
Fast Subset Scan for Multivariate 

Spatial Biosurveillance

Daniel B. Neill*, Edward McFowland III, Huanian Zheng

Event and Pattern Detection Laboratory

Carnegie Mellon University

*E-mail: neill@cs.cmu.edu

We gratefully acknowledge funding support from the National Science 

Foundation, grants IIS-0916345, IIS-0911032, and IIS-0953330.



2

Multivariate outbreak detection

Spatial time series data from 

spatial locations si (e.g. zip codes)

Time series of counts 

ci,m
t for each zip code si

for each data stream dm.

Main goals: 

Detect any emerging outbreaks.

Pinpoint the affected subset of 

locations and time duration.

Characterize the outbreak by 

identifying the affected streams.

d1 = respiratory ED

d2 = constitutional ED

d3 = OTC cough/cold

d4 = OTC anti-fever

(etc.)

Compare hypotheses:

H1(D, S, W)

D = subset of streams                           

S = subset of locations                         

W = time duration

vs. H0: no outbreak



3

Expectation-based scan statistics
(Kulldorff, 1997; Neill and Moore, 2005)

We search for spatial regions 

(subsets of locations) where the 

recently observed counts for 

some subset of streams are 

significantly higher than expected.

Expected 

counts

Historical 

counts

Current counts 

(3 day duration)

We perform time series analysis 

to compute expected counts 

(“baselines”) for each location 

and stream for each recent day.

We then compare the actual and 

expected counts for each subset 

(D, S, W) under consideration.
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We find the regions with highest 

values of a likelihood ratio statistic, 

and compute the p-value of each 

region by randomization testing.
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Maximum region 

score = 9.8

2nd highest 

score = 8.4

Significant! (p = .013)

Not significant 

(p = .098)

…

F1* = 2.4 F2* = 9.1 F999* = 7.0To compute p-value

Compare region score 

to maximum region 

scores of simulated 

datasets under H0.

Expectation-based scan statistics
(Kulldorff, 1997; Neill and Moore, 2005)
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Likelihood ratio statistics
The univariate log-likelihood ratio statistic F(C, B)                                                             

is a function of the aggregate count and baseline.

For the expectation-based Poisson (EBP) statistic:

F(C, B) = C log (C / B) + B – C, if C > B, and 0 otherwise.

Burkom’s multivariate 

spatial scan statistic

Kulldorff’s multivariate 

spatial scan statistic

Assumes independent effects on 

each data stream, each estimated 

separately by maximum likelihood.

Assumes a constant effect over all 

affected data streams, computed by 

maximum likelihood estimation.

F(D, S, W) = F(C, B)

C and B are aggregated over all 

affected data streams dm ∈ D and 

all affected spatial locations si ∈ S, 

for the most recent W days.

F(D, S, W) = ∑m F(Cm, Bm)

Cm and Bm are aggregated over all 

affected spatial locations si ∈ S, for 

the given data stream dm and for 

the most recent W days.
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Likelihood ratio statistics
The univariate log-likelihood ratio statistic F(C, B)                                                             

is a function of the aggregate count and baseline.

For the expectation-based Poisson (EBP) statistic:

F(C, B) = C log (C / B) + B – C, if C > B, and 0 otherwise.

Burkom’s multivariate 

spatial scan statistic

Kulldorff’s multivariate 

spatial scan statistic

Assumes independent effects on 

each data stream, each estimated 

separately by maximum likelihood.

Assumes a constant effect over all 

affected data streams, computed by 

maximum likelihood estimation.

F(D, S, W) = F(C, B)

C and B are aggregated over all 

affected data streams dm ∈ D and 

all affected spatial locations si ∈ S, 

for the most recent W days.

F(D, S, W) = ∑m F(Cm, Bm)

Cm and Bm are aggregated over all 

affected spatial locations si ∈ S, for 

the given data stream dm and for 

the most recent W days.

Two main goals of this work:

Enable both Burkom and Kulldorff

multivariate scan statistics to scale up to 

massive and high dimensional datasets.

Compare the performance of these                        

two methods for event detection                      

and characterization.
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Which regions to search?
• Typical approach: each search region S is a 

subregion of the search space.
• Choose some region shape (e.g. circles, rectangles) and 

consider all regions of that shape and varying size.

• Low power for true events that do not correspond well to 
the chosen set of search regions (e.g. irregular shapes).

• Alternate approach: each search region S 
represents a distinct subset of locations.
• Find the highest scoring subset, subject to some 

constraints (e.g. spatial proximity, connectivity).

• For multivariate, also optimize over subsets of streams!

• Exponentially many possible subsets: computationally 
infeasible for naïve search.
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The LTSS property

• In certain cases, we can search over the 

exponentially many subsets in linear time!

• Many commonly used scan statistics have 

the property of linear-time subset scanning:

• Just sort the data records from highest priority to 

lowest priority according to some criterion…

• … then search over groups consisting of the 

top-k highest priority records, for k = 1..N.

The highest scoring subset is 

guaranteed to be one of these!
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The LTSS property
• Example: Poisson statistics (Kulldorff, EBP)

• Sort locations si by the ratio of observed to expected 

count, ci / bi. 

• Given the ordering s(1) … s(N), we can prove that the 

top-scoring subset F(S) consists of the locations s(1) … 

s(k) for some k, 1 ≤ k ≤ N.

• Also holds for Gaussian, nonparametric, …

• LTSS gives highest-scoring subset by evaluating N

subsets instead of 2N for naïve search.

• Sample result: we can find the most anomalous subset 

of 97 western PA zip codes in .03 sec vs. 1024 years.

• How to incorporate spatial constraints?
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Fast localized scan
• Maximize the spatial scan statistic over regions 

consisting of a “center” location si and any subset 

of its k nearest neighbors, for a fixed constant k. 

