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Multivariate event detection
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thousands of hospitals and
pharmacies nationwide.

Given all of this nationwide health data on a daily basis,
we want to obtain a complete situational awareness by
Integrating information from the multiple data streams.

More precisely, we have three main goals: to detect any
emerging events (i.e. outbreaks of disease), characterize
the type of event, and pinpoint the affected areas.




Expectation-based scan statistics

(Kulldorff, 1997; Neill and Moore, 2005)

To detect and localize events,
we can search for space-time
regions where the number of
cases is higher than expected.

Imagine moving a window
around the scan area, allowing
the window size, shape, and
temporal duration to vary.
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Overview of the MBSS method
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Given a set of event types E,, a set of space-time regions S, and the multivariate
dataset D, MBSS outputs the posterior probability Pr(H,(S, E,) | D) of each type

of event in each region, as well as the probability of no event, Pr(H, | D).

MBSS uses Bayes’ Theorem to combine the data likelihood given each hypothesis
with the prior probability of that hypothesis: Pr(H | D) = Pr(D | H) Pr(H) / Pr(D).




The Bayesian hierarchical model
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Interpretation and visualization

MBSS gives the total posterior probability of
each event type E,, and the distribution of
this probability over space-time regions S.

Visualization: Pr(H,(s;, Ey)) = > Pr(H.(S, E)))
for all regions S containing location s;.

Posterior probability map

Total posterior probability of a
respiratory outbreak in each
Allegheny County zip code.

Darker shading = higher probability.




MBSS: advantages and limitations

MBSS can detect faster and MBSS can model and
more accurately by integrating differentiate between multiple
multiple data streams. potential causes of an event.

MBSS assumes a uniform prior for circular regions and zero prior for non-
circular regions, resulting in low power for elongated or irregular clusters.

There are too many subsets
of the data (2N) to compute
likelihoods for all of them!
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Generalized Fast Subset Sums
We define a non-uniform prior Pr(Hy(S, E,) over all 2" subsets of the data.

This prior has hierarchical structure:
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1. Choose center location s from
{s;...sy}, given multinomial Pr(s;).

2. Choose neighborhood size n from
{1...n4}, given multinomial Pr(n).
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Generalized Fast Subset Sums
We define a non-uniform prior Pr(Hy(S, E,) over all 2" subsets of the data.

This prior has hierarchical structure:

1. Choose center location s from
{s;...sy}, given multinomial Pr(s;).

2. Choose neighborhood size n from
{1...n4}, given multinomial Pr(n).

3. Foreachs, €S, include s;in S with
probability p, for a fixed 0 < p < 1.

Parameter p controls the sparsity of detected clusters.
Large p = compact clusters. Small p = dispersed clusters.
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We define a non-uniform prior Pr(H,(S, E,)) over all 2N subsets of the data.

This prior has hierarchical structure:
1.

Generalized Fast Subset Sums

Choose center location s, from
{S;...S\}, given multinomial Pr(s)).

Choose neighborhood size n from
{1...n4}, given multinomial Pr(n).

Foreachs; €S, include s; in S with
probability p, for a fixed 0 < p < 1.

p = 0.5 corresponds to the original Fast Subset Sums
approach described in (Neill, 2010), assuming that all
subsets are equally likely given the neighborhood.

p = 1 corresponds to MBSS, searching circular regions only.
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Generalized Fast Subset Sums

Naive computation of posterior probabilities using this prior requires
summing over an exponential number of regions, which is infeasible.

However, the total posterior probability of an outbreak, Pr(H,(E,) | D),
and the posterior probability map, Pr(H,(s;, E,) | D), can be calculated
efficiently without computing the probability of each region S.

In the original MBSS method, the likelihood ratio of spatial region S
for a given event type E, and event severity 8 can be found by
multiplying the likelihood ratios LR(s; | E,, 8) for all locations s; in S.

