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Biosurveillance

Daily health data from 
thousands of hospitals and 

pharmacies nationwide

Time series of counts ci
t

for each zip code si

Detect any emerging events (i.e. outbreaks of disease)

Pinpoint the affected areas

Use this data to detect 
anomalous patterns



Expectation-Based Scan Statistics

(Kulldorff, 1997; Neill and Moore, 2005)

Scan over multiple regions to 
detect where counts are 

higher than expected

Aggregate the individual 
counts from each location 

within a region

Determine anomalousness of 
region with a scoring function 
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Expectation-Based Scan Statistics

(Kulldorff, 1997; Neill and Moore, 2005)

Scan over multiple regions to 
detect where counts are 

higher than expected

Aggregate the individual 
counts from each location 

within a region

Find the circle that maximizes 
the score function of the 
aggregated counts and 

baselines

Choose a center location sc

and its k nearest neighbors

Circles



Expectation-Based Scan Statistics

(Kulldorff, 1997; Neill and Moore, 2005)

Circles are useful for detecting 
tightly clustered outbreaks

However, they lose power to 
detect abnormally shaped 

clusters

Affected locations

Un-affected locations 
contributing to region 
score

Power to Detect



Connectivity Constraints

Tango & Takahashi, 2005

Flexible Scan statistic (FlexScan)

Increase power to detect 
non-circular clusters

Create an adjacency graph of 
the locations and score
connected subsets

Naively scores all connected 
subsets

Infeasible for regions of >30 
locations

Patil & Taillie, 2004

Upper Level Set Scan Statistic (ULS)

Uses a heuristic to determine 
high scoring connected subsets  
Is not guaranteed to find the 

highest scoring connected subset



Subset Scanning

PROBLEM:
The number of subsets grows exponentially 

with the size of the region 2N

This makes it computationally infeasible for regions 
with more than ~30 locations

SOLUTION:
Exploit a property of scoring functions to 
rule out subsets that cannot obtain the 

highest score

This reduction in the search space allows for exact and efficient 
calculation of the highest scoring

unconstrained subset 

(Neill, 2008)

EXTENSION:
Use this same property for exact and efficient 

calculation of the highest scoring
connected subset



Linear Time Subset Scanning

(Neill, 2008)

We sort the locations according 
to a priority function
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For example,

We wish to maximize a 
scoring function

Ss
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bcFSF ,

over all possible subsets, S

Works for expectation-based 
Poisson (EBP)



Linear Time Subset Scanning

(Neill, 2008)
This location has the highest 
count-to-baseline ratio

This location has the lowest 
count-to-baseline ratio
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We sort the locations according 
to a relevance criteria
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For example,

We wish to maximize a 
scoring function

Ss
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bcFSF ,

over all possible subsets, S

works for Expectation-based 
Poisson (EBP)

This ranking allows 
LTSS to take advantage 
of properties of a large 

number of scoring 
functions



Linear Time Subset Scanning

(Neill, 2008)
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1 The highest scoring subset is guaranteed to 
be one of the following subsets

Decreases the search space from 2N to N
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LTSS with Connectivity Constraints

Use property of LTSS to 
reduce the search space and 
rule out a large number of 

connected subsets

1

2

6

3

4

5

Rank the locations according 
to priority function

If location s(k) is contained 
in the optimal subset S*

any higher priority neighbor
of s(k) will also be contained 
in S*.

and if removing s(k) does not 
disconnect the subgraph,

GraphScan Logic:
Remove subsets that are 

guaranteed to be suboptimal



GraphScan Algorithm

We represent groups of 
subsets as a string of

0’s, 1’s, and ?’s 

Priority 

Ranking
1 2 3 4 5 6

Bit

String
1 0 0 1 ? ?

The above bit string represents 4 
possible subsets:

{1,4} {1,4,5} {1,4,6} {1,4,5,6}

1 2 3 4 5 6

? ? ? ? ? ?

1 2 3 4 5 6

1 ? ? ? ? ?

0 ? ? ? ? ?

1 2 3 4 5 6

1 1 ? ? ? ?

1 0 ? ? ? ?

0 ? ? ? ? ?

A Naïve approach would search all 2N subsets 
and is computationally infeasible 



GraphScan Algorithm

Seed nodes have higher 
priority than all of their 
neighbors  

We can rule out bit strings 
whose highest priority 
node is not a seed node

1 2 3 4 5 6

S1 1 ? ? ? ? ?

