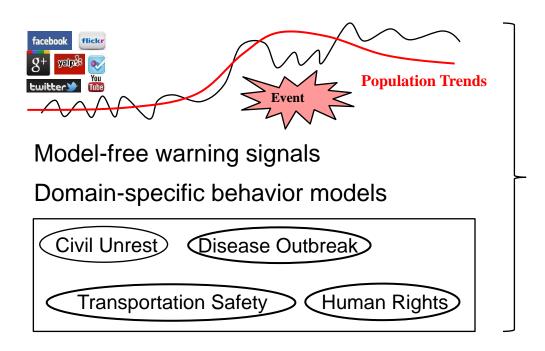
Non-Parametric Scan Statistics for Event Detection and Forecasting in Heterogeneous Social Media Graphs

Feng Chen and Daniel B. Neill Carnegie Mellon University 10-7-2013

Outline

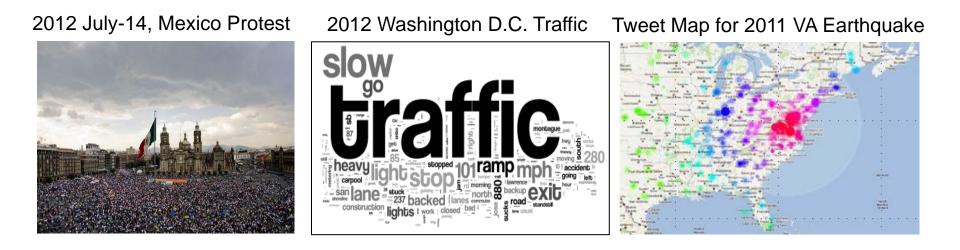
- Background
 - -Research Goal
 - -Why Can We Detect Events From Social Media?
 - -Technical Challenges
- Our Approach
- Empirical Evaluations
- Conclusion

Develop methods for continuous and automated analysis of public available data in order to detect and interpret significant societal events



Event Detection and Forecasting Event Casual Effects and Storytelling

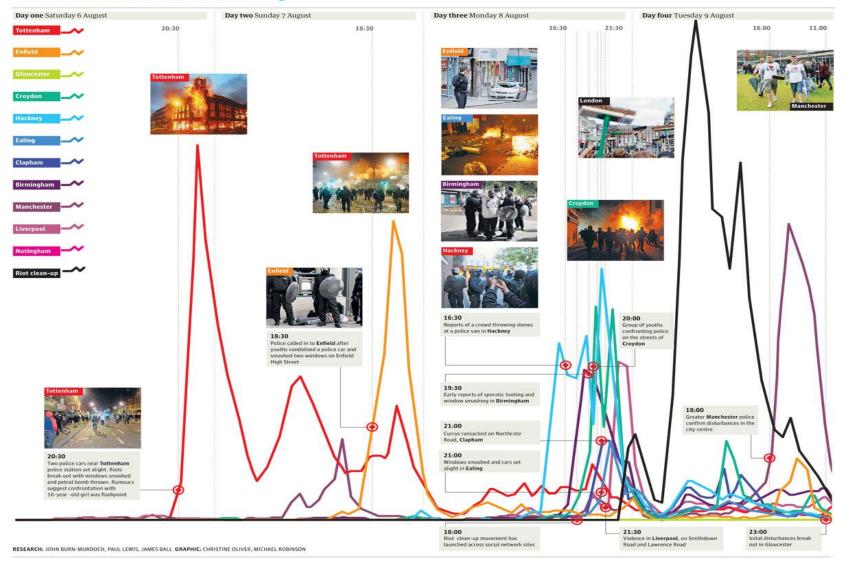
Carnegie Mellon Why Can We Detect Events from Social Media?