• This is similar to Tango and Takahashi’s flexible 

scan statistic, but may find a disconnected region.

• Naïve search requires O(N · 2k) time and is 

computationally infeasible for k > 25.

• For each center, we can search over all subsets 

of its k-nearest neighbors in O(k) time using 

LTSS, thus requiring a total time complexity of 

O(Nk) + O(N log N) for sorting the locations.



Guaranteed to 

find the highest 

scoring subset!
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Fast multivariate scans
How can we efficiently search over all subsets of data 

streams and over all proximity-constrained subsets of 

locations?  Let’s start with Burkom’s multivariate scan.

Option 1 (fast/naïve, or FN): for each of 

the 2M subsets of streams, aggregate 

counts and apply LTSS to efficiently 

search over subsets of locations.

For a fixed number of streams, 

FN fast localized scan scales 

linearly (not exponentially)                         

with neighborhood size.

8 streams: <1 sec/day of data.

647 days of data, 

8 data streams
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Fast multivariate scans

Option 2 (naïve/fast, or NF): 

exhaustively search over spatial 

regions.  For each, perform efficient               

LTSS search over subsets of streams.

Guaranteed to 

find the highest 

scoring subset!

For a fixed neighborhood size k, 

NF fast localized scan scales 

linearly (not exponentially)                         

with number of streams.

For k = 10: <1 sec/day of data

647 days of 

data, 

neighborhood 

size = 10

How can we efficiently search over all subsets of data 

streams and over all proximity-constrained subsets of 

locations?  Let’s start with Burkom’s multivariate scan.
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Fast multivariate scans
What if we have a large set of search regions and many data streams?  

Option 3 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

Data streams d1..dM
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Fast multivariate scans
What if we have a large set of search regions and many data streams?  

Option 3 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams.

(Score = 7.5)

Data streams d1..dM
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Fast multivariate scans
What if we have a large set of search regions and many data streams?  

Option 3 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams.

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations.

(Score = 8.1)
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Fast multivariate scans
What if we have a large set of search regions and many data streams?  

Option 3 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams.

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations.

4. Iterate steps 2-3                             

until convergence. (Score = 9.0)
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Fast multivariate scans
What if we have a large set of search regions and many data streams?  

Option 3 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams.

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations.

4. Iterate steps 2-3                             

until convergence. (Score = 9.3)
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Fast multivariate scans
What if we have a large set of search regions and many data streams?  

Option 3 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams.

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations.

4. Iterate steps 2-3                             

until convergence.

5. Repeat steps 1-4 for                             

50 random restarts.

(Score = 11.0)
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Fast multivariate scans
What if we have a large set of search regions and many data streams?  

Option 3 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams.

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations.

4. Iterate steps 2-3                             

until convergence.

5. Repeat steps 1-4 for                             

50 random restarts.

GOOD NEWS:            

Run time is linear in 

number of locations & 

number of streams.

BAD NEWS:                                       

Not guaranteed to find 

global maximum of the 

score function.

MORE GOOD NEWS:            

200x faster than FN for 

16 streams, and >98% 

approximation ratio.
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Fast multivariate scans
What if we have a large set of search regions and many data streams?  

Kulldorff’s multivariate scan treats each stream independently, 

so it already scales efficiently with the number of streams…

… but searching over the exponentially many irregularly 

shaped regions (subsets of locations) is more difficult.

Our solution (FK) is similar to the FF algorithm for Burkom’s 

multivariate scan, except that we must condition not on the affected 

subset of streams, but on the assumed relative risk for each stream.

We can efficiently optimize 

over subsets of locations 

for a given set of risks, 

using the LTSS property.

We can easily compute 

the maximum likelihood 

risk estimates for a given 

subset of locations.

Iterate between these two 

steps until convergence!
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Burkom vs. Kulldorff comparison
Using our new, fast algorithms, we evaluated the Burkom and Kulldorff 

multivariate scans on semi-synthetic outbreak detection tasks for 16 

streams of Emergency Department data from Allegheny County, PA.

Comparing Burkom vs. Kulldorff methods, we found similar run time 

(Burkom 2-3x faster), and spatial accuracy was almost identical.

For both methods, searching over proximity-constrained subsets of 

locations resulted in 1 to 2 days faster detection, and significantly 

improved spatial accuracy (overlap), as compared to circular scan.

We observed an interesting tradeoff between the two methods’ 

detection power and ability to characterize the affected streams.

Kulldorff’s method tended to detect slightly faster than Burkom’s:                                 

0.5 days for M = 2 streams, and 0.2 to 0.3 days for larger values of M. 



22

Burkom vs. Kulldorff comparison
Using our new, fast algorithms, we evaluated the Burkom and Kulldorff 

multivariate scans on semi-synthetic outbreak detection tasks for 16 

streams of Emergency Department data from Allegheny County, PA.

However, Burkom’s 

method was better able 

to identify the affected 

subset of streams.

Kulldorff’s tended to 

report many unaffected 

streams as affected.



For Burkom’s multivariate scan, we have recently extended our FF 

algorithm to graph/network and tensor data, allowing us to scan over 

connected subsets of locations, related subsets of data streams, and 

subpopulations with different sets of demographic characteristics.
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Conclusions
The choice between the Burkom and Kulldorff versions of the 

multivariate scan statistic depends on whether our primary goal is 

early detection or accurate characterization of outbreaks.

Our fast algorithms, based on extensions of linear-time subset 

scanning to the multivariate case, enable either version to be 

computed efficiently, even for many locations and many streams.

By scanning over all subsets of streams, and over all proximity-

constrained subsets of locations, we can dramatically improve our 

ability to detect and characterize emerging outbreaks of disease.
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