
Scalable Detection of
Anomalous Patterns with
Connectivity Constraints

Skyler Speakman, Ed McFowland III, Daniel B. Neill

Event and Pattern Detection Lab
H.J. Heinz III College

Carnegie Mellon University
This work was partially supported by NSF grants

IIS-0916345, IIS-0911032, and IIS-0953330

Biosurveillance

Daily health data from
thousands of hospitals and

pharmacies nationwide

Time series of counts ci
t

for each zip code si

Detect any emerging events (i.e. outbreaks of disease)

Pinpoint the affected areas

Use this data to detect
anomalous patterns

Expectation-Based Scan Statistics

(Kulldorff, 1997; Neill and Moore, 2005)

Scan over multiple regions to
detect where counts are

higher than expected

Aggregate the individual
counts from each location

within a region

Determine anomalousness of
region with a scoring function

)|Pr(

))(|Pr(
)(

0

1

HData

SHData
SF

CB

C

e
B

C
SF)(

S

t

i

S

t

i bBcC and

Expectation-Based Scan Statistics

(Kulldorff, 1997; Neill and Moore, 2005)

Scan over multiple regions to
detect where counts are

higher than expected

Aggregate the individual
counts from each location

within a region

Find the circle that maximizes
the score function of the
aggregated counts and

baselines

Choose a center location sc

and its k nearest neighbors

Circles

Expectation-Based Scan Statistics

(Kulldorff, 1997; Neill and Moore, 2005)

Circles are useful for detecting
tightly clustered outbreaks

However, they lose power to
detect abnormally shaped

clusters

Affected locations

Un-affected locations
contributing to region
score

Power to Detect

Connectivity Constraints

Tango & Takahashi, 2005

Flexible Scan statistic (FlexScan)

Increase power to detect
non-circular clusters

Create an adjacency graph of
the locations and score
connected subsets

Naively scores all connected
subsets

Infeasible for regions of >30
locations

Patil & Taillie, 2004

Upper Level Set Scan Statistic (ULS)

Uses a heuristic to determine
high scoring connected subsets
Is not guaranteed to find the

highest scoring connected subset

Subset Scanning

PROBLEM:
The number of subsets grows exponentially

with the size of the region 2N

This makes it computationally infeasible for regions
with more than ~30 locations

SOLUTION:
Exploit a property of scoring functions to
rule out subsets that cannot obtain the

highest score

This reduction in the search space allows for exact and efficient
calculation of the highest scoring

unconstrained subset

(Neill, 2008)

EXTENSION:
Use this same property for exact and efficient

calculation of the highest scoring
connected subset

Linear Time Subset Scanning

(Neill, 2008)

We sort the locations according
to a priority function

i

i
i

b

c
sG)(

For example,

We wish to maximize a
scoring function

Ss

i

Ss

i

ii

bcFSF ,

over all possible subsets, S

Works for expectation-based
Poisson (EBP)

Linear Time Subset Scanning

(Neill, 2008)
This location has the highest
count-to-baseline ratio

This location has the lowest
count-to-baseline ratio

4

3

2

5

N

1

We sort the locations according
to a relevance criteria

i

i
i

b

c
sG)(

For example,

We wish to maximize a
scoring function

Ss

i

Ss

i

ii

bcFSF ,

over all possible subsets, S

works for Expectation-based
Poisson (EBP)

This ranking allows
LTSS to take advantage
of properties of a large

number of scoring
functions

Linear Time Subset Scanning

(Neill, 2008)

4

3

2

5

N

1 The highest scoring subset is guaranteed to
be one of the following subsets

Decreases the search space from 2N to N

1

1

1

1

1

1

2

2

2

2

2

3

3

3

3

4

4

4

5

5 N

LTSS with Connectivity Constraints

Use property of LTSS to
reduce the search space and
rule out a large number of

connected subsets

1

2

6

3

4

5

Rank the locations according
to priority function

If location s(k) is contained
in the optimal subset S*

any higher priority neighbor
of s(k) will also be contained
in S*.

and if removing s(k) does not
disconnect the subgraph,

GraphScan Logic:
Remove subsets that are

guaranteed to be suboptimal

GraphScan Algorithm

We represent groups of
subsets as a string of

0’s, 1’s, and ?’s

Priority

Ranking
1 2 3 4 5 6

Bit

String
1 0 0 1 ? ?

The above bit string represents 4
possible subsets:

{1,4} {1,4,5} {1,4,6} {1,4,5,6}

1 2 3 4 5 6

? ? ? ? ? ?

1 2 3 4 5 6

1 ? ? ? ? ?

0 ? ? ? ? ?

1 2 3 4 5 6

1 1 ? ? ? ?

1 0 ? ? ? ?

0 ? ? ? ? ?

A Naïve approach would search all 2N subsets
and is computationally infeasible

GraphScan Algorithm

Seed nodes have higher
priority than all of their
neighbors

We can rule out bit strings
whose highest priority
node is not a seed node

1 2 3 4 5 6

S1 1 ? ? ? ? ?