- Event = Large-scale population behavior
- Social media is a real-time "sensor" of large population behavior
- Event Detection vs. Forecasting
 - Sense of public discussions about ongoing events vs.
 trigger events using social media

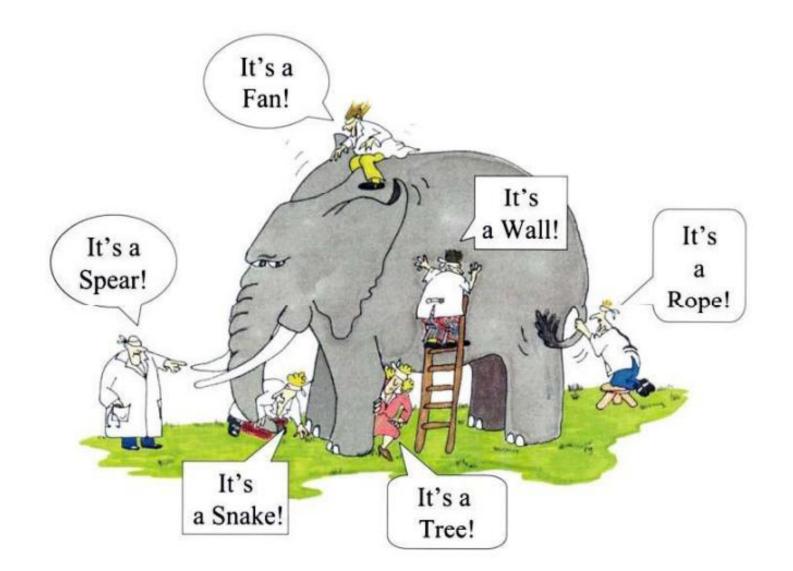
Event Signals from Twitter Data

Behind the curve Twitter and the rioting



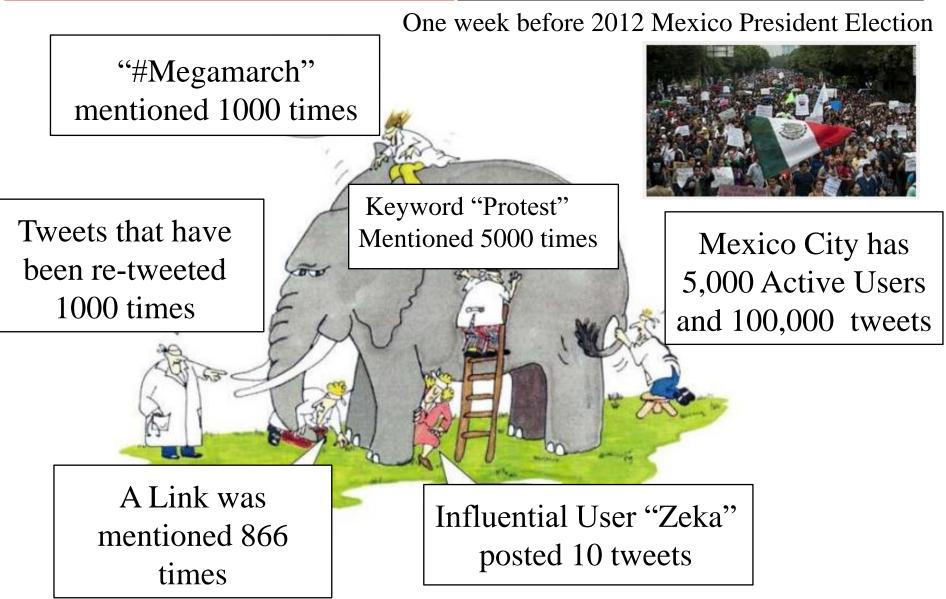
Credits: http://www.guardian.co.uk/uk/2011/aug/24/twitter-study-post-riot-plans

