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Pattern Detection can be framed as a 
search over subsets of the data, with 
the goal of finding the subset which 

best matches a probabilistically 
modeled pattern. 

 

This “match” is quantified by a 
scoring function, typically a  

likelihood ratio. 
 

Computational Problems:  Infeasible to 
perform exhaustive search for more 
than 30 data records  230 subsets 

Linear-time Subset Scanning 
(LTSS) 

 property allows for exact, efficient 
identification of “highest scoring” 

subset without an exhaustive search. 

Neill, JRSS-B, 2012 

GraphScan extended LTSS to only 
consider connected subsets.  Increases 
power to detect patterns that affect a 

subgraph of a larger network. 

Speakman & Neill, Proc. ISDS 2010 

Pattern Detection  
as Subset Scanning 



Subset Scanning with Soft Constraints 

Most previous work assumes hard constraints, 
e.g., the cluster must be connected, or have radius  ≤ r.  

 
Here we provide a framework for incorporating  

“soft constraints” (bonuses or penalties)  without 
violating the properties that allow for efficient search. 

Soft constraints on compactness 
(prefer more compact spatial 

clusters) 
 

Example: disease outbreak 
detection 

Soft constraints on temporal consistency 
(prefer dynamic clusters that change 

smoothly over time) 
 

Example: detecting spreading contamination 
in a water distribution network 



Example: Detecting Disease Clusters 

Location of a monitored data stream 
 -  # of hospital ED visits by zip code 
 -  # of OTC drug sales by zip code 

In the presence of an outbreak, 
 we expect counts of the affected 

locations to increase. 

An effective detection method 

should detect an outbreak early 

and have high spatial accuracy, 
while minimizing false positives. 



Spatial Scan Statistic 
(Circles)   

(Kulldorff, 1997) 

Maximize log-likelihood ratio statistic 
over circles of varying radius 

centered at each location. 

High power to detect compact 
clusters (close to circular) 

But what about irregular shaped clusters? 

Most 
Anomalous 

Circular 
Region 

Example: Detecting Disease Clusters 



Detecting Irregular Disease Clusters 

Fast Localized Scan 

(Neill, 2012) 

Instead of clustering all locations 
within the region together, 

 only the most anomalous subset of 
locations within the region is used 

Increases power to detect irregularly 
shaped disease clusters 

...but may return 

 spatially sparse subsets  
that do not reflect an outbreak of disease 



Detecting Irregular Disease Clusters 

Fast Localized Scan 

(Neill, 2012) 
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locations within the region is used 

Increases power to detect irregularly 
shaped disease clusters 

...but may return 

 spatially sparse subsets  
that do not reflect an outbreak of disease 



Detecting Irregular Disease Clusters 

Soft Compactness Constraints 



Detecting Irregular Disease Clusters 

Soft Compactness Constraints 

Use the distance of each location 
from the center as a measure of 

compactness/sparsity 



Detecting Irregular Disease Clusters 

Soft Compactness Constraints 

Use the distance of each location 
from the center as a measure of 

compactness/sparsity 

Distance from the Center 

Strength of 
Constraint 

Reward subsets that contain 
locations close to the center 

and 
Penalize subsets that contain 
locations far from the center 

Reward subsets that contain 
locations close to the center 

and 
Penalize subsets that contain 
locations far from the center 



Detecting Irregular Disease Clusters 

“...but may return 

 spatially sparse subsets  
that do not reflect an outbreak...” 

This particular subset would be less likely 
to be returned as optimal when 

compactness constraints are used. 

The penalties associated with the 
distance between the locations and 
center of the circle would decrease 

the “score” of the subset 
 

Soft Compactness Constraints 



Detecting Irregular Disease Clusters 

“...but may return 

 spatially sparse subsets  
that do not reflect an outbreak...” 

This particular subset would be less likely 
to be returned as optimal when 

compactness constraints are used. 

The penalties associated with the 
distance between the locations and 
center of the circle would decrease 

the “score” of the subset 
 

Soft Compactness Constraints 

...while increasing the score of 
compact clusters 



Score Function: Expectation-Based Poisson 
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Decreases the search space from 2N to N 

For EBP and any other score function satisfying the LTSS property, 
the highest scoring subset is guaranteed to be one of the following: 

(Neill, 2012) 

1 3 

Naively altering the scoring function to enforce soft 
constraints violates the LTSS property! 

