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Multivariate event detection 

Daily health data from 

thousands of hospitals and 

pharmacies nationwide. 

Time series of counts 

ci,m
t for each zip code si 

for each data stream dm. 

d1 = respiratory ED 

d2 = constitutional ED 

d3 = OTC cough/cold 

d4 = OTC anti-fever 

etc. 

Given all of this nationwide health data on a daily basis, 

we want to obtain a complete situational awareness by 

integrating information from the multiple data streams. 

More precisely, we have three main goals: to detect any 

emerging events (i.e. outbreaks of disease), characterize 

the type of event, and pinpoint the affected areas. 
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We must provide the prior probability Pr(H1(S, Ek)) of each event type Ek                

in each region S, as well as the prior probability of no event, Pr(H0).  

MBSS uses Bayes’ Theorem to combine the data likelihood given each hypothesis 

with the prior probability of that hypothesis: Pr(H | D) = Pr(D | H) Pr(H) / Pr(D). 

Given a set of event types Ek, a set of space-time regions S, and the multivariate 

dataset D, MBSS outputs the posterior probability Pr(H1(S, Ek) | D) of each type    

of event in each region, as well as the probability of no event, Pr(H0 | D). 

Priors 

Overview of the MBSS method 

Dataset 

Multivariate 

Bayesian 

Scan 

Statistic Models 

Outputs 

(Neill and Cooper, Machine Learning, 2010) 
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The Bayesian hierarchical model 
Type of event 

Effects on each 

data stream 

Space-time 

region affected 

Observed counts 

Expected counts 

Relative risks 

Effects of 

event 
Parameter priors 

qi,m
t ~ Gamma(xm m, m) inside S,  

qi,m
t ~ Gamma( m, m) elsewhere 

ci,m
t ~ Poisson(qi,m

tbi,m
t) 

xm = 1 + θ (xkm,avg – 1) 
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Interpretation and visualization 

Posterior probability map 

Total posterior probability of a 

respiratory outbreak in each 

Allegheny County zip code.  

Darker shading = higher probability. 

MBSS gives the total posterior probability of 

each event type Ek, and the distribution of 

this probability over space-time regions S. 

Visualization: Pr(H1(si, Ek)) = ∑ Pr(H1(S, Ek)) 

for all regions S containing location si. 
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MBSS: advantages and limitations 
MBSS can model and 

differentiate between multiple 

potential causes of an event. 

MBSS can detect faster and 

more accurately by integrating 

multiple data streams. 

How can we extend 

MBSS to efficiently 

detect irregular clusters?  

MBSS assumes a uniform prior for circular regions and zero prior for non-

circular regions, resulting in low power for elongated or irregular clusters. 

There are too many subsets 

of the data (2N) to compute 

likelihoods for all of them! 
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Generalized Fast Subset Sums 

This prior has hierarchical structure:  

We define a non-uniform prior Pr(H1(S, Ek)) over all 2N subsets of the data.  
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Generalized Fast Subset Sums 

This prior has hierarchical structure:  

1. Choose center location sc from 

{s1…sN}, given multinomial Pr(si). 

2. Choose neighborhood size n from 

{1…nmax}, given multinomial Pr(n).   

We define a non-uniform prior Pr(H1(S, Ek)) over all 2N subsets of the data.  
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Generalized Fast Subset Sums 

This prior has hierarchical structure:  

1. Choose center location sc from 

{s1…sN}, given multinomial Pr(si). 

2. Choose neighborhood size n from 

{1…nmax}, given multinomial Pr(n).   

3. For each si ∈ Scn, include si in S with 

probability p, for a fixed 0 < p ≤ 1. 

This prior distribution has non-zero prior probabilities for any 

given subset  S, but more compact clusters have larger priors. 

We define a non-uniform prior Pr(H1(S, Ek)) over all 2N subsets of the data.  

Parameter p controls the sparsity of detected clusters.                                   

Large p = compact clusters.  Small p = dispersed clusters. 
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Generalized Fast Subset Sums 

This prior has hierarchical structure:  

1. Choose center location sc from 

{s1…sN}, given multinomial Pr(si). 

2. Choose neighborhood size n from 

{1…nmax}, given multinomial Pr(n).   

3. For each si ∈ Scn, include si in S with 

probability p, for a fixed 0 < p ≤ 1. 

We define a non-uniform prior Pr(H1(S, Ek)) over all 2N subsets of the data.  

p = 0.5 corresponds to the original Fast Subset Sums 

approach described in (Neill, Stat. Med., 2011), assuming 

that all subsets are equally likely given the neighborhood. 

p = 1 corresponds to MBSS, searching circular regions only. 
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Generalized Fast Subset Sums 

In GFSS, the average likelihood ratio of the 2n subsets for a given 

center sc and neighborhood size n can be found by multiplying the 

quantities (p x LR(si | Ek, θ) + (1-p)) for all locations si in S. 

