Daniel B. Neill

Contents
INtroduction. . .. ... oo 2
Univariate Bayesian Scan StatiStiCS. . ... ... vtu ