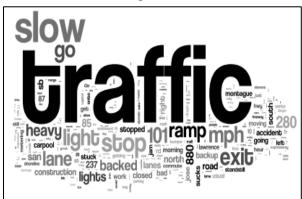
Non-Parametric Scan Statistics for Disease Outbreak Detection on Twitter

Feng Chen and Daniel B. Neill Carnegie Mellon University 12-12-2013

Why Can We Detect Events from Social Media?

2012 July-14, Mexico Protest

2012 Washington D.C. Traffic



Tweet Map for 2011 VA Earthquake

- Event = Large-scale population behavior
- Social media is a real-time "sensor" of large population behavior
- Event Detection vs. Forecasting
 - Sense of public discussions about ongoing events vs.
 trigger events using social media

Disease Event Signals on Twitter

People are dying from hantavirus in Osorno hydroelectric government workers do not report Camila I beg help @ camila_vallejo

RT @SeremiSaludM: Se confirmó primer caso de hantavirus en el Maule y con consecuencia fatal. Se trata de un joven de 25 años de Pencahue

Confirmed: Young man dies in Pencahue Hanta: This is a 26-year residence in the commune of http://t.co/5lkD0CZDmf

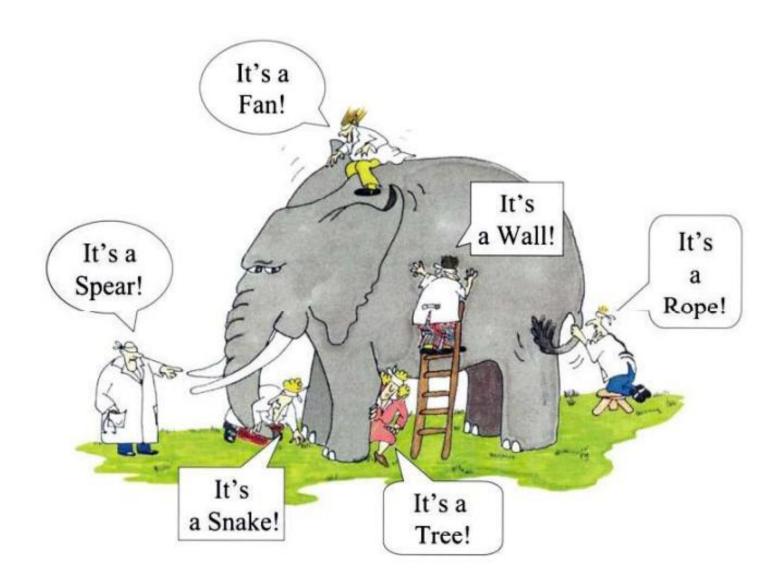
Confirmed: Young man dies from hantavirus in Pencahue

⑤ 8 may, 2013
⑤ REGIONAL

It's 26-year-old resident in the commune of Pencahue and who was working in a manufacturing company of olive oil from the sector.

Patient consultation on May 2 in the CESFAM Pencahue, with diagnosis of rhinopharyngitis. Subsequently, Saturday 4 is admitted to the Hospital in Talca.

RT @ RADIOPALOMAFM: ISP confirmed case of hantavirus nvo rural sector in Linares. Woman, 38, who died May 11 at the UCI via @ SeremiSaludM



Hantavirus Disease Outbreak

"#VIRUSHANTA" mentioned 100 times

RT @SeremiSaludM: Se confirmó primer caso de hantavirus en el Maule y con consecuencia fatal. Se trata de un joven de 25 años de Pencahue

re-tweeted 50 times

Keyword "Protest"
Mentioned 5000 times

Araucania State has 15 active users and 100 tweets

http://t.co/5lkD0CZDmf mentioned 10 times

Influential User "SeremiSaludM" (1497 followers) posted 8 tweets

Hantavirus Disease Outbreak

"#VIRUSHANTA" mentioned 100 times

?/

RT @SeremiSaludM: Se confirmó primer caso de hantavirus en el Maule y con consecuencia fatal. Se trata de un joven de 25 años de Pencahue

re-tweeted 50 times

Keyword "Protest" Mentioned 5000 times

has 15 active users and 100 tweets

http://t.co/5lkD0CZDmf mentioned 10 times

?