Technical Challenges

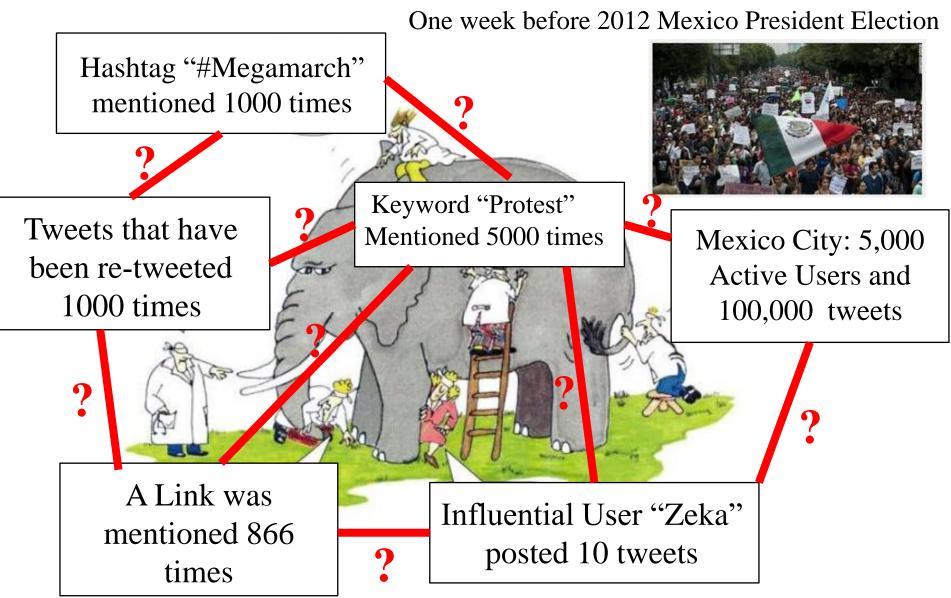


Carnegie Mellon

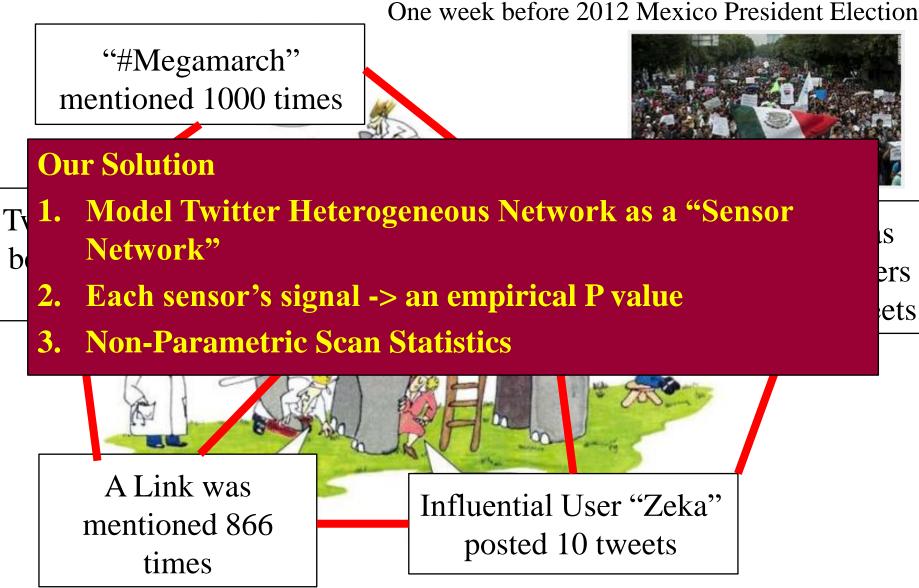
Technical Challenges



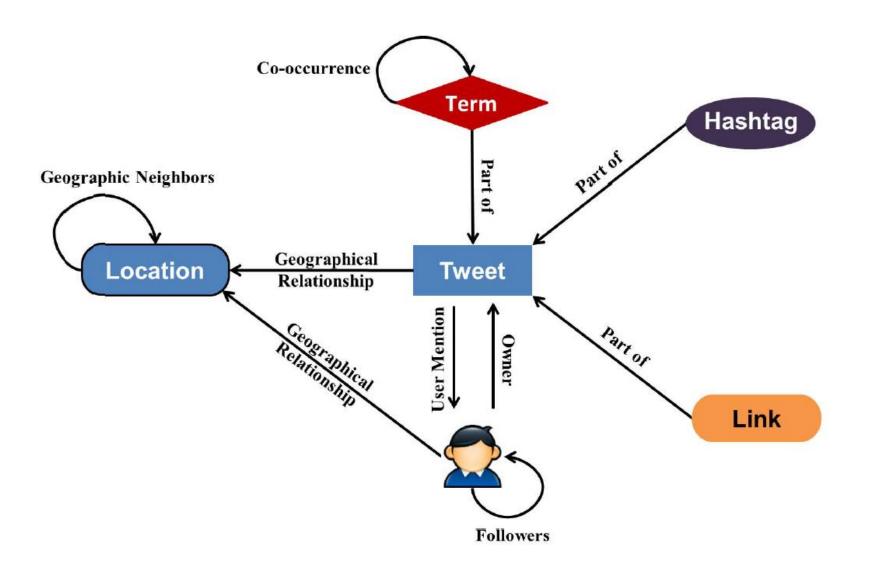