Linear-Time Subset Scanning 



Adding Soft Constraints  
to the Scoring Function 
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SOLUTION: 
Interpret the scoring function as a sum of contributions from 

each record in the subset. 

Maximizing the scoring function is then equivalent to selecting all records that are 

making a positive contribution.   
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further terms (i.e. soft constraints) may be introduced 

without interfering with the maximization step. 
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Log-likelihood  F(si|q) Reward /Penalty from 
constraints 

Demonstration with Expectation-based Poisson 

Contribution from each location, for a fixed q 
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Reward /Penalty from 
constraints 

Demonstration with Expectation-based Poisson 

Here we use Δi = h(1 - 2di/r): 
di is that location's distance from the center 

r is the neighborhood radius 
h is a constant representing the strength of the constraint.  

 

Each Δi can be interpreted as the prior log-odds that si will 

be affected, and thus the center location (di = 0, Δi = h) is eh 

times as likely as its (k-1)th nearest neighbor (di = r, Δi = -h).  



MLE 

From Fixed q to All q 

Our goal is to maximize F(S) over all q 

Initialize q 

Find optimal subset given 
that severity 

Update severity given the 
optimal subset  

Leads to local maximum 

(re) 



Evaluation: Emergency Department 
Data 

Two years of admissions from 10 
different Allegheny County 
Emergency Departments 

 
The patient’s home zip code is used 
to tally the counts at each location 

 
Centriods of 97 zip codes were used 

as locations  
 

Semi-Synthetic “injects” were created by artificially increasing the count within 
various subsets of zip codes: Some compact, some elongated or irregular. 



Competing Methods 

Circles: 
Determines the most anomalous circular region. 

Kulldorff, 1997 

Fast Localized Scan: 
Determines the most anomalous subset within a circular region. 
(This equates to our new method  without additional soft constraints). 

Neill, 2012 

Circles 

h=0 



Competing Methods 

Weak Compactness Constraints: 
Determines the most anomalous subset with weak constraints h=1 

Moderate Compactness Constraints: 
Determines the most anomalous subset with moderate constraints h=2 

Strong Compactness Constraints: 
Determines the most anomalous subset with strong constraints h=4 



Results: Time to Detect (Days) 
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Results: Spatial Overlap 
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Results: Spatial Overlap 
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We can also use temporal 
information by rewarding 
locations that were in the 
optimal subset in previous 

time steps. 
 
 
 

Example 2:  
Temporal Consistency 

So far, we have naively used 
temporal information by simply 

aggregating counts over a 
temporal window 

 
 
 

Time 

This can increase power to 
detect dynamic patterns that 
may be changing over time. 



Ostfield et al 

Spreading Contaminants in a Water 
Distribution System 



Spreading Contaminants in a Water 
Distribution System 



Data: Battle of the Water Sensor 
Networks 

Plumes of contaminants are simulated in a water 
distribution system 

We assume the system is equipped with imperfect 
sensors 

Bern(p0= 0.1) Bern(p1=0.9) 

Ostfield et al, 2008 



Competing Methods 

Upper Level Sets: 
A heuristic that is not guaranteed to find the most anomalous subgraph 

Patil & Taillie, 2004 

GraphScan: 
Determines the most anomalous subgraph without further constraints 

Speakman & Neill, 2010  

ULS 

GS 



Competing Methods 

GraphScan with basic temporal consistency 

ADD-GS 
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Conclusions 

We provided a framework that 
allows soft constraints to 

influence the scoring function 
and give preference to subsets of 
desired spatial compactness or 
temporal consistency, while still 
allowing an efficient  search for 

the highest scoring subset. 

We applied soft proximity constraints 
for  detecting an increase in ED visits 

in Allegheny County, PA, and 
temporal consistency constraints to 

detect dynamic patterns of 
contamination in a water network. 

Empirical results showed that soft 
constraints reduced time to detect 

and increased spatial accuracy of the 
methods in each case. 