Influential User "SeremiSaludM" (1497 followers) posted 8 tweets

Hantavirus Disease Outbreak

"#VIRUSHANTA" mentioned 100 times

Our Solution

1. Model Twitter Heterogeneous Network as a "Sensor Network"

Se tra

2. Each sensor's signal -> an empirical P value

re-

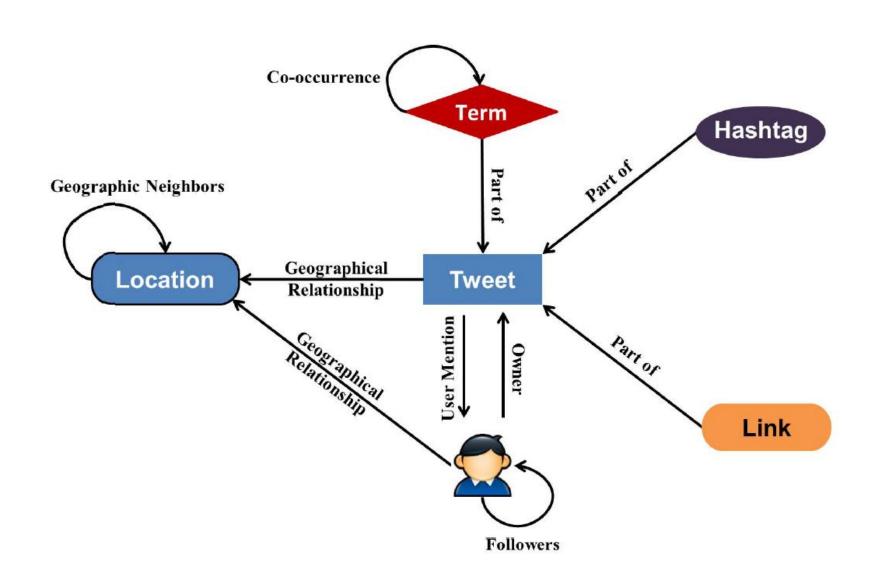
3. Non-Parametric Scan Statistics

http://t.co/5lkD0CZDmf mentioned 10 times

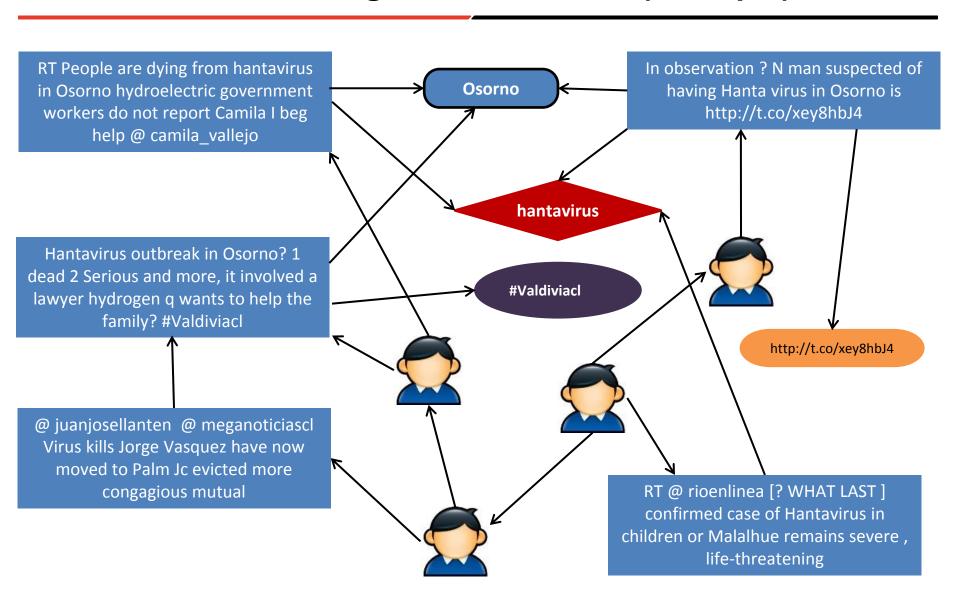
(1

Influential User "SeremiSaludM" (1497 followers) posted 8 tweets

Twitter Heterogeneous Network



Twitter Heterogeneous Network (Example)

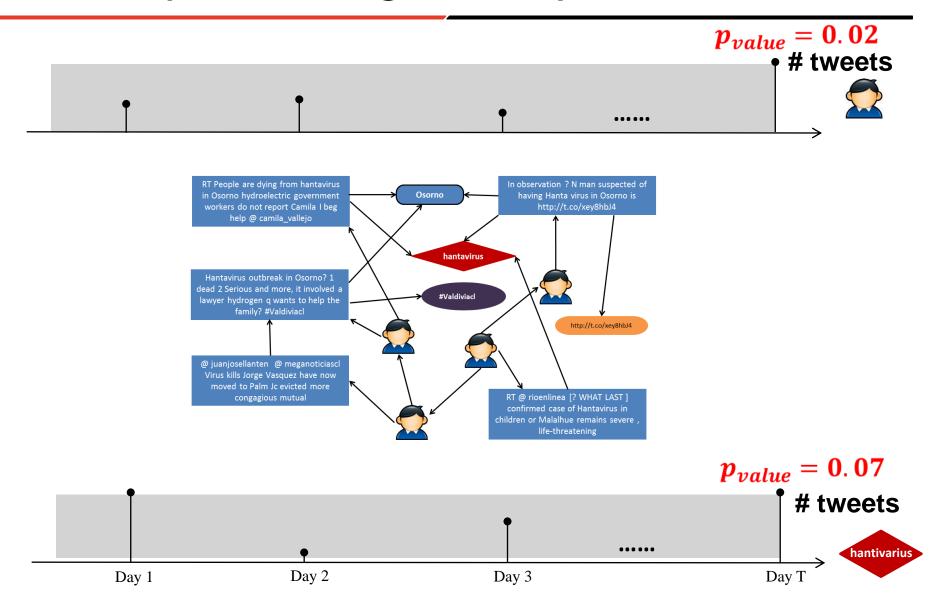


Step 1: "Sensor Network" Modeling

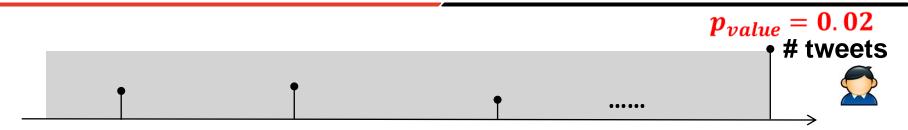
 Model the twitter network as a "sensor" network, in which each node senses its "neighborhood environment" and reports an empirical p-value measuring the current level of anomalousness for each time interval (e.g., hour or day).

Object Type	Features	
User	# tweets, # retweets, # followers, #followees, #mentioned_by, #replied_by, diffusion graph depth, diffusion graph size	
Tweet	Klout, sentiment, replied_by_graph_size, reply_graph_size, retweet_graph_size, retweet_graph_depth	
City, State, Country	# tweets, # active users	
Term	# tweets	
Link	# tweets	
Hashtag	# tweets	

