Carnegie Mellon

Non-Parametric Scan Statistics for
Disease Outbreak Detection on Twitter

Feng Chen and Daniel B. Neill
Carnegie Mellon University
12-12-2013



Carnegie Mellon

Why Can We Detect Events from Social Media?

2012 July-14, Mexico Protest 2012 Washington D.C. Traffic
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Tweet Map for 2011 VA Earthquake

* Event = Large-scale population behavior
« Social media is a real-time “sensor” of large

population behavior

* Event Detection vs. Forecasting

—Sense of public discussions about ongoing events vs.
trigger events using social media
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Disease Event Signals on Twitter

People are dying from hantavirus in Osorno hydroelectric government workers do
not report Camila | beg help @ camila_vallejo

RT @SeremiSaludM: Se confirmo primer caso de hantavirus en el Maule y con
consecuencia fatal. Se trata de un joven de 25 afnos de Pencahue

Confirmed: Young man dies in Pencahue Hanta: This is a 26-year residence in
the commune of http://t.co/5IkDOCZDmf

Confirmed: Young man dies from hantavirus in Pencahue

8 may, 2013 REGIOMAL REDMAU LE
It's 26-year-old resident in the commune of Pencahue and who was working in a manufacturing company of

olive oil from the sector. www.redmaule.com

Patient consultation on May 2 in the CESFAM Pencahue, with diagnosis of rhinopharyngitis. Subsequently,
Saturday 4 is admitted to the Hospital in Talca.

RT @ RADIOPALOMAFM: ISP confirmed case of hantavirus nvo rural sector In
Linares. Woman, 38, who died May 11 at the UCI via @ SeremiSaludM


http://t.co/5lkD0CZDmf
http://t.co/5lkD0CZDmf
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Technical Challenges

a Snake!
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Technical Challenges

“#VIRUSHANTA”
mentioned 100 times

-

Hantavirus Disease Qutbreak
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Mentioned 5000 times Araucania State

http://t.co/51kDOCZDmf
mentioned 10 times

has 15 active users

(T ¥ and 100 tweets

Influential User “SeremiSaludM”
(1497 followers) posted 8 tweets
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Technical Challenges

Hantavirus Disease Qutbreak

“#VIRUSHANTA”
mentioned 100 times
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. _ Keyword “Protest”
RT @SeremiSaludM: Se confirmo ’7 Menti 45000 ti
primer caso de hantavirus en el entione times

Araucania State
has 15 active users
and 100 tweets

Pencahue

re-tweeted 50 times

Maule y con consecuencia fatal.
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http://t.co/5IkDOCZDmf Influential User “SeremiSaludM”
mentioned 10 times o (1497 followers) posted 8 tweets
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Technical Challenges

Hantavirus Disease Qutbreak

“#VIRUSHANTA”
mentioned 100 times
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Our Solution

alc 1. Model Twitter Heterogeneous Network as a “Sensor

ri
W  Network”

Se trq . . .
i 2. Each sensor’s signal -> an empirical P value
u 3. Non-Parametric Scan Statistics
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http://t.co/5IkDOCZDmf Influential User “SeremiSaludM”
mentioned 10 times o (1497 followers) posted 8 tweets
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Twitter Heterogeneous Network
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Twitter Heterogeneous Network (Example)

In observation ? N man suspected of
having Hanta virus in Osorno is
http://t.co/xey8hbJ4
A

RT People are dying from hantavirus

in Osorno hydroelectric government

workers do not report Camila | beg
help @ camila_vallejo

Osorno

hantavirus

Hantavirus outbreak in Osorno? 1
dead 2 Serious and more, it involved a ” 1"
lawyer hydrogen g wants to help the AEIE TS
family? #Valdiviacl

@ juanjosellanten @ meganoticiascl
Virus kills Jorge Vasquez have now
moved to Palm Jc evicted more

congagious mutual RT @ rioenlinea [? WHAT LAST |

confirmed case of Hantavirus in

children or Malalhue remains severe ,
life-threatening

e
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Step 1: “Sensor Network” Modeling

 Model the twitter network as a "sensor" network, in which
each node senses its "neighborhood environment" and
reports an empirical p-value measuring the current level of
anomalousness for each time interval (e.g., hour or day).

