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Spreading Contaminants in a Water
Distribution System




Spreading Contaminants in a Water




Static Pattern Dynamic Pattern

The subset of affected nodes The subset(s) of affected
does not change over time

nodes change over time

Time




Temporal Information: Aggregating

When did that node-be
here is the contaminant_nre
Where is the source?
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Temporal Consistency




Goals of this Presentation

Provide a framework for incorporating
“soft constraints”
(i.e. temporal consistency)
without violating the properties that allow for the efficient
search over the network

Describe properties of the Show empirical results which

expectation-based binomial demonstrate the utility of incorporating
soft constraints when detecting

dynamic patterns such as contaminant
plumes in a water distribution system

scoring function which is appropriate
when dealing with binary sensor data




Pattern Detection
as a Search Over Subsets

Pattern Detection can be framed as a

search over subsets of the data with the

goal of finding the subset which best
matches a probabilistically modeled
pattern.

This “match” is quantified by a scoring

function, typically a
likelihood ratio.

Computational Problems: Infeasible to
perform exhaustive search for more
than 30 records

Linear-time Subset Scanning
(LTSS)
property allows for exact, efficient
identification of “highest scoring”
subset without an exhaustive search
Neill 2010

GraphScan applied LTSS to only consider
connected subsets. Increases power to
detect patterns that affect a subgraph of a
larger network.

Speakman & Neill 2010
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Use geometric shapes (truncated
cones) to aggregate temporal
information

Assumes linear growth or movement of
the pattern

Potential shapes to search over grow
exponentially and therefore relies on a
heuristic to approximate best subset




Priority

(Neill, 2010)

The highest scoring subset is guaranteed to be one of
the following subsets
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Decreases the search space from 2N to N

Naively altering the scoring function to enforce soft
constraints violates LTSS




PROBLEM:

We must alter the scoring function instead of restricting the
search space.

When applied directly, these constraints violate the LTSS property of the scoring
function and make exact, efficient search impossible.

SOLUTION:

Interpret the scoring function as a sum of contributions from
each record in the subset.

Maximizing the scoring function is then equivalent to selecting all records that are

making a positive contribution.

INSIGHT:

When treated as an additive function,
further terms may be introduced without interfering with
the maximization step.

Enforcing Soft Constraints with LTSS



Scoring Function

P(Data | H,(S)) H, :c, ~ Bernoulli(p,)

F(S)=Io
(5)=log P(Data|H,) H, tc, ~ Bemoulli(ap,) <9

P(Data|H,(S))

F(S)=maxlog
q

P(Data|H,)
Large number Small number of
nodes with a nodes with a

moderate risk high risk




Adding Soft Constraints
to the Scoring Function

F(S)+2Ai®

Interpret the scoring function as a sum of contributions from

SOLUTION: each record in the subset.

Maximizing the scoring function is then equivalent to selecting all records that are
making a positive contribution.

F (S) = TN MXen eath@Slari z(i'()itive function,

INSIGHT: further terms T3 soft constraints) may be introduced

without interfering with the maximization step.

F(s)=max 3 [F(sila)+a] @)
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Enforcing Soft Constraints with LTSS

We must alter the scoring function instead of restricting the

PROBLEM: search space.

When applied directly, these constraints violate the LTSS property of the scoring
function and make exact, efficient search impossible.

Interpret the scoring function as a sum of contributions from

SOLUTION: each record in the subset.

Maximizing the scoring function is then equivalent to selecting all records that are
making a positive contribution.

When treated as an additive function,
INSIGHT: further terms (i.e. soft constraints) may be introduced
without interfering with the maximization step.

F(s)=max ¥, F(sla) (@)
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Enforcing Soft Constraints with LTSS

We must alter the scoring function instead of restricting the
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Demonstration with Expectation-based Binomial

P(Data|H,(S)) H, :¢; ~ Bernoulli(p,)

P(Data|H,) H, :c. ~ Bernoulli(gp,) 1<q <pi

F(S)=maxlog

(qpo) (1—qgp,) " ©
311 o (L=p)t "

F(S) = max Zc logg+ > (N, —c)log( q;)(,)

F(S)= max log
1<q<1/ po

1<q<l/p 0 S; €S
F(S)=C Iog[ < j+(N —C)Iog[l_C/N] for C > Np, , 0 otherwise
Npo 1- po

HTriggers



Demonstration with Expectation-based Binomial

F(S)= max > c;logg+ > (N, —c)Iog( qpo)