Step 2: Sensor Signals → Empirical P-values

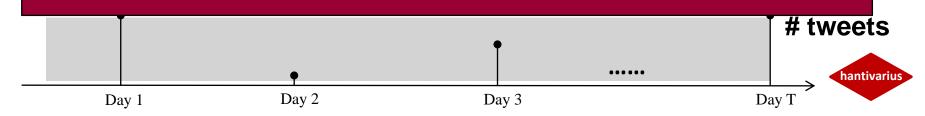


Step 2: Sensor Signals → Empirical P-values

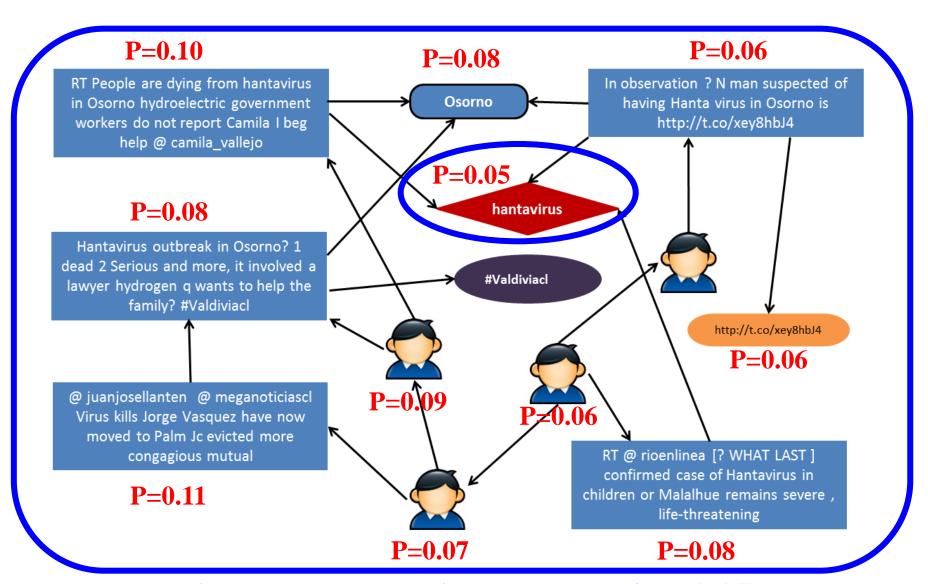


Why we calculate an empirical p-value for each entity node?

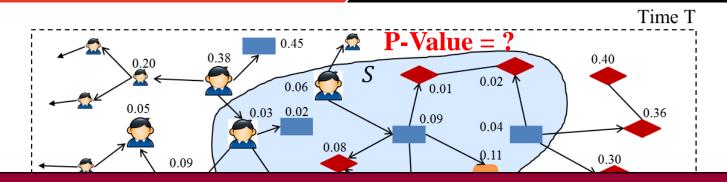
- 1. P-value is uniformly distributed between 0 and 1 under null even the true distribution is unknown
- 2. Entities of different types can be evaluated consistently based on their p-values
- 3. Empirical p-value is a nonparametric and computationally convenient approach to estimate p-value



Step 2: Sensor Signals → Empirical P-values



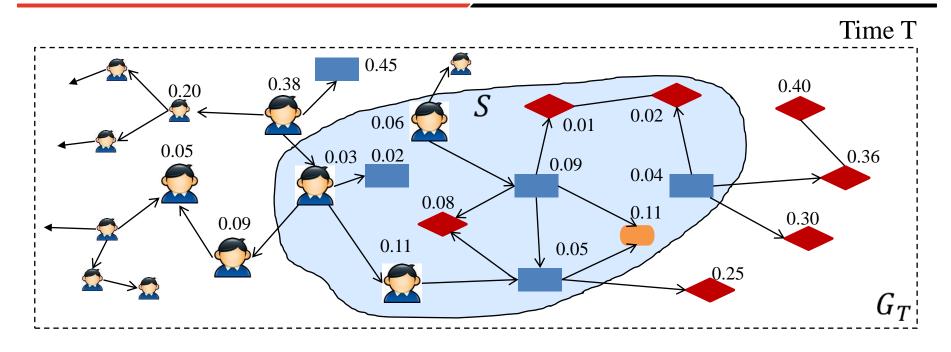
Step 2: Sensor Signals → Non-Parametric Statistics



Why we consider non-parametric statistics?

