

Fast Subset Scan for Multivariate Spatial Biosurveillance

Daniel B. Neill*, Edward McFowland III, Huanian Zheng Event and Pattern Detection Laboratory Carnegie Mellon University *E-mail: neill@cs.cmu.edu

We gratefully acknowledge funding support from the National Science Foundation, grants IIS-0916345, IIS-0911032, and IIS-0953330.

Multivariate outbreak detection

spatial locations s_i (e.g. zip codes)

 d_1 = respiratory ED d_2 = constitutional ED d_3 = OTC cough/cold d_4 = OTC anti-fever (etc.)

Main goals:

Detect any emerging outbreaks.

Pinpoint the affected subset of locations and time duration.

Characterize the outbreak by identifying the affected streams.

<u>Compare hypotheses</u>: $H_1(D, S, W)$ D = subset of streams S = subset of locations W = time duration vs. H_0 : no outbreak

Expectation-based scan statistics

We then compare the actual and expected counts for each subset (D, S, W) under consideration. (Kulldorff, 1997; Neill and Moore, 2005)

We search for spatial regions (subsets of locations) where the recently observed counts for some subset of streams are significantly higher than expected.

We perform time series analysis to compute expected counts ("baselines") for each location and stream for each recent day.

Expectation-based scan statistics

(Kulldorff, 1997; Neill and Moore, 2005)

We find the regions with highest values of a likelihood ratio statistic, and compute the *p*-value of each region by randomization testing.

 $F(S) = \frac{\Pr(\text{Data} \mid H_1(D, S, W))}{\Pr(\text{Data} \mid H_0)}$

<u>To compute p-value</u> Compare region score to maximum region scores of simulated datasets under H₀.

$$F_{999}^{*} = 7.0$$

Likelihood ratio statistics

The univariate log-likelihood ratio statistic F(C, B) is a function of the aggregate count and baseline.

For the **expectation-based Poisson** (EBP) statistic: $F(C, B) = C \log (C / B) + B - C$, if C > B, and 0 otherwise.

Burkom's multivariate spatial scan statistic

Assumes a **constant effect** over all affected data streams, computed by maximum likelihood estimation.

F(D, S, W) = F(C, B)

C and B are aggregated over all affected data streams $d_m \in D$ and all affected spatial locations $s_i \in S$, for the most recent W days. Kulldorff's multivariate spatial scan statistic

Assumes **independent effects** on each data stream, each estimated separately by maximum likelihood.

 $F(D, S, W) = \sum_{m} F(C_{m}, B_{m})$

 C_m and B_m are aggregated over all affected spatial locations $s_i \in S$, for the given data stream d_m and for the most recent W days.

Likelihood ratio statistics

The univariate log-likelihood ratio statistic F(C, B) is a function of the aggregate count and baseline.

For the **expectation-based Poisson** (EBP) statistic: $F(C, B) = C \log (C / B) + B - C$, if C > B, and 0 otherwise.

Which regions to search?

- <u>Typical approach</u>: each search region S is a subregion of the search space.
 - Choose some region shape (e.g. circles, rectangles) and consider all regions of that shape and varying size.
 - Low power for true events that do not correspond well to the chosen set of search regions (e.g. irregular shapes).
- <u>Alternate approach</u>: each search region S represents a distinct subset of locations.
 - Find the highest scoring subset, subject to some constraints (e.g. spatial proximity, connectivity).
 - For multivariate, also optimize over subsets of streams!
 - Exponentially many possible subsets: computationally infeasible for naïve search.

The LTSS property

- In certain cases, we can search over the exponentially many subsets in <u>linear</u> time!
- Many commonly used scan statistics have the property of <u>linear-time subset scanning</u>:
 - Just sort the data records from highest priority to lowest priority according to some criterion...
 - ... then search over groups consisting of the top-k highest priority records, for k = 1..N.

The highest scoring subset is guaranteed to be one of these!

