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Background: Crime Prediction in Chicago 

Since 2009, we have been working with the 
Chicago Police Department (CPD) to predict and 

prevent emerging clusters of violent crime. 

Our new crime prediction methods have 
been incorporated into our CrimeScan 

software, run twice a day by CPD and used 
operationally for deployment of patrols. 

From the Chicago Sun-Times, February 22, 2011: 
“It was a bit like “Minority Report,” the 2002 movie that featured 
genetically altered humans with special powers to predict crime.  The 
CPD’s new crime-forecasting unit was analyzing 911 calls and produced 
an intelligence report predicting a shooting would happen soon on a 
particular block on the South Side.  Three minutes later, it did…” 



CrimeScan 
The key insight of our method is to use detection for prediction: 

We can detect emerging clusters of various leading indicators 
(minor crimes, 911 calls, etc.) and use these to predict that a 

cluster of violent crime is likely to occur nearby. 

Some advantages of the CrimeScan approach: 
•  Advance prediction (up to 1 week) with high accuracy. 
•  High spatial and temporal resolution (block x day).   
•  Predicting emerging hot spots of violence, as opposed to 
just identifying bad neighborhoods. 

How to detect leading indicator clusters? 
How to use these for prediction? 

*** Which leading indicators to use? ***  



CrimeScan: Cluster Detection 
We aggregate daily counts for each leading indicator at the 

block level, and search for clusters of nearby blocks with 
recent counts that are significantly higher than expected. 

Imagine moving a circular window around the city, allowing 
the center, radius, and temporal duration to vary.  

Is there any spatial window and duration T 
such that counts have been higher than 
expected for the last T days? 
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past counts 

Expected counts of 
last 3 days 

Actual counts of 
last 3 days 



CrimeScan: Cluster Detection 
We aggregate daily counts for each leading indicator at the 

block level, and search for clusters of nearby blocks with 
recent counts that are significantly higher than expected. 

Imagine moving a circular window around the city, allowing 
the center, radius, and temporal duration to vary.  

We find the highest-scoring space-time 
regions, where the score of a region is 
computed by the likelihood ratio statistic. 
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Null hypothesis: 
no clusters 

Alternative hypothesis: 
cluster in region S 

These are the most likely 
clusters; we compute the 
p-value of each cluster by 
randomization, and report 
clusters with p-values < . 



CrimeScan: Prediction 
The current deployed version of CrimeScan uses a 
very simple prediction rule:  
 

“Areas which are closer to a significant cluster of 
any of the monitored LI are assumed more likely to 

have a spike in VC within the next 1 week.” 
 
Total proximity to leading indicator clusters is 
computed using a Gaussian kernel: 
score = ∑ exp (-di

2/2) 
(di is distance to the ith leading indicator cluster) 
 
We are also investigating the use of logistic 
regression for prediction (results not shown). 



CrimeScan: Preliminary Results  
Key result: at block level, CrimeScan predicts 
60% of the clustered* VC which will occur in 
the next week, at a 15% false positive rate. 

* At least 3 VC in that 
beat, and 1.5 std. dev. 
more than expected. 

Prediction accuracy is significantly 
higher than competing methods. 



Which Predictors to Use? 
Challenge #1: hundreds of possible predictors, including 

minor crimes, 911 emergency calls, 311 calls for service, etc. 

Challenge #2: different data sources, or combinations of 
sources, may be predictive in different areas of the city. 

We wish to learn which combinations of sources are predictive, 
and where, using cross-correlation analysis of historical data. 

Typical formulation: given an independent variable time series 
X and a dependent variable time series Y, maximize correlation 
between X and lagged Y, over a range of lags L = Lmin…Lmax. 

For which subset of leading indicators, and which 
subset of locations, is cross-correlation maximized? 



Maximizing cross-correlation 
Given monitored locations si (i = 1..N), we observe the 

multiple independent variable time series xi,m
t (m = 1..M) 

and the dependent variable time series yi
t at each location. 

Our goal is to maximize the correlation r(X, Y) over all 
subsets of leading indicators, all proximity-constrained 

subsets of locations, and all lags L = Lmin..Lmax: 
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Maximizing cross-correlation 
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How to efficiently maximize correlation r(D, S, L) 
over 2N x 2M subsets of locations and predictors? 

Iterative framework (outer loop): 
1) Randomly initialize subset of streams D. 
2) Optimize over locations: S = arg maxS r(D, S, L) 
3) Optimize over streams: D = arg maxD r(D, S, L) 
4) Repeat steps 2-3 until convergence. 
5) Repeat steps 1-4 for R random restarts. 
6) Repeat steps 1-5 for each lag L. 



Optimizing over subsets of streams 
Given fixed S and L, we want to find a set D to maximize r(D, S, L). 
We write: X = ∑dm ∈ D Xm;  Xm = ∑si ∈ S xi,m; and Y = ∑si ∈ S yi.  
 