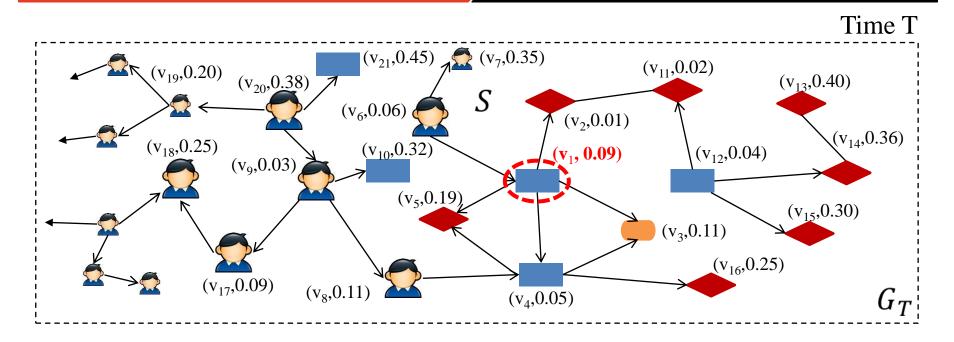
- 1. A score function to measure a group of interesting nodes
- 2. Computationally very efficient
- 3. Asymptotic convergence to the true group p-value
- 4. Special cases:
 - 1. Burst detection of keyword volume
 - 2. Spatial Event Detection based on tweet counts in spatial regions

Step 3: Nonparametric Scan on "Sensor Network"



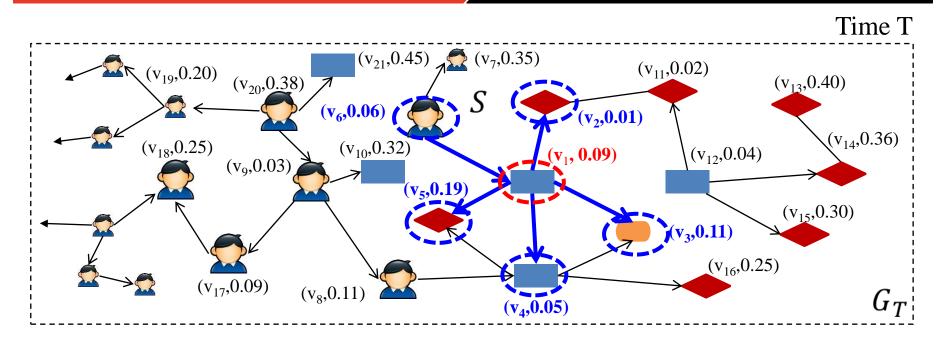
$$S^* = \underset{S \in V_T, S \text{ is connected}}{\operatorname{argmax}} F(S)$$

We propose novel nonparametric scan statistics for connected subgraphs, and an approximate algorithm with time cost $O(|V_T| \log |V_T|)$.



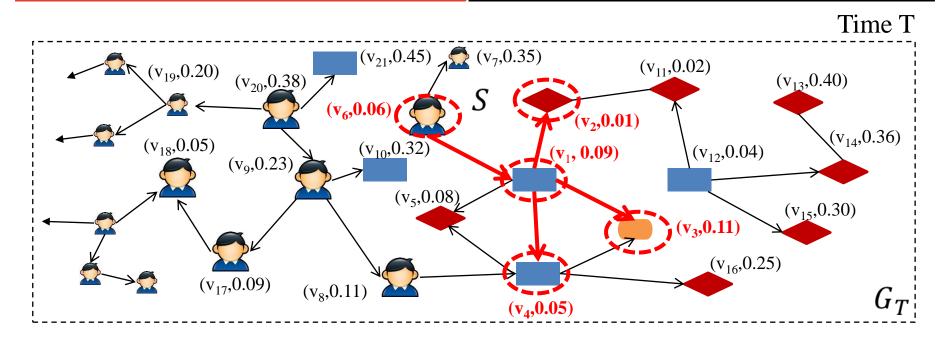
Consider each node as a candidate cluster center (or start point)