The LTSS property

- Example: Poisson statistics (Kulldorff, EBP)
 - Sort locations s_i by the ratio of observed to expected count, c_i / b_i.
 - Given the ordering $s_{(1)} \dots s_{(N)}$, we can **prove** that the top-scoring subset F(S) consists of the locations $s_{(1)} \dots s_{(k)}$ for some k, $1 \le k \le N$.
- Also holds for Gaussian, nonparametric, ...
- LTSS gives highest-scoring subset by evaluating N subsets instead of 2^N for naïve search.
 - Sample result: we can find the most anomalous subset of 97 western PA zip codes in .03 sec vs. 10²⁴ years.
 - How to incorporate spatial constraints?

Fast localized scan

- Maximize the spatial scan statistic over regions consisting of a "center" location s_i and any subset of its k nearest neighbors, for a fixed constant k.
- This is similar to Tango and Takahashi's flexible scan statistic, but may find a disconnected region.
- Naïve search requires O(N · 2^k) time and is computationally infeasible for k > 25.
- For each center, we can search over all subsets of its k-nearest neighbors in O(k) time using LTSS, thus requiring a total time complexity of O(Nk) + O(N log N) for sorting the locations.

How can we efficiently search over all subsets of data streams and over all proximity-constrained subsets of locations? Let's start with Burkom's multivariate scan.

<u>Option 1</u> (fast/naïve, or FN): for each of the 2^M subsets of streams, aggregate counts and apply LTSS to efficiently search over subsets of locations.

For a fixed number of streams, FN fast localized scan scales linearly (not exponentially) with neighborhood size.

8 streams: <1 sec/day of data.

How can we efficiently search over all subsets of data streams and over all proximity-constrained subsets of locations? Let's start with Burkom's multivariate scan.

<u>Option 2</u> (naïve/fast, or NF): exhaustively search over spatial regions. For each, perform efficient LTSS search over subsets of streams.

For a fixed neighborhood size k, NF fast localized scan scales linearly (not exponentially) with number of streams.

For k = 10: <1 sec/day of data

What if we have a large set of search regions and many data streams?

Option 3 (fast/fast, or FF):

1. Start with a randomly chosen subset of streams.

Spatial locations s₁..s_N

Data streams d₁..d_M

What if we have a large set of search regions and many data streams?

Option 3 (fast/fast, or FF):

1. Start with a randomly chosen subset of streams.

2. Use LTSS to efficiently find the highest-scoring subset of locations for the given streams.

What if we have a large set of search regions and many data streams?

Option 3 (fast/fast, or FF):

1. Start with a randomly chosen subset of streams.

2. Use LTSS to efficiently find the highest-scoring subset of locations for the given streams.

3. Use LTSS to efficiently find the highest-scoring subset of streams for the given locations. Spatial locations s₁..s_N (Score = 8.1)Data streams d₁..d_M

What if we have a large set of search regions and many data streams?

Option 3 (fast/fast, or FF):

1. Start with a randomly chosen subset of streams.

2. Use LTSS to efficiently find the highest-scoring subset of locations for the given streams.

3. Use LTSS to efficiently find the highest-scoring subset of streams for the given locations.

4. Iterate steps 2-3 until convergence.

What if we have a large set of search regions and many data streams?

Option 3 (fast/fast, or FF):

1. Start with a randomly chosen subset of streams.

2. Use LTSS to efficiently find the highest-scoring subset of locations for the given streams.

3. Use LTSS to efficiently find the highest-scoring subset of streams for the given locations.

4. Iterate steps 2-3 until convergence.

What if we have a large set of search regions and many data streams?

Option 3 (fast/fast, or FF):

1. Start with a randomly chosen subset of streams.

2. Use LTSS to efficiently find the highest-scoring subset of locations for the given streams.

3. Use LTSS to efficiently find the highest-scoring subset of streams for the given locations.

4. Iterate steps 2-3 until convergence.

5. Repeat steps 1-4 for 50 random restarts.

What if we have a large set of search regions and many data streams?

