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Detecting Disease Clusters
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@ Location of an informative data stream
# of ER visits per Zip Code

# of OTC Drug sales per retailer
Other novel data sources ...

In the presence of an outbreak,
we expect counts of the affected
locations to increase.

Effective methods should have high
detection power.
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(Kulldorff, 1997)

Spatial Scan Statistic
(Circles)

Clusters locations by regions
constrained by shape

High power to detect disease clusters of
the corresponding shape

But what about irregular shaped clusters?




Detecting Jrrequtar Disease Clusters
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(Neill, 2011)

Fast Subset Scan

Instead of clustering ALL locations
within the region together,

only the most anomalous subset of

locations within the region is used

Increases power to detect irregularly
shaped disease clusters
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(Neill, 2011)

Fast Subset Scan

Instead of clustering ALL locations
within the region together,

only the most anomalous subset of

locations within the region is used

Increases power to detect irregularly
shaped disease clusters

...but may return

spatially dispersed subsets
that do not reflect an outbreak of disease




Detection Power for
Varying Neighborhood Size
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Simulated non-circular outbreaks injected
into real-world ER background data.
Fixed false positive rate of 1 per year.

Neighborhood size, k
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Fast Subset Scan

Instead of clustering ALL locations
within the region together,

only the most anomalous subset of

locations within the region is used

Increases power to detect irregularly
shaped disease clusters

...but may return

spatially dispersed subsets
that do not reflect an outbreak of disease




Detecting Jrrequtar Disease Clusters

O O Soft Compactness Constraints

‘ .
e ® o ®
| (I
- |
o | .®
O
® 9




Detecting Jrrequtar Disease Clusters

~

Soft Compactness Constraints

Use the distance of each location
from the center as a measure of
compactness/sparsity



Detecting Jrrequtar Disease Clusters

Soft Compactness Constraints

Use the distance of each location
from the center as a measure of
compactness/sparsity

Reward subsets that contain
locations close to the center
and
Penalize subsets that contain
locations far from the center

Strength of
Constraint

Distance from the Center
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Soft Compactness Constraints

...but may return

spatially sparse subsets
that do not reflect an outbreak of disease.

This particular subset would be less likely
returned as the optimal one when
compactness constraints are used

The penalties associated with the
distance between the locations and
center of the circle would decrease

the “score” of the subset
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Soft Compactness Constraints

...but may return

spatially sparse subsets
that do not reflect an outbreak of disease.

This particular subset would be less likely
returned as the optimal one when
compactness constraints are used

The penalties associated with the
distance between the locations and
center of the circle would decrease

the “score” of the subset

...While increasing the score of
compact clusters




Detection Power for
Varying Neighborhood Size
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into real-world ER background data.
Fixed false positive rate of 1 per year.



Take-Away Message
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A o ] closer attention to choice of
? ® ®@ O neighborhood size, k.
® @ ® Enforcing soft proximity constraints to
e © p) penalize dispersed subsets addresses
) e - A this concern and increases overall

=A o detection power.




Take-Away Message

Penalized Fast Subset Scanning is very general and provides a
framework for incorporating soft constraints into commonly
used expectation-based scan statistics.

In the PFSS framework, we demonstrate:

e Exactness: The most anomalous (highest scoring) subset is
guaranteed to be identified.

 Efficiency: Only O(N) subsets must be scanned in order to
identify the most anomalous penalized subset in a dataset
containing N elements (same as the un-penalized scan).

* |nterpretability: Soft constraints may be viewed as the prior
log-odds for a given record to be included in the most
anomalous penalized subset.



Three Contributions

Additive Linear Time Subset Scanning (ALTSS)
property of commonly used

expectation-based scan statistics

Efficient computation of the optimal penalized
subset for functions satisfying ALTSS

One example of penalty terms:
soft proximity constraints




Expectation-based Scan Statistics
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Additive Linear Time Subset Scanning

P(Data| H,(S)) H, : %, ~ Poisson(;)

F(S)=1Io
( ) 9 P(DataIHo) H, : x, ~ Poisson(qz) q>1

P(Data|H,(S))
P(Data|H,)

F(S)= max log
g>

Definition: For a given dataset D, the score function F(S) satisfies
the Additive Linear Time Subset scanning property if forall S € D

we have
F(S) = max F(S|q) where F(S]q) = Ls;es Ai

and A;depends only on the observed count x;, expected count y;,
and the relative risk, g.



Additive Linear Time Subset Scanning

P(Data| H,(S)) H, : %, ~ Poisson(;)

F(S)=1Io
( ) 9 P(DataIHo) H, : x, ~ Poisson(qz) q>1

P(Data|H,(S))
P(Data|H,)
Intuition: Conditioning ALTSS functions on the relative risk, g, allows

the function to be written as an additive set function over the data
elements s; contained in S.

F(S)= max log
g>

Poisson example:

F($) = max > x;(logq) + (1 — q)

q>1
S;ES




Additive Linear Time Subset Scanning

Consequence #1: Extremely easy to maximize by including all
“positive” elements and excluding all “negative”.