In this example, we start from the seed set $\hat{S} = \{(v_1, 0.09)\}.$



$$\hat{S} = \{(v_1, 0.09), (v_2, 0.01), (v_3, 0.11), (v_4, 0.05), (v_5, 0.19), (v_6, 0.06)\}$$

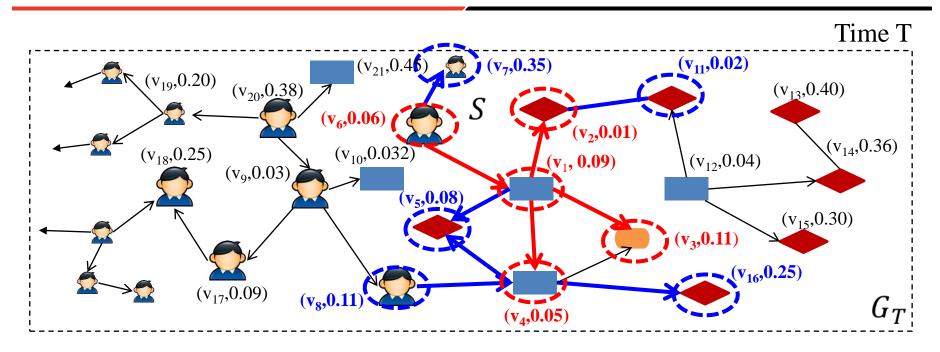
$$S^* = \arg\max_{S \subset \hat{S}} F(S) = \arg\max_{S^* \subset S} \left\{ \max_{\alpha \le \alpha_{max}} NK\left(\frac{N_\alpha}{N}, \alpha\right) \right\}$$



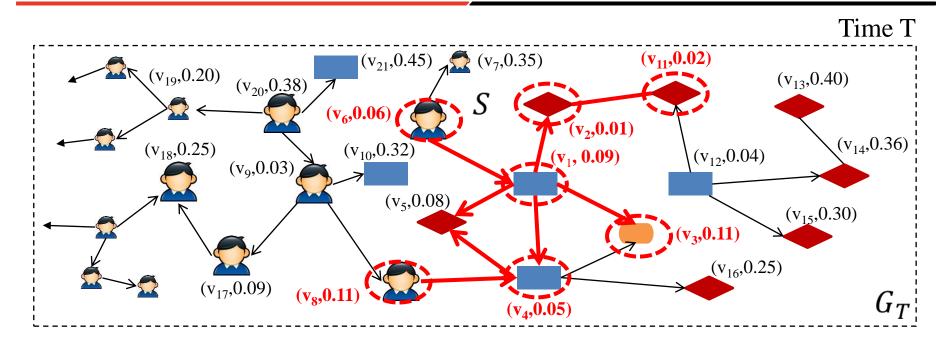
$$\hat{S} = \{(v_1, 0.09), (v_2, 0.01), (v_3, 0.11), (v_4, 0.05), (v_5, 0.19), (v_6, 0.06)\}$$

$$S^* = \arg\max_{S \subset \hat{S}} F(S) = \arg\max_{S^* \subset S} \left\{ \max_{\alpha \le \alpha_{max}} NK\left(\frac{N_{\alpha}}{N}, \alpha\right) \right\}$$