Technical Challenges



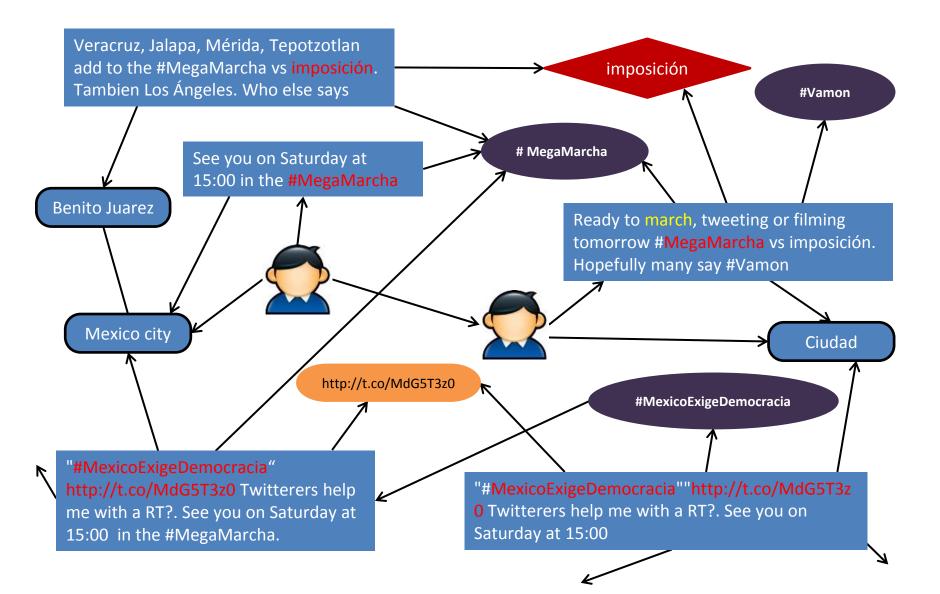
Technical Challenges



Twitter Heterogeneous Network



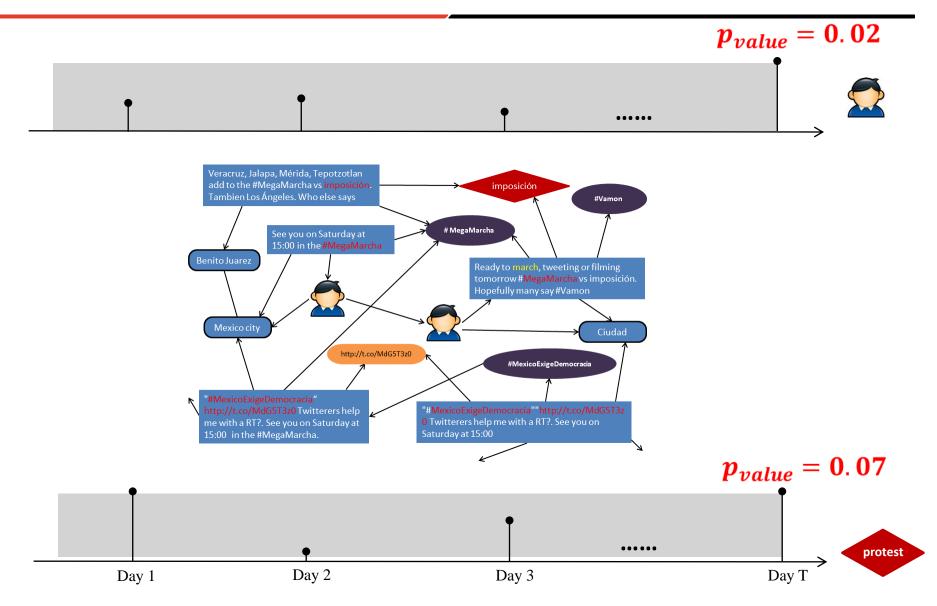
Twitter Heterogeneous Network (Example)