Object Type

Features

User

Tweet

City, State, Country
Term

Link

Hashtag

# tweets, # retweets, # followers, #followees,
#mentioned_by, #replied by,
diffusion graph depth, diffusion graph size

Klout, sentiment, replied_by graph_size, reply graph_size,
retweet_graph_size, retweet_graph_depth

# tweets, # active users
# tweets
# tweets

# tweets

10



Carnegie Mellon
Step 2: Sensor Signals — Empirical P-values

Pvaiue = 0.02
# tweets

! ! .

In observation ? N man suspected of
having Hanta virus in Osorno is
http://t.co/xey8hbl4

RT People are dying from hantavirus
in Osorno hydroelectric government
workers do not report Camila | beg
help @ camila_vallejo

Osorno

hantavirus

Hantavirus outbreak in Osorno? 1
dead 2 Serious and more, it involved a
lawyer hydrogen q wants to help the
family? #Valdiviacl

#Valdiviacl

http://t.co/xey8hbl4

@ juanjosellanten @ meganoticiascl
Virus kills Jorge Vasquez have now
moved to Palm Jc evicted more
congagious mutual

RT @ rioenlinea [? WHAT LAST ]
confirmed case of Hantavirus in
children or Malalhue remains severe ,

life-threatening

Pvatue = 0.07
# tweets

hd S

Day 1 Day 2 Day 3 Day T ~
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Step 2: Sensor Signals — Empirical P-values

Pvaiue = 0.02
# tweets

Why we calculate an empirical p-value for each entity node?

P-value Is uniformly distributed between 0 and 1 under
null even the true distribution is unknown

Entities of different types can be evaluated consistently
based on their p-values

Empirical p-value is a nonparametric and
computationally convenient approach to estimate p-value
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Step 2: Sensor Signals — Empirical P-values

P=0.10 P=0.08 P=0.06

RT People are dying from hantavirus In observation ? N man suspected of
in Osorno hydroelectric government Osorno having Hanta virus in Osorno is
workers do not report Camila | beg http://t.co/xey8hbl4

help @ camila_vallejo

antavirus

P=0.08

Hantavirus outbreak in Osorno? 1

dead 2 Serious and more, it involved a »
lawyer hydrogen q wants to help the [l #Valdiviacl

family? #Valdiviacl

@ juanjosellanten @ meganoticiascl P:O 9

Virus kills Jorge Vasquez have now ' P 06
moved to Palm Jc evicted more :
congagious mutual RT @ rioenlinea [? WHAT LAST ]
confirmed case of Hantavirus in
P=0.11 children or Malalhue remains severe ,
life-threatening

P=0.08
As a group, what is the p-value? (< 0.05) 13
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Step 2: Sensor Signals — Non-Parametric Statistics

Why we consider non-parametric statistics?

A score function to measure a group of interesting nodes
Computationally very efficient

Asymptotic convergence to the true group p-value
Special cases:

1. Burst detection of keyword volume

2. Spatial Event Detection based on tweet counts in
spatial regions
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Step 3: Nonparametric Scan on “Sensor Network”

_______________________________________________________________________________________ Time T
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S* = argmax F(S)

:We propose novel nonparametric scan statistics for connected sub- |
t_graphs, and an approximate algorithm with time cost O(|Vr| log |Vr]). ',:
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Step 3: Nonparametric Scan Algorithm

Consider each node as a candidate cluster center (or start point)

In this example, we start from the seed set S = {(v{,0.09)}.

16
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Step 3: Nonparametric Scan Algorithm

Expand S by adding the neighbor nodes:

S = {(v4,0.09), (v4,0.01), (v3,0.11), (v4,0.05), (vs, 0.19), (v¢, 0.06)}

S* = argmaxg s F(S)=arg max{ max NK (%, a:)}

S*cS (asamax

17
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Step 3: Nonparametric Scan Algorithm

Expand S by adding the neighbor nodes:

$ = {(v4,0.09), (v5,0.01), (vs,0.11), (v4,0.05), (v<, 0.19), (v, 0.06)}
S* = argmaxq ¢ F(S)=arg max{ max NK (& a:)}
5ES s*cS (a<amax N’