1<q<1/po s; €S s;€S Po

F(S)= max {c log g + (N, —c)Iog(l_qpoﬂ

1<q<1/p, r: 0

F(s10- 3 [a 090+ (3, o) oo =
S;€S — po

Contribution from each sensor in subset

/ 1-qp \
F(S|q)=2{ciIogq+(Ni—ci)Iog(1 Oj 'l'Ai}

sieS| | o p()}

Reward /Penalty from

Log-likelihood F(si|q) onctrainte




Demonstration with Expectation-based Binomial

P(Data| H,(S))
P(Data|H,)

F(S)=maxlog

N;—¢;
F(S)= max lo H(qpo) (1- qp%)
1<a<ypy 5;€S (1 po) "

Contribution from each sensor, for a fixed g

F(S|q)=2{c log g + (N, —c)Iog( _qpoj +Ai]
J \

SiES \
Log-likelihood F(s:|q) Reward /Penfalty from
constraints




From Fixed g to All g

Our goal is to maximize F(S) over all q

»(re) Initialize q

N

Find optimal subset given Update severity given the
that severity optimal subset

"/

Leads to local maximum




Additive GraphScan




Additive GraphScan

= @ &
P—O—=

Additive GraphScan is 10x faster than regular, even though operating with
multiple iterations




Priority

Ranking
We represent groups of subsets as a Bit 0o o0 1 ? 2
string of String
0’s, 1’s,and ?’s The above bit string represents 4

possible subsets:
{1,4}{1,4,5} {1,4,6} {1,4,5,6}

A Naive approach would search all 2N subsets and is
computationally infeasible

1 5 g mE 1 3 3 4 6 5 i
??????‘1?????‘11??
a7 2 o o 10 5

0o ? ? ?




Seed nodes have higher priority
than all of their neighbors

We can rule out bit strings whose
highest priority node is not a seed
node
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Seed nodes have higher priority
than all of their neighbors

We can rule out bit strings whose
highest priority node is not a seed
node

If we rule out a high priority
node, we can also rule out all of
its lower priority neighbors...



Seed nodes have higher priority
than all of their neighbors

We can rule out bit strings whose
highest priority node is not a seed
node

If we rule out a high priority
node, we can also rule out all of
its lower priority neighbors...

=
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...and any additional nodes that
) are disconnected when these
0—1—>2 nodes are ruled out
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Propagation of bit strings:

Pull off S, and consider the
two cases of including or
excluding node 2

Including node 2 implies
including nodes 3 and 6

;111?721

2 a9 Excluding node 2 implies

excluding nodes 3, 4, 5, and 6
Ao o i v S..: 1 OgO 00O
5 o 5 1b°




Data: Battle of the Water Sensor
Networks

Plumes of contaminants are simulated in a water

4 distribution system
- o "
g assigne the system is equip ld with imperfect

sensors” @
e

Bern(p,=0.9)



Competing Methods

Upper Level Sets:
A heuristic that is not guaranteed to find the most anomalous subgraph

Patil & Taillie, 2004

ULS

GraphScan:
Determines the most anomalous subgraph without further constraints

Speakman & Neill, 2010

GS




Competing Methods

GraphScan with basic temporal consistency

F(S):mqax (F(s |o)+A,) A_:{+Aifsie§2 ADD-GS

| .
5,€5 0 otherwise




Competing Methods

GraphScan with temporal consistency: Overlap and Neighbors

pen(S) maxz F(S |(D Z+AI) Ai :{+Aif Si EQneighbor GS'SON

Ootherwise




Results: Spatial Overlap
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Overlap=

Overlap — 1  Perfect Match

Overlap — ()  Completely Disjoint
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Overlap Coefficient for "Hard" Case
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Conclusions

. Applied the EBB scoring function with
Provided a framework that Additive GraphScan to the task of

allows soft constraints to detecting contaminants in a water
influence the scoring function distribution system

and give preference to subsets of

desired temporal consistency

while still allowing an efficient Empirical results showed temporal
consistency constraints reduced the

search for the highest scoring time to detect the contaminants and

_ increased spatial accuracy of the
connected sub-graph ethods




Future work:
Forward & Backward Consistency

This work assumed information was
only being passed “forward” in time

{

‘Interlink” time sharing
to ensure a smoother consistency
through time

We can also share current
information with the past

Alter past subsets to be consistent
with current information Also useful for source tracing

Use the altered subsets from the
past to make more informed
searches in present
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