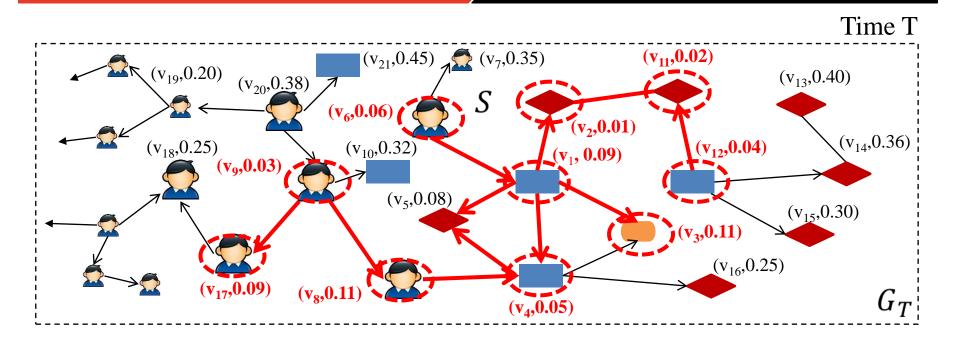
$$= \{v_1, v_2, v_3, v_4, v_6\}$$



$$\begin{split} \hat{S} &= \{(v_1, 0.09), (v_2, 0.01), (v_3, 0.11), (v_4, 0.05), (v_6, 0.06), (v_5, 0.19), \\ &(v_7, 0.35), (v_8, 0.11), (v_{11}, 0.02), (v_{16}, 0.25)\} \\ S^* &= \arg\max_{S \subset \hat{S}} F(S) = \arg\max_{S^* \subset S} \left\{ \max_{\alpha \leq \alpha_{max}} NK\left(\frac{N_\alpha}{N}, \alpha\right) \right\} \end{split}$$



$$\begin{split} \hat{S} &= \{(v_1, 0.09), (v_2, 0.01), (v_3, 0.11), (v_4, 0.05), (v_6, 0.06), (v_5, 0.19), \\ &(v_7, 0.35), (v_8, 0.11), (v_{11}, 0.02), (v_{16}, 0.25)\} \\ S^* &= \arg\max_{S \subset \hat{S}} F(S) = \arg\max_{S^* \subset S} \left\{ \max_{\alpha \leq \alpha_{max}} NK\left(\frac{N_\alpha}{N}, \alpha\right) \right\} \\ &= \left\{ v_1, v_2, v_3, v_4, v_6, v_8, v_{11} \right\} \end{split}$$

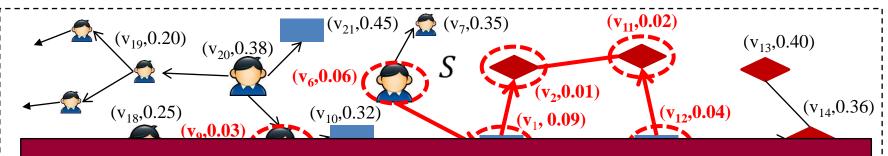


Consider each node as a candidate cluster center (or start point)

In this example, we start from the seed set $\hat{S} = \{(v_1, 0.09)\}$, and after four expansions, we obtain the local optimum solution:

$$S_{v_1}^{\star} = \{v_1, v_2, v_3, v_4, v_6, v_8, v_9, v_{11}, v_{12}, v_{17}\}$$

Time T



Theoretical Properties

- 1. Guaranteed to find the globally optimal solution if the data contain no "break-tire" entities
- 2. Equivalent to percolation-based graph scan under certain simplifying assumptions

In this example, we start from the seed set $S = \{(v_1, 0.09)\}$, and after four expansions, we obtain the local optimum solution:

$$S_{v_1}^{\star} = \{v_1, v_2, v_3, v_4, v_6, v_8, v_9, v_{11}, v_{12}, v_{17}\}$$

Experiment Settings

Twitter Dataset

- -10% random sample of public twitter data
- -17 rare Hantavirus disease outbreaks collected by Chilean Ministry of Health [1] and also reported in local news reports from 2013-January to 2013-June

Performance Metrics

- Forecasting: Have an alert in the same state 1-7 days before the event
- Detection: Did not have an alert in that state 1-7 days before the event but did have an alert in the event 07 days after the event

