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Pattern Detection
as Subset Scanning

Pattern Detection can be framed as a
search over subsets of the data, with
the goal of finding the subset which
best matches a probabilistically
modeled pattern.

This “match” is quantified by a
scoring function, typically a
likelihood ratio.

Computational Problems: Infeasible to
perform exhaustive search for more
than 30 data records = 239 subsets

Linear-time Subset Scanning
(LTSS)
property allows for exact, efficient
identification of “highest scoring”
subset without an exhaustive search.

Neill, JRSS-B, 2012

GraphScan extended LTSS to only
consider connected subsets. Increases
power to detect patterns that affect a
subgraph of a larger network.

Speakman & Neill, Proc. ISDS 2010




Subset Scanning with Soft Constraints

Most previous work assumes hard constraints,
e.g., the cluster must be connected, or have radius <r.

Here we provide a framework for incorporating
“soft constraints” (bonuses or penalties) without
violating the properties that allow for efficient search.

Soft constraints on compactness Soft constraints on temporal consistency
(prefer more compact spatial (prefer dynamic clusters that change
clusters) smoothly over time)
Example: disease outbreak Example: detecting spreading contamination
detection in a water distribution network




Example: Detecting
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Disease Clusters

@ Location of a monitored data stream
- # of hospital ED visits by zip code
- # of OTC drug sales by zip code

In the presence of an outbreak,
we expect counts of the affected
locations to increase.

An effective detection method
should detect an outbreak early

and have high spatial accuracy,
while minimizing false positives.



Example: Detecting Disease Clusters
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(Kulldorff, 1997)

Spatial Scan Statistic
(Circles)

Maximize log-likelihood ratio statistic
over circles of varying radius
centered at each location.

High power to detect compact
clusters (close to circular)

But what about irregular shaped clusters?



Detecting Jrrequtar Disease Clusters
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(Neill, 2012)

Fast Localized Scan

Instead of clustering all locations
within the region together,
only the most anomalous subset of
locations within the region is used

Increases power to detect irregularly
shaped disease clusters

..but may return

spatially sparse subsets
that do not reflect an outbreak of disease



Detecting Jrrequtar Disease Clusters
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(Neill, 2012)

Fast Localized Scan

Instead of clustering all locations
within the region together,
only the most anomalous subset of
locations within the region is used

Increases power to detect irregularly
shaped disease clusters

...but may return

spatially sparse subsets
that do not reflect an outbreak of disease



Detecting Jrrequtar Disease Clusters

Soft Compactness Constraints




Detecting Jrrequtar Disease Clusters

Soft Compactness Constraints

Use the distance of each location
from the center as a measure of
compactness/sparsity



Detecting Jrrequtar Disease Clusters

Soft Compactness Constraints

Use the distance of each location
from the center as a measure of
compactness/sparsity

Reward subsets that contain
locations close to the center
and
Penalize subsets that contain
locations far from the center

Strength of
Constraint

Distance from the Center



Detecting Jrrequtar Disease Clusters
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Detecting Jrrequtar Disease Clusters
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Score Function: Expectation-Based Poisson

P(Data| H,(S)) H, : ¢, ~ Poisson(b,)

F(S) =log - 1
P(Data|H,) H,:c ~ Poisson(gb) 4>
P(Data|H, (S
F(S) = maxlog ( H,0))
q>1 P(Data|H,)
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Priority (¢, / b))

(Neill, 2012)

Linear-Time Subset Scanning

For EBP and any other score function satisfying the LTSS property,
the highest scoring subset is guaranteed to be one of the following:

A 1}

-4 |EEN
,a EEE

Decreases the search space from 2N to N

Naively altering the scoring function to enforce soft
constraints violates the LTSS property!




Adding Soft Constraints
to the Scoring Function

F(S)+2Ai®

Interpret the scoring function as a sum of contributions from

SOLUTION: each record in the subset.

Maximizing the scoring function is then equivalent to selecting all records that are
making a positive contribution.