Consequence #2: Additional, element-specific, terms may
be added to the scoring function while

maintaining the additive property.
F(S) = max pflog)Huf—@)+ A; ]
S;ES




Additive Linear Time Subset Scanning

Consequence #1: Extremely easy to maximize by including
“positive” elements and excluding “negative”.

Consequence #2: Additional, element-specific, terms may
be added to the scoring function while
maintaining the additive property.

“Total Contribution” y; of record s; for fixed risk, g

Fpenalized (S) — Max Z [ Xi (log Q) + aui(l — Q)+ A; ]

q>1
S;ES




Additive Linear Time Subset Scanning

Consequence #1: Extremely easy to maximize by including
“positive” elements and excluding “negative”.

Consequence #2: Additional, element-specific, terms may
be added to the scoring function while
maintaining the additive property.

“Total Contribution” y; of record s; for fixed risk, g

Fpenalized (S) = Mdx Z [ A+ A ]

q>1
S;ES




Additive Linear Time Subset Scanning

Distribution Ni(q)
Poisson x;(logq) + pi(1 — q)
L pi (1—q?
Gaussian a%-ﬁg(q )—F;Ligg(; 5 )

exponential x-——(l-—-l)%-ydﬁ%(—'k¥§Q)

_pU)I

- log (L2420

1—po

binomial(po) $110g(q1




Three Contributions

Efficient computation of the optimal
penalized subset for functions satisfying ALTSS



Penalized Fast Subset Scanning
P(Data|H,(S))

F(S) = maxlog
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... but the ALTSS property requires evaluating the function at a fixed risk.

How do we optimize over the entirerangeg>1?



Penalized Fast Subset Scanning
P(Data|H,(S))

F(S) = maxlog
ee q>1 P(Data|H,) ee
° o . A
® o0 0 o .‘ . ©
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Theorem: The optimal subset S* = arg maxg Fy¢, (S)
maximizing a penalized expectation-based scan statistic
satisfying the ALTSS property may be found be evaluating only
O(N) subsets, where N is the total number of data elements.
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Three Contributions

Additive Linear Time Subset Scanning (ALTSS)
property of commonly used

expectation-based scan statistics

Efficient computation of the optimal penalized
subset for functions satisfying ALTSS

One example of penalty terms:
soft proximity constraints




Soft Proximity Constraints

Penalized Fast Subset Scanning allows additional spatial
information to be included; rewarding spatial compactness and
penalizing dispersed subsets within a local neighborhood.

2d,
I

A =h|1

h is the strength of
the constraint

A. =-h<h

Center location and its k-1 nearest neighbors




Soft Proximity Constraints

Penalized Fast Subset Scanning allows additional spatial
information to be included; rewarding spatial compactness and
penalizing dispersed subsets within a local neighborhood.

log Pi_ |2 A,
1-p
The center location is e”
times more likely to be
included in the optimal
subset than the k-1
nearest neighbor.

Center location and its k-1 nearest neighbors



Soft Proximity Constraints

Penalized Fast Subset Scanning allows additional spatial
information to be included; rewarding spatial compactness and
penalizing dispersed subsets within a local neighborhood.

1

0.75 =
S\
0.25 =

0
Center Location  Djstance from Center k-1 neighbor

Prior probability of inclusion

aemh=0 —h=1 h=2




Evaluation: Emergency Department
Data

Two years of admissions from
Allegheny County Emergency
Departments

The patient’s home zip code is
used to tally the counts at
each location

Centriods of 97 Zip Codes
were used as locations




Demonstration on Background Data
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Bayesian Aerosol Release Detector
(BARD) Hogan et al; 2007

Simulates anthrax spores released over a city

Two models drive the simulator:

Dispersion Infection
Which areas will be affected? How many infected people
inan area?
Weather data Demographic data
Gaussian plumes Increased ER visits with

respiratory complaints



Comparison of Detection Power for BARD
Simulated Attacks
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Comparison of Detection Power for BARD

Simulated Attacks
@amwfSS (h=0) —PFSS (h=1) PFSS (h=2) e== Circles (up to k)

80

70

% Detected

60

50 I I I I I I I
5 20 35 50 65
Neighborhood size, k
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Conclusions

Penalized Fast Subset Scanning is very general and provides a
framework for incorporating soft constraints into commonly
used expectation-based scan statistics.

In the PFSS framework, we demonstrate:

e Exactness: The most anomalous (highest scoring) subset is
guaranteed to be identified.

 Efficiency: Only O(N) subsets must be scanned in order to
identify the most anomalous penalized subset in a dataset
containing N elements (same as the un-penalized scan).

* |nterpretability: Soft constraints may be viewed as the prior
log-odds for a given record to be included in the most
anomalous penalized subset.



Conclusions

We applied PFSS with
soft proximity constraints
to the task of detecting
simulated anthrax bio-
attacks.

PFSS showed higher
detection power and
robustness to both
neighborhood size, k, and
proximity constraint, h.




Other types of soft constraints...

Temporal consistency to help detect and track

patterns that change the affected subset over time.

Penalizes abrupt changes that do not reflect a
relevant pattern type.

Potential future work:
Soft connectivity constraints that reward
inter-connectivity based on an underlying
graph structure.
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