In GFSS, the average likelihood ratio of the 2" subsets for a given
center s, and neighborhood size n can be found by multiplying the
quantities (p x LR(s; | E,, 8) + (1-p)) for all locations s; in S.

Since the prior is uniform for a given center and neighborhood, we can

compute the posteriors for each s. and n, and marginalize over them.
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Evaluation

* We Iinjected simulated disease outbreaks into two
streams of Emergency Department data (cough,
nausea) from 97 Allegheny County zip codes.

* Results were computed for ten different outbreak
shapes, including compact, elongated, and
irregularly-shaped, with 200 injects of each type.

* We evaluated GFSS (with varying p) in terms of
run time, timeliness of detection, proportion of
outbreaks detected, and spatial accuracy.
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Computation time

We compared the run times of MBSS, GFSS, and a naive subset sums
implementation as a function of the maximum neighborhood size n,.

Run time of MBSS increased Run time for 100 days of data
gradually with increasing n,.,, Uup ] — v
—— 55
to 1.2 seconds per day of data. 1200 Narve

1000 4

Run time of Naive Subset Sums
iIncreased exponentially, making
it infeasible for n_... = 25.

Run time of GFSS scaled PP
quadratically with n_.,, up to T ¢ 7 ® 5 % B @ 46 7
Maximum neighborhood size (k_max)
8.8 seconds per day of data. ’

800 4

&00 4

Run time (seconds)

max 400 +

Thus, while GFSS is approximately 7.5x slower than the original
MBSS method, it is still extremely fast, computing the posterior
probability map for each day of data in under nine seconds.
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Timeliness of detection

Average days to detect
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With p = 0.5, GFSS detected an average of one day earlier than

MBSS for maximum temporal window W = 3, and 0.54 days earlier

for W =7, with less than half as many missed outbreaks.

Both methods achieve similar detection times for compact outbreak

regions. For highly elongated outbreaks, GFSS detects 1.3 to 2.2 days
earlier, and for irregular regions, GFSS detects 0.3 to 1.2 days earlier.




Spatial accuracy

Overlap coefficient
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As measured by the overlap coefficient between true and
detected clusters, GFSS outperformed MBSS by 10-15%.

For elongated and irregular clusters, GFSS had much
higher precision and recall. For compact clusters, GFSS
had higher precision, and MBSS had higher recall.




Posterior probablility maps

GFSS has much higher spatial accuracy than MBSS for elongated clusters.

True outbreak region

MBSS (p=1)

GESS (p=0.5)
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Posterior probablility maps

True outbreak reqgion MBSS (p=1) GFESS (p = 0.5)
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Generalized Fast Subset Sums

Optimization of the sparsity parameter p can substantially
improve the detection performance of the GFSS approach.

Compact cluster:

Detection time minimized at p = 0.5;

Highly elongated cluster:

Detection time minimized at p = 0.1,

spatial accuracy maximized at p = 0.7.

spatial accuracy maximized at p = 0.2.
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Generalized Fast Subset Sums

Optimization of the sparsity parameter p can substantially
improve the detection performance of the GFSS approach.

Comparison of detection times Comparison of spatial accuracy
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For elongated clusters, p = 0.2 improves detection time by 0.8
days and spatial accuracy by ~10%, as compared to p = 0.5.



Conclusions

GFSS shares the essential advantages of MBSS.: it can
Integrate information from multiple data streams, and can
accurately distinguish between multiple outbreak types.

As compared to the MBSS method, GFSS substantially improves
accuracy and timeliness of detection for elongated or irregular
clusters, with similar performance for compact clusters.

While a naive computation over the exponentially many
subsets of the data is computationally infeasible, GFSS can
efficiently and exactly compute the posterior probability map.

We can also learn the prior distributions over centers and
neighborhoods and the sparsity parameter p for each event type
using a small amount of training data. This enables us to better

differentiate between multiple, similar types of outbreak.
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