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Research Goal

Develop methods for continuous and automated
analysis of public available data in order to detect
and interpret significant societal events
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Why Can We Detect Events from Social Media?

2012 July-14, Mexico Protest 2012 Washington D.C. Traffic
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Tweet Map for 2011 VA Earthquake

* Event = Large-scale population behavior
« Social media is a real-time “sensor” of large

population behavior

* Event Detection vs. Forecasting

—Sense of public discussions about ongoing events vs.
trigger events using social media
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Event Signals from Twitter Data

Behind the curve Twitter and the rioting
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Technical Challenges

a Snake!
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Technical Challenges

One week before 2012 Mexico President Election

“#Megamarch”
mentioned 1000 times
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Tweets that have
been re-tweeted

Keyword “Protest”
Mentioned 5000 times

Mexico City has
5,000 Active Users
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Technical Challenges

One week before 2012 Mexico President Election

Hashtag “#Megamarch”
mentioned 1000 times

Keyword “Protest”

Tweets that have ’é Mentioned 5000 times Mexico City: 5,000
been re-tweeted : Active Users and
1000 times

100,000 tweets
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Technical Challenges

One week before 2012 Mexico President Election

“#Megamarch”
mentioned 1000 times |
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Our Solution

il 1. Model Twitter Heterogeneous Network as a “Sensor
b Network™

2. Each sensor’s signal -> an empirical P value
3. Non-Parametric Scan Statistics
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Twitter Heterogeneous Network
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Twitter Heterogeneous Network (Example)

Veracruz, Jalapa, Mérida, Tepotzotlan
add to the #MegaMarcha vs
Tambien Los Angeles. Who else says

See you on Saturday at
15:00 in the

Benito Juarez

Mexico city

o

Twitterers help
me with a RT?. See you on Saturday at
15:00 in the #MegaMarcha.

imposicion
#Vamon

# MegaMarcha

Ready to march, tweeting or filming
tomorrow # vs imposicion.
Hopefully many say #Vamon

Ciudad

#MexicoExigeDemocracia

II# mn
Twitterers help me with a RT?. See you on
Saturday at 15:00
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Step 1: “Sensor Network” Modeling

 Model the twitter network as a "sensor" network, in which
each node senses its "neighborhood environment" and
reports an empirical p-value measuring the current level of
anomalousness for each time interval (e.g., hour or day).

Object Type

Features

User

Tweet

City, State, Country
Term

Link

Hashtag

# tweets, # retweets, # followers, #followees,
#mentioned_by, #replied by,
diffusion graph depth, diffusion graph size

Klout, sentiment, replied_by graph_size, reply graph_size,
retweet_graph_size, retweet_graph_depth

# tweets, # active users
# tweets
# tweets

# tweets
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Step 2: Sensor Signals — Empirical P-values

Pvaiue = 0.02

Veracruz, Jalapa, Mérida, Tepotzotlan
addtothe #MegaMarchavs
Tambien Los Angeles. Who else says

See you on Saturday at
15:00 in the

Benito Juarez

Mexico city

a

Twitterers help
me with a RT?. See you on Saturday at
15:00 inthe #MegaMarcha.

*

imposicion

#Vamon

# MegaMarcha

Ready to march, tweeting or filming
tomorrow # vs imposicién.
Hopefully many say #Vamon

Ciudad

| #MexicoExigeDemocracia

gy e
Twitterers help me with a RT?. See youon
Saturday at 15:00

Pvatue = 0.07

N

Day 1 Day 2

Day 3

Day T
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Step 2: Sensor Signals — Empirical P-values

Pvaiue = 0.02

' T o /{Q

Veracruz, Jalapa, Mérida, Tepotzotlan
addtothe #MegaMarchavs
Tambien Los Angeles. Who else says

What We can Infer?
Isolated p-values vs. Group p-value

Iwitterers help P i
me with a RT?. See you on Saturday at Twitterers help me with a RT?. See youon
15:00 inthe #MegaMarcha. Saturday at 15:00

Pvatue = 0.07

, 1.

Day 1 Day 2 Day 3
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Step 3: Event Detection on “Sensor Network”
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S* = argmax F(S)
SEVT,Sis connected " T~

:We propose novel nonparametric scan statistics for connected sub- |
t_graphs, and an approximate algorithm with time cost O(|Vr| log |Vr]). ',:
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Empirical Evaluations

Country # of tweets News source*

Argentina 29,000,000 Clarin; La Nacion; Infobae

Chile 14,000,000 La Tercera; Las Ultimas Noticias; El Mercurio
Colombia 22,000,000 El Espectador; El Tiempo; El Colombiano
Ecuador 6,900,000 El Universo; El Comercio; Hoy

Time Period: From 2012 Jul. to 2012 Dec. Totally 918 civil unrest events

Example of an event label: (PROVINCE = “El Loa”, COUNTRY = “Chile”, DATE = “2012-05-
18, DESCRIPTION = “A large-scale march was staged by inhabitants of the northern city of
Calama, considered the mining capital of Chile, who demand the allocation of more resources to
copper mining cities”, FIRST-REPORTEDLINK = “http://www.pressenza.com/2012/05/march-
ofdignity-in-mining-capital-of-chile/”).

Our approach (NPHGS) vs. homogenous graph scan methods

Our approach (NPHGS) vs. competitive event detection methods
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Our Approach vs. Homogenous Graph Scan Methods
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Our Approach vs. Competitive Event Detection Methods

Method FPR TPR TPR Lead Time Lag Time Run Time
(FP/Day) (Forecasting) (Forecasting & Detection) (Days) (Days) (Hours)

ST Burst Detection 0.65 0.07 0.42 1.10 4.57 30.1
Graph Partition 0.29 0.03 0.15 0.59 6.13 18.9
Earthquake 0.04 0.06 0.17 0.49 5.95 18.9
Geo Topic Modeling 0.09 0.06 0.08 0.01 6.94 0.7
NPHGS (FPR=.03) 0.05 0.15 0.23 0.65 5.65 38.4
NPHGS (FPR=.10) 0.10 0.31 0.38 1.94 4.49 38.4
NPHGS (FPR=.15) 0.15 0.37 0.42 2.28 4.17 38.4
NPHGS (FPR=.20) 0.20 0.39 0.46 2.36 3.98 38.4
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Conclusion

» Social media is a “sensor network” of people’s
sentiments and opinions

« Social media is real-time, very informal, and
dynamic

 We argue that nonparametric methods are better
suited to social media than parametric methods

 We propose a nonparametric graph scan statistics
approach to the problem of automatic event
detection and storytelling using social media
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Thank you!

Questions?
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