Option 3 (fast/fast, or FF):

1. Start with a randomly chosen subset of streams.

2. Use LTSS to efficiently find the highest-scoring subset of locations for the given streams.

3. Use LTSS to efficiently find the highest-scoring subset of streams for the given locations.

4. Iterate steps 2-3 until convergence.

5. Repeat steps 1-4 for 50 random restarts.

GOOD NEWS: Run time is linear in number of locations & number of streams.

BAD NEWS: Not guaranteed to find global maximum of the score function.

MORE GOOD NEWS: 200x faster than FN for 16 streams, and >98% approximation ratio.

What if we have a large set of search regions and many data streams?

Kulldorff's multivariate scan treats each stream independently, so it already scales efficiently with the number of streams... ... but searching over the exponentially many irregularly shaped regions (subsets of locations) is more difficult.

Our solution (FK) is similar to the FF algorithm for Burkom's multivariate scan, except that we must condition not on the affected subset of streams, but on the assumed <u>relative risk</u> for each stream.

We can efficiently optimize over subsets of locations for a given set of risks, using the LTSS property.

Iterate between these two steps until convergence!

Burkom vs. Kulldorff comparison

Using our new, fast algorithms, we evaluated the Burkom and Kulldorff multivariate scans on semi-synthetic outbreak detection tasks for 16 streams of Emergency Department data from Allegheny County, PA.

For both methods, searching over proximity-constrained subsets of locations resulted in 1 to 2 days faster detection, and significantly improved spatial accuracy (overlap), as compared to circular scan.

Comparing Burkom vs. Kulldorff methods, we found similar run time (Burkom 2-3x faster), and spatial accuracy was almost identical.

We observed an interesting tradeoff between the two methods' detection power and ability to characterize the affected streams.

Kulldorff's method tended to detect slightly faster than Burkom's: 0.5 days for M = 2 streams, and 0.2 to 0.3 days for larger values of M.

Burkom vs. Kulldorff comparison

Using our new, fast algorithms, we evaluated the Burkom and Kulldorff multivariate scans on semi-synthetic outbreak detection tasks for 16 streams of Emergency Department data from Allegheny County, PA.

However, Burkom's method was better able to identify the affected subset of streams.

Kulldorff's tended to report many unaffected streams as affected.

Conclusions

The choice between the Burkom and Kulldorff versions of the multivariate scan statistic depends on whether our primary goal is **early detection** or **accurate characterization** of outbreaks.

Our fast algorithms, based on extensions of linear-time subset scanning to the multivariate case, enable either version to be computed efficiently, even for many locations and many streams.

By scanning over all subsets of streams, and over all proximityconstrained subsets of locations, we can dramatically improve our ability to detect and characterize emerging outbreaks of disease.

For Burkom's multivariate scan, we have recently extended our FF algorithm to graph/network and tensor data, allowing us to scan over **connected** subsets of locations, **related** subsets of data streams, and **subpopulations** with different sets of demographic characteristics.

References

- Daniel B. Neill, Edward McFowland III, and Huanian Zheng. Fast subset scan for multivariate event detection. Submitted for publication, 2010.
- Daniel B. Neill. Fast subset scan for spatial pattern detection. Submitted for publication, 2010.
- Skyler Speakman and Daniel B. Neill. Fast graph scan for scalable detection of arbitrary connected clusters. *Proc. ISDS Annual Conference*, 2009.
- Daniel B. Neill. Fast and flexible outbreak detection by linear-time subset scanning. *Advances in Disease Surveillance* 5:48, 2008.
- Howard S. Burkom. Biosurveillance applying scan statistics with multiple disparate data sources. *J. Urban Health* 80: i57-i65, 2003.
- M. Kulldorff, F. Mostashari, L. Duczmal, K. Yih, K. Kleinman, and R. Platt. Multivariate spatial scan statistics for disease surveillance. Statistics in Medicine 26:1824-1833, 2007.