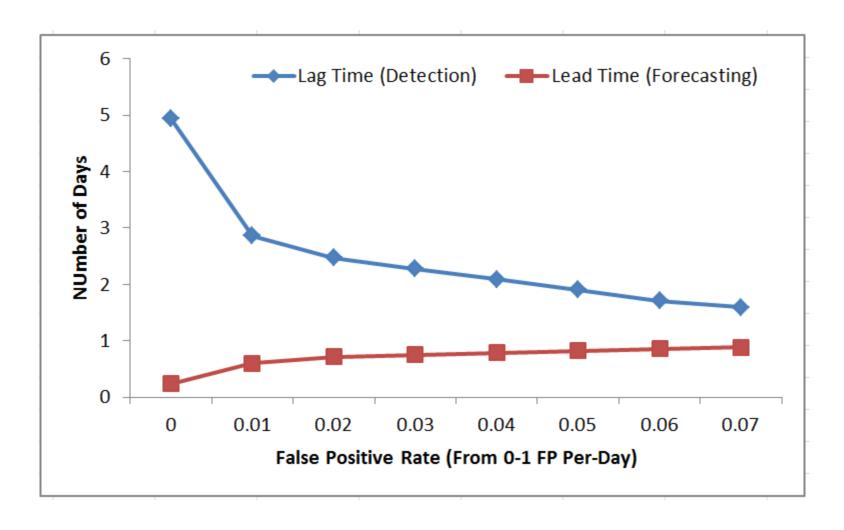
Twitter Dataset

Country	# of tweets	News source*
Chile	14 ,000,000	La Tercera; Las Últimas Notícias; El Mercurio
Colombia	22 ,000,000	El Espectador; El Tiempo; El Colombiano
Ecuador	6,900,000	El Universo; El Comercio; Hoy

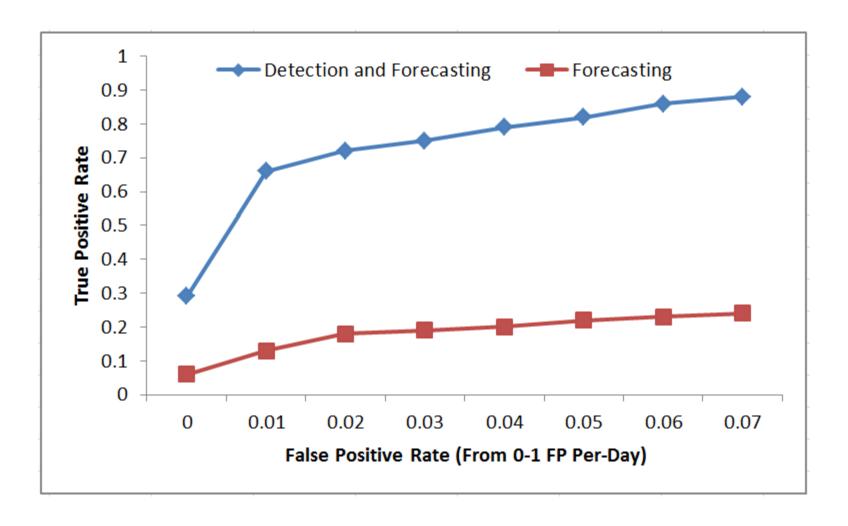
Time Period: From 2012 Jul. to 2012 Dec. Totally 918 civil unrest events

Example of an event label: (PROVINCE = "El Loa", COUNTRY = "Chile", DATE = "2012-05-18", DESCRIPTION = "A large-scale march was staged by inhabitants of the northern city of Calama, considered the mining capital of Chile, who demand the allocation of more resources to copper mining cities", FIRST-REPORTEDLINK = "http://www.pressenza.com/2012/05/march-ofdignity-in-mining-capital-of-chile/").

Detection Lag Time and Prediction Lead Time



Detection and Forecasting Results



Conclusion

- Social media is real-time, very informal, and dynamic
- We argue that nonparametric methods are better suited to social media than parametric methods
- We propose a nonparametric graph scan statistics approach to the forecasting and detection of disease outbreaks using social media

Thank you!

Questions?