATTERY IP
0.002 SHOTS FIRED 0.006 NOTIFY
0.002 EVIDENCE TECHNICIAN (PRI. 2) 0.008 ON VIEW
0.002 PLAN 1-5 0.008 CRIM DAM. TO PROP IP
0.002 K9 REQUEST 0.008 RECOVERED STOLEN AUTO
0.002 OUTDOOR ROLL CALL 0.010 THEFT IP
0.002 CRIM DAM. TO PROP RPT 0.010 CRIM DAM. TO PROP (OV)
0.002 HOLDING OFFENDER (CITZ.) 0.010 MUNICIPAL ORD. VIOLATION
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Results
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Results

I KST + Lasso:
shots fired, shooting, o�cer pursuing someone on foot,

o�cer heard shots fired, narcotics loitering, o�cer station

assignment, person shot, meeting of the police beat unit,

support unit request, gang loitering.

I Lasso only:
shots fired, domestic disturbance, person with a gun,

shootings (the lagged version of the dependent variable),

o�cer eating lunch, vicious animal, parking violation, gang

disturbance, gambling, battery in progress.
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Conclusions

I New data-driven formulation of “leading
indicators” question as space-time interaction
between pairs of point processes

I Defined a new kernel-based space-time
interaction test

I Outperformed classical tests

I Applied to large, real, and important dataset:
shootings in Chicago
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Thank you! Questions?2

Seth Flaxman

flaxman@cmu.edu

www.sethrf.com (preprint available)

2Thank you to the Chicago Police Department for sharing data. Points of
view or opinions contained within this presentation are those of the author
and do not necessarily represent the o�cial position or policies of the
Chicago Police Department. Title page photo by Palsson on Flickr.
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Extensions

I Bivariate case: for test statistic, restrict sums to pairs of

points of di�erent types:

1

n2
∑
i,j

k(s1i , s
2
j )`(t

1
i , t

2
j )−

2

n3
∑
i,j,r

k(s1i , s
2
j )`(t

1
i , t

2
r ) +

1

n4
∑
i,j,q,r

k(s1i , s
2
j )`(t

1
q, t

2
r )

I Interesting interpretation in Hilbert space

I Only predict forward in time: restrict sums to pairs of

points where ti < tj .
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Excess risk attributable to space-time

interaction

D(s, t) =
FS,T (s, t)− FS(s)FT (t)

FS(s)FT (t)

Given that we see an event of type 1, proportional
increase (excess risk) of seeing an event of type 2.
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Maximum Mean Discrepancy (Gretton et al. 2012)

“Witness” f̂ ∗:

f̂ ∗(x, y) ∝
∑
i

k(x, xi)−
∑
j

k(y, yj)
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False positive rate

HSIC: 4.07% false positive
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False positive rate

Mantel (kernelized): 4.37% false positive
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False positive rate

Knox: 5.69% false positive
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