Naïve computation of posterior probabilities using this prior requires 

summing over an exponential number of regions, which is infeasible. 

However, the total posterior probability of an outbreak, Pr(H1(Ek) | D), 

and the posterior probability map, Pr(H1(si, Ek) | D), can be calculated 

efficiently without computing the probability of each region S. 

In the original MBSS method, the likelihood ratio of spatial region S 

for a given event type Ek and event severity θ can be found by 

multiplying the likelihood ratios LR(si | Ek, θ) for all locations si in S.  

Since the prior is uniform for a given center and neighborhood, we can 

compute the posteriors for each sc and n, and marginalize over them. 



Preliminary results 
We injected simulated disease outbreaks into two streams of 

Emergency Department data from 97 Allegheny County zip codes.  

Results were computed for ten different outbreak shapes, including 

compact, elongated, and irregularly-shaped (200 injects of each type). 

Runtime of GFSS was extremely fast, computing the posterior 

probability map for each day of data in less than nine seconds. 

Smaller values of the sparsity parameter p achieve higher detection 

performance for elongated clusters, and larger p for compact clusters. 



Learning the sparsity parameter 
We demonstrate that the sparsity parameter can be learned from a 

set of labeled training examples S1…SJ.  For each Sj, we are given 

the affected region S, but not the values of the latent parameters 

(center location sc, neighborhood size n, and sparsity parameter p). 

To learn the distribution of p, we must marginalize over sc and n: 
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Evaluation framework 

Different and mixed 

values of p 

For each p: 100 

injects for testing 
MBSS 

FSS 

Uniform p GFSS 

1) All injects: p = 0.2 

2) All injects: p = 0.4 

3) All injects: p = 0.6 

4) All injects: p = 0.8 

5) All injects: p = 1.0 

6) 50% of injects: p = 0.2, 

50% of injects: p = 0.8. 
For each p: 100 

injects for training 

Learned p GFSS 



Results: accuracy of learned model 
(100 injects, cough data) 

GFSS was able to estimate the true value(s) of p.  Results were very 

similar for nausea outbreaks and for as few as 25 injected outbreaks. 



Results: detection power 
We compared the average time to outbreak detection for 

the Learned-p GFSS, Uniform-p GFSS, MBSS, and FSS 

methods, at a fixed false positive rate of 1/month. 
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When the value of p is small, corresponding to an elongated 

or irregular outbreak region, GFSS with learned p is able to 

detect substantially earlier than the other methods. 



Results: spatial accuracy 
We compared the spatial accuracy (average overlap coefficient 

between true and detected clusters at day 7 of the outbreak) for 

Learned-p GFSS, Uniform-p GFSS, MBSS, and FSS. 
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GFSS with learned p achieves high spatial 

accuracy across the entire range of p values. 



Results: distinguishing outbreak types 
We used the mixture outbreak data to evaluate the ability of 

GFSS to learn and distinguish between two outbreak types with 

different values of the sparsity parameter (p = 0.2 and p = 0.8).  



Results: distinguishing outbreak types 
We used the mixture outbreak data to evaluate the ability of 

GFSS to learn and distinguish between two outbreak types with 

different values of the sparsity parameter (p = 0.2 and p = 0.8).  



Results: distinguishing outbreak types 
We used the mixture outbreak data to evaluate the ability of 

GFSS to learn and distinguish between two outbreak types with 

different values of the sparsity parameter (p = 0.2 and p = 0.8).  

When the two outbreaks also had different effects on the two 

monitored data streams (cough and nausea), learning both the 

relative effects and the sparsity further improved detection. 
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Conclusions 

As compared to the MBSS method, GFSS substantially improves 

accuracy and timeliness of detection for elongated or irregular 

clusters, with similar performance for compact clusters. 

GFSS shares the essential advantages of MBSS: it can                         

integrate information from multiple data streams, and can 

accurately distinguish between multiple outbreak types. 

While a naïve computation over the exponentially many                                

subsets of the data is computationally infeasible, GFSS can 

efficiently and exactly compute the posterior probability map. 

We can learn the distribution of the sparsity parameter p for 

multiple event types using a small amount of labeled training data. 



We are currently extending GFSS to simultaneously learn the 

distributions over the center location, neighborhood size, and 

the sparsity parameter p, using an EM-based approach. 

Learning the distribution of the sparsity parameter not only 

improves detection power, but enables us to accurately 

differentiate between multiple, similar types of outbreak. 
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Conclusions 

Thanks for listening! 

Any questions? 

In future work, we will also extend GFSS to the case of 

partially labeled training data, when only a small subset of 

affected locations are identified for each labeled event. 