S2 0 1 ? ? ? ?

S3 0 0 1 ? ? ?

S4 0 0 0 1 ? ?

S5 0 0 0 0 1 ?

S6 0 0 0 0 0 1



GraphScan Algorithm

Seed nodes have higher 
priority than all of their 
neighbors  

We can rule out bit strings 
whose highest priority 
node is not a seed node

1 2 3 4 5 6

S1 1 ? ? ? ? ?

S2 0 1 ? ? ? 0

S3 0 0 1 ? ? ?

S4 0 0 0 1 ? 0

S5 0 0 0 0 1 ?

S6 0 0 0 0 0 1

If we rule out a high 
priority node, we can also 
rule out all of its lower 
priority neighbors...



GraphScan Algorithm

Seed nodes have higher 
priority than all of their 
neighbors 

We can rule out bit strings 
whose highest priority 
node is not a seed node

1 2 3 4 5 6

S1 1 ? ? ? ? ?

S2 0 1 ? 0 0 0

S3 0 0 1 ? ? ?

S4 0 0 0 1 ? 0

S5 0 0 0 0 1 ?

S6 0 0 0 0 0 1

If we rule out a high 
priority node, we can also 
rule out all of its lower 
priority neighbors…

…and any additional nodes 
that are disconnected 
when these nodes are 
ruled out



GraphScan Algorithm

1 2 3 4 5 6

S1 1 ? ? ? ? ?

S2 0 1 ? 0 0 0

S3 0 0 1 ? ? ?

S4 0 0 0 1 ? 0

S5 0 0 0 0 1 ?

S6 0 0 0 0 0 1

Pull off S1 and consider 
the two cases of 
including or excluding 
node 2 

Propagation of bit strings:

Including node 2 implies 
including nodes 3 and 6

S1a: 1  1  1  ?  ?  1

Excluding node 2 implies 
excluding nodes 3, 4, 5, 
and 6  

S1b: 1  0  0  0  0  0



Branch and Bounding

We can improve 
GraphScan’s performance by 

taking advantage of 
unconstrained LTSS directly

Let UBound(Sj) = Highest 
possible score of any 

unconstrained subset in Sj

If UBound(Sj) ≤ Current best
Stop Processing Sj

Sj guaranteed to not 
contain highest scoring 

subset



Proximity Constraints

If the domain provides spatial
information, we may use both 
proximity and connectivity 
constraints simultaneously 

Forming a 
neighborhood of the 
‘k nearest neighbors’



Evaluation: Emergency 
Department Data

Two years of admissions from 
10 different Allegheny County 
Emergency Departments

The patient’s home zip code is 
used to tally the counts at 
each location (node)

Only consider patients from 
within Allegheny County



Evaluation: Run times

GraphScan is still 
worst-case 
exponential
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Evaluation: Injects





Results: Detection Power
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Results: Detection Time
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Results: Spatial Overlap

BA

BA
Overlap

1Overlap

0Overlap

Perfect Match

Completely Disjoint



Results: Spatial Overlap

0.1

0.15

0.2

0.25

0.3

0.35

5 10 15 20 25 30 35 40 45 50

O
v
e
r
la

p

k

Comparison of spatial overlap for outbreaks along 
highways

GraphScan

circles

All subsets



Conclusions

This work provides…

Theoretical framework for ruling out connected subsets that 
are provably suboptimal according to the LTSS property

Practical implementation of LTSS with connectivity 
constraints through the GraphScan Algorithm

GraphScan has shown…

Extremely large speed improvements over FlexScan, while 
still guaranteeing to identify the highest scoring connected 
subset

Using connected subsets can increase detection power for 
irregularly shaped disease clusters



Speeding up 
GraphScan

Exponentially many 
multiple paths between 
nodes represent a 
significant bottleneck

Better handling of this 
will allow us to scale to 
even larger graphs

Current & Future Work

Non-spatial 
Applications

Cell phone and SMS 
network:

Early results have 
shown we can detect 

the most active 
connected group of 

‘texters’ in a graph of 
~300 users in 16 

minutes

Dynamic Graphs

Allowing edges (or 
nodes) to enter and 

leave the graph 
over time 

Apply GraphScan to 
more complex 

settings such as 
supply and 

transportation 
networks



Thank you

Questions and Comments