S) — M@»¥n eatEjéSIarI z(qaitive function,

INSIGHT: further tearmsJT. soft constraints) may be introduced

without interfering with the maximization step.

Fs)=max> FGla)+a_ @)

SiES




Demonstration with Expectation-based Poisson

F(S) = maxlog P(Data|H,(5))
q>1 P(Data|H,)

e ® (gb)% /c! Q)b o
F(S) =maxlo L —maxlog [ [e" " q®
Sr=moo ] Fos e og ~meo] [

Contribution from each location, for a fixed g

( \

F(Sla)=> P—q)bi +clogg +A

Si eS
Log-likelihood F(si|q)

r

Reward /Penalty from
constraints




Demonstration with Expectation-based Poisson

Here we use A = h(1 - 2d/r):
d. is that location's distance from the center

ris the neighborhood radius
h is a constant representing the strength of the constraint.

Each A, can be interpreted as the prior log-odds that s, will

be affected, and thus the center location (d, =0, A, = h) is el
times as likely as its (k-1)th nearest neighbor (d. =r, A, = -h).

F(Sla)=>_ —a)b, +c logqg +A,

SiES

Reward /Penalty from

constraints



From Fixed g to All g

Our goal is to maximize F(S) over all q

»(re) Initialize q

N

Find optimal subset given Update severity given the
that severity optimal subset

“_

Leads to local maximum




Evaluation: Emergency Department
Data

Two years of admissions from 10
different Allegheny County
Emergency Departments

The patient’s home zip code is used
to tally the counts at each location

Centriods of 97 zip codes were used
as locations

Semi-Synthetic “injects” were created by artificially increasing the count within
various subsets of zip codes: Some compact, some elongated or irregular.




Competing Methods

Circles:
Determines the most anomalous circular region. Cl rCIES

Kulldorff, 1997

Fast Localized Scan:

Determines the most anomalous subset within a circular region. h =O
(This equates to our new method without additional soft constraints).

Neill, 2012




Competing Methods

Weak Compactness Constraints:
Determines the most anomalous subset with weak constraints h = 1

Moderate Compactness Constraints:
Determines the most anomalous subset with moderate constraints h :2

Strong Compactness Constraints:
Determines the most anomalous subset with strong constraints h :4




Results: Time to Detect (Days)
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Results: Spatial Overlap
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Results: Spatial Overlap
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Example 2:
Temporal Consistency

So far, we have naively used
temporal information by simply
aggregating counts over a
temporal window
We can also use temporal Time
information by rewarding
locations that were in the
optimal subset in previous
time steps.

This can increase power to
detect dynamic patterns that
may be changing over time.
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Spreading Contaminants in a Water
Distribution System




Spreading Contaminants in a Water




Data: Battle of the Water Sensor
Networks

Plumes of contaminants are simulated in a water

& distribution system
-~ o "
g assigne the system is equipped with imperfect

2
Sensors
v

Ber@p,=0.9)

Ostfield et al, 2008



Competing Methods

Upper Level Sets:
A heuristic that is not guaranteed to find the most anomalous subgraph

Patil & Taillie, 2004

ULS

GraphScan:
Determines the most anomalous subgraph without further constraints

Speakman & Neill, 2010

GS




Competing Methods

GraphScan with basic temporal consistency

F(S)=max ), €(s1)+4,

SiES

|

+AIf s, €Q
0 otherwise

ADD-GS
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— ADD-GS 7.66 100%

—GS 9.65 97.5%

—ULS 15.4 92.4%



Conclusions

We applied soft proximity constraints

We prowded a framework that for detecting an increase in ED visits

allows soft constraints to in Allegheny County, PA, and
influence the Scoring function temporal consistency constraints to
_ detect dynamic patterns of
and give preference to subsets of contamination in a water network.
desired spatial compactness or
temporal con5|stency, while still Empirical results showed that soft
allowing an efficient search for constraints reduced time to detect

and increased spatial accuracy of the

the highest scoring subset. methods in each case.