S2 0 1 ? ? ? ?

S3 0 0 1 ? ? ?

S4 0 0 0 1 ? ?

S5 0 0 0 0 1 ?

S6 0 0 0 0 0 1

GraphScan Algorithm

Seed nodes have higher
priority than all of their
neighbors

We can rule out bit strings
whose highest priority
node is not a seed node

1 2 3 4 5 6

S1 1 ? ? ? ? ?

S2 0 1 ? ? ? 0

S3 0 0 1 ? ? ?

S4 0 0 0 1 ? 0

S5 0 0 0 0 1 ?

S6 0 0 0 0 0 1

If we rule out a high
priority node, we can also
rule out all of its lower
priority neighbors...

GraphScan Algorithm

Seed nodes have higher
priority than all of their
neighbors

We can rule out bit strings
whose highest priority
node is not a seed node

1 2 3 4 5 6

S1 1 ? ? ? ? ?

S2 0 1 ? 0 0 0

S3 0 0 1 ? ? ?

S4 0 0 0 1 ? 0

S5 0 0 0 0 1 ?

S6 0 0 0 0 0 1

If we rule out a high
priority node, we can also
rule out all of its lower
priority neighbors…

…and any additional nodes
that are disconnected
when these nodes are
ruled out

GraphScan Algorithm

1 2 3 4 5 6

S1 1 ? ? ? ? ?

S2 0 1 ? 0 0 0

S3 0 0 1 ? ? ?

S4 0 0 0 1 ? 0

S5 0 0 0 0 1 ?

S6 0 0 0 0 0 1

Pull off S1 and consider
the two cases of
including or excluding
node 2

Propagation of bit strings:

Including node 2 implies
including nodes 3 and 6

S1a: 1 1 1 ? ? 1

Excluding node 2 implies
excluding nodes 3, 4, 5,
and 6

S1b: 1 0 0 0 0 0

Branch and Bounding

We can improve
GraphScan’s performance by

taking advantage of
unconstrained LTSS directly

Let UBound(Sj) = Highest
possible score of any

unconstrained subset in Sj

If UBound(Sj) ≤ Current best
Stop Processing Sj

Sj guaranteed to not
contain highest scoring

subset

Proximity Constraints

If the domain provides spatial
information, we may use both
proximity and connectivity
constraints simultaneously

Forming a
neighborhood of the
‘k nearest neighbors’

Evaluation: Emergency
Department Data

Two years of admissions from
10 different Allegheny County
Emergency Departments

The patient’s home zip code is
used to tally the counts at
each location (node)

Only consider patients from
within Allegheny County

Evaluation: Run times

GraphScan is still
worst-case
exponential

0.01

0.1

1

10

100

1000

10000

100000

10 20 30 40 50 60 70 80 90

s
e
c
o

n
d

s

Neighborhood Size (k)

Average Runtime for a Single Day of ED data
based on Neighborhood Size

GraphScan

GraphScan w/
no Branch &
Bounding

Flexscan

Evaluation: Injects

Results: Detection Power

70

75

80

85

90

95

100

5 10 15 20 25 30 35 40 45 50

P
e
rc

e
n
t

o
f

o
u
tb

re
a
k
s
 d

e
te

c
te

d

k

Comparison of detection power for outbreaks
along highways

GraphScan

circles

All subsets

Results: Detection Time

7

7.5

8

8.5

9

9.5

10

5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 d

a
y
s
 t

o
 d

e
te

c
t

k

Comparison of detection times for outbreaks
along highways

GraphScan

circles

All subsets

Results: Spatial Overlap

BA

BA
Overlap

1Overlap

0Overlap

Perfect Match

Completely Disjoint

Results: Spatial Overlap

0.1

0.15

0.2

0.25

0.3

0.35

5 10 15 20 25 30 35 40 45 50

O
v
e
r
la

p

k

Comparison of spatial overlap for outbreaks along
highways

GraphScan

circles

All subsets

Conclusions

This work provides…

Theoretical framework for ruling out connected subsets that
are provably suboptimal according to the LTSS property

Practical implementation of LTSS with connectivity
constraints through the GraphScan Algorithm

GraphScan has shown…

Extremely large speed improvements over FlexScan, while
still guaranteeing to identify the highest scoring connected
subset

Using connected subsets can increase detection power for
irregularly shaped disease clusters

Speeding up
GraphScan

Exponentially many
multiple paths between
nodes represent a
significant bottleneck

Better handling of this
will allow us to scale to
even larger graphs

Current & Future Work

Non-spatial
Applications

Cell phone and SMS
network:

Early results have
shown we can detect

the most active
connected group of

‘texters’ in a graph of
~300 users in 16

minutes

Dynamic Graphs

Allowing edges (or
nodes) to enter and

leave the graph
over time

Apply GraphScan to
more complex

settings such as
supply and

transportation
networks

Thank you

Questions and Comments