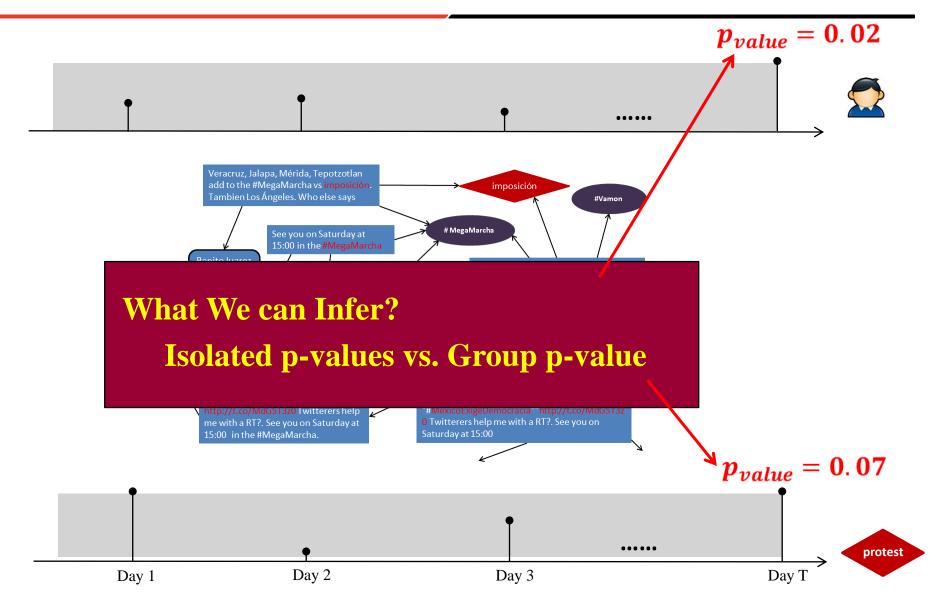
 Model the twitter network as a "sensor" network, in which each node senses its "neighborhood environment" and reports an empirical p-value measuring the current level of anomalousness for each time interval (e.g., hour or day).

Object Type	Features		
User	# tweets, # retweets, # followers, #followees, #mentioned_by, #replied_by, diffusion graph depth, diffusion graph size		
Tweet	Klout, sentiment, replied_by_graph_size, reply_graph_size, retweet_graph_size, retweet_graph_depth		
City, State, Country	# tweets, # active users		
Term	# tweets		
Link	# tweets		
Hashtag	# tweets		

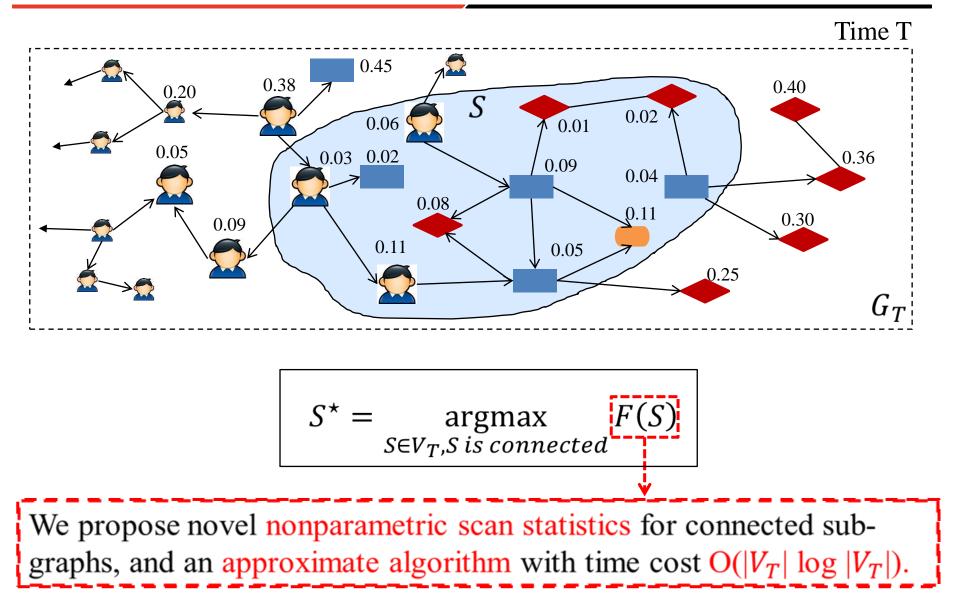
Step 2: Sensor Signals → Empirical P-values