— {U1, U2, V3, Uy, v6}
18
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Step 3: Nonparametric Scan Algorithm

_ TimeT
- ] (o) &5 03 T v002) :
i ‘/Q>(V19’0'20) (V50,038 Y g g 0.
E — 0. = (V14,0.36) i

_______________________________________________________________________________________________

Expand S by adding the neighbor nodes:

S" = {(Ull 009)) (Uz, 001)1 (UBI 011)! (U‘q_, 005)! (Uﬁl 006): (US: 019)1
(177, 035), (UB! 0.1 1), (vll; 002), (vlﬁ, 025)}

S* = argmaxg s F(S)=arg max{ max NK (%, a:)}

S*cS (asamax

19
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Step 3: Nonparametric Scan Algorithm

Expand S by adding the neighbor nodes:

S" = {(Ull 009)) (Uz, 001)1 (UBJ 011)! (v/-l-l 005)! (Ufj) 006)1 (USI 019)1
(v7,0.35), (vg,0.11), (v11,0.02), (v416,0.25)}

S* = argmaxg s F(S)=arg max{ max NK( )}

S*cS (asamax

— {vl; V2, V3, Vs, Vg, Vg, 1]11}
20
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Step 3: Nonparametric Scan Algorithm

] TimeT
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Consider each node as a candidate cluster center (or start point)

In this example, we start from the seed set S = {(v1,0.09)}, and
after four expansions, we obtain the local optimum solution:

*
v, {1, V2,3, V4, Vg, Vg, Vo, V11, V12, V17}

21
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Step 3: Nonparametric Scan Algorithm

0.45 0.35 0.
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Theoretical Properties

1. Guaranteed to find the globally optimal solution if the
data contain no “break-tire” entities

2. Equivalent to percolation-based graph scan under
y  certain simplifying assumptions
I —————
after four expansions, we obtain the local optimum solution:

1 U - wiwil - — !"'7 ) U

*
v, {1, V2,3, V4, Vg, Vg, Vo, V11, V12, V17}
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Experiment Settings

* Twitter Dataset
-10% random sample of public twitter data

—-17 rare Hantavirus disease outbreaks collected by
Chilean Ministry of Health [1] and also reported in local
news reports from 2013-January to 2013-June

 Performance Metrics

—~Forecasting: Have an alert in the same state 1-7 days
before the event

—Detection: Did not have an alert in that state 1-7 days
before the event but did have an alert in the event 07
days after the event

23
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Twitter Dataset

Country # of tweets News source*

Chile 14,000,000 La Tercera; Las Ultimas Noticias; El Mercurio
Colombia 22,000,000 El Espectador; El Tiempo; El Colombiano
Ecuador 6,900,000 El Universo; El Comercio; Hoy

Time Period: From 2012 Jul. to 2012 Dec. Totally 918 civil unrest events

Example of an event label: (PROVINCE = “El Loa”, COUNTRY = “Chile”, DATE = “2012-05-
18”, DESCRIPTION = “A large-scale march was staged by inhabitants of the northern city of
Calama, considered the mining capital of Chile, who demand the allocation of more resources to
copper mining cities”, FIRST-REPORTEDLINK = “http://www.pressenza.com/2012/05/march-
ofdignity-in-mining-capital-of-chile/”).

24
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Detection Lag Time and Prediction Lead Time

—&—Lag Time (Detection) =—f=—Lead Time (Forecasting)

NUmber of Days
(W]
]

1 ]

-/.——-l-—l 2—a—a—1=
0 T T T T T T T 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

False Positive Rate (From 0-1 FP Per-Day)
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Detection and Forecasting Results

Carnegie Mellon

True Positive Rate

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

= Dp

tection and Forecasting == Forecasting

0 0.01

0.02 0.03 0.04 0.05 0.06
False Positive Rate (From 0-1 FP Per-Day)

0.07
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Conclusion

« Social media is real-time, very informal, and
dynamic

 We argue that nonparametric methods are better
suited to social media than parametric methods

* We propose a nonparametric graph scan statistics
approach to the forecasting and detection of
disease outbreaks using social media

27
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Thank you!

Questions?

28