Then we maximize r(D | S, L) = r(X, Y) =                   =  

YX

YX

Dd m

Dd m

m

m

 

)(

YX

YX

 

Now we would like to write this expression as a convex function of two additive 
sufficient statistics, r(D | S, L) = F(C, B) where C = ∑ dm ∈ D Cm and B = ∑ dm ∈ D Bm. 

If we can do this, we can show that the optimal D consists  
of the k streams with highest ratio Cm / Bm, for some k ∈ {1..N}. 

This linear-time subset scanning (LTSS) property allows us to 
find the exact maximum over the 2M subsets in O(M log M). 



Optimizing over subsets of streams 
Given fixed S and L, we want to find a set D to maximize r(D, S, L). 
We write: X = ∑dm ∈ D Xm;  Xm = ∑si ∈ S xi,m; and Y = ∑si ∈ S yi.  
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Now we would like to write this expression as a convex function of two additive 
sufficient statistics, r(D | S, L) = F(C, B) where C = ∑ dm ∈ D Cm and B = ∑ dm ∈ D Bm. 

We can write r(D | S, L) = 
BY

C additive sufficient statistic: C = ∑ Cm = ∑ (Xm ∙ Y ) 

not an additive sufficient statistic! 
B = ∑ dm ∈ D (Xm ∙ Xm) + ∑ di, dj ∈ D, i ≠ j (Xi ∙ Xj)  

Solution: we can approximate the all-pairs computation using the 
average dot product of stream dm with an arbitrary set of streams. 



We can write r(D | S, L) = 
BY

C

not an additive sufficient statistic! 
B = ∑ dm ∈ D (Xm ∙ Xm) + ∑ di, dj ∈ D, i ≠ j (Xi ∙ Xj)  

Iterative average dot product (IADP) 

Since the optimal subset D is unknown, we compute the 
average dot product of each stream Dm with an arbitrary  

subset of streams D’ (Dm ∉ D’): 
 

Then B ≈ ∑ dm ∈ D Bm, where Bm = Xm ∙ Xm + (|D|-1) Qm.  We 
have approximated r(D | S, L) with a function which can be 
exactly and efficiently optimized using the LTSS property! 
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However, the approximation may be poor when D’ is far from D. 

 Our solution is to iterate: at each step, we set D’ equal to the best 
subset D found on the previous step, and repeat until convergence. 



Optimizing over subsets of locations 
Given fixed D and L, we want to find a set S to maximize r(D, S, L). 
We write: X = ∑si ∈ S Xi;  Xi = ∑dm ∈ D xi,m; and Y = ∑si ∈ S yi.  
 

Then we maximize r(S | D, L) = r(X, Y) = 
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This expression is more difficult to approximate by a 
function that satisfies LTSS because we have summations 
both over Xi and Yi, resulting in “all-pairs” computations 

both in the numerator and in the denominator.  
 

The iterative average dot product method can also be 
applied in this setting, but now we must make five 

approximations instead of one.  Details are provided in 
the full paper (Flaxman and Neill, 2012, submitted). 



Results: Comparison of Methods 
For IADP and several competing methods, we maximized cross-correlation over 
subsets of predictors (and locations) for each of the 77 Chicago neighborhoods. 

We then computed the average cross-correlation found by each method. 

Method Average cross-
correlation 

IADP, searching over 
subsets of census 
tracts within each 
neighborhood. 

.546 

IADP, treating each 
neighborhood as a 
single location. 

.423 

Google Correlate .404 

LASSO .325 

Improved feature selection: 
Searching over subsets of streams 

for each neighborhood, we find 
significantly higher correlations 

than previous methods. 

By jointly optimizing over subsets 
of locations and streams, we find 
areas with much stronger cross-

correlations between independent 
and dependent variables. 



Results: Exploratory Analysis 

Considering all subsets of census tracts within each of the 77 neighborhoods 
of Chicago, 28 different potential predictors, and a 1-week lag, we found a 

correlation of r = .786 between violent crime and a subset of 12 leading 
indicators, for 10 census tracts in the West Englewood neighborhood.   

Total run time for all 77 neighborhoods was 2.1 hours. 



Conclusions and Ongoing Work 
CrimeScan is a new and powerful methodology for crime 

prediction which has been very successful in practice. 

We are in the process of extending CrimeScan by 
developing novel methods to choose an optimal set of 

spatially varying leading indicators for prediction. 

Our results suggest that different subsets of leading 
indicators have high predictive accuracy in different 

areas, and that our new methods can efficiently optimize 
cross-correlation over subsets of locations and streams. 

Our next step is to determine whether the optimized, 
spatially varying subset of leading indicators can be used 
to improve the overall predictive accuracy of CrimeScan. 