Step 2: Sensor Signals \rightarrow **Empirical P-values**



Step 3: Event Detection on "Sensor Network"



Empirical Evaluations

Country	# of tweets	News source*
Argentina	29 ,000,000	Clarín; La Nación; Infobae
Chile	14 ,000,000	La Tercera; Las Últimas Notícias; El Mercurio
Colombia	22 ,000,000	El Espectador; El Tiempo; El Colombiano
Ecuador	6,900,000	El Universo; El Comercio; Hoy

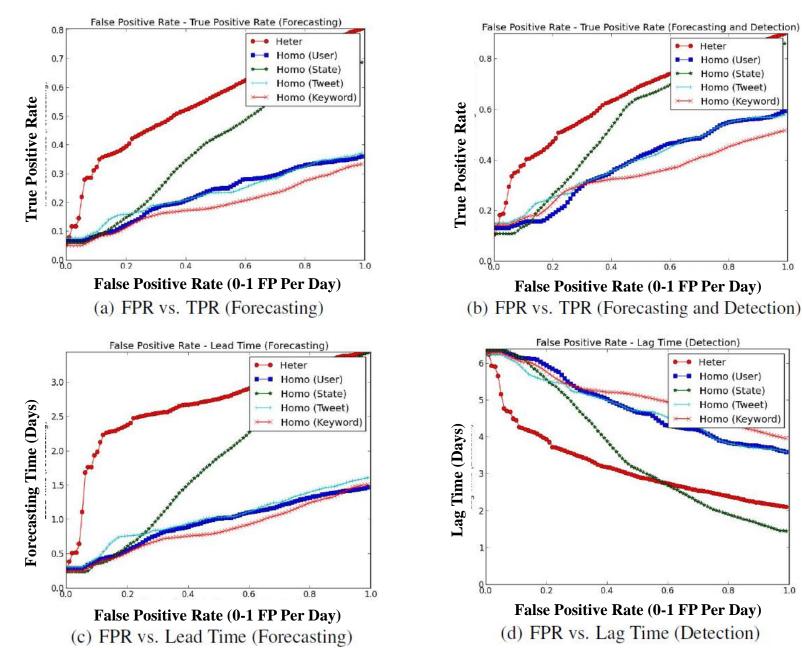
Time Period: From 2012 Jul. to 2012 Dec. Totally 918 civil unrest events

Example of an event label: (PROVINCE = "El Loa", COUNTRY = "Chile", DATE = "2012-05-18", DESCRIPTION = "A large-scale march was staged by inhabitants of the northern city of Calama, considered the mining capital of Chile, who demand the allocation of more resources to copper mining cities", FIRST-REPORTEDLINK = "http://www.pressenza.com/2012/05/march-ofdignity-in-mining-capital-of-chile/").

Our approach (NPHGS) vs. homogenous graph scan methods

Our approach (NPHGS) vs. competitive event detection methods

Carnegie Mellon Our Approach vs. Homogenous Graph Scan Methods



Carnegie Mellon Our Approach vs. Competitive Event Detection Methods

Method	FPR	TPR	TPR	Lead Time	Lag Time	Run Time
	(FP/Day)	(Forecasting)	(Forecasting & Detection)	(Days)	(Days)	(Hours)
ST Burst Detection	0.65	0.07	0.42	1.10	4.57	30.1
Graph Partition	0.29	0.03	0.15	0.59	6.13	18.9
Earthquake	0.04	0.06	0.17	0.49	5.95	18.9
Geo Topic Modeling	0.09	0.06	0.08	0.01	6.94	9.7
NPHGS (FPR=.05)	0.05	0.15	0.23	0.65	5.65	38.4
NPHGS (FPR=.10)	0.10	0.31	0.38	1.94	4.49	38.4
NPHGS (FPR= .15)	0.15	0.37	0.42	2.28	4.17	38.4
NPHGS (FPR=.20)	0.20	0.39	0.46	2.36	3.98	38.4

- Social media is a "sensor network" of people's sentiments and opinions
- Social media is real-time, very informal, and dynamic
- We argue that nonparametric methods are better suited to social media than parametric methods
- We propose a nonparametric graph scan statistics approach to the problem of automatic event detection and storytelling using social media

Thank you!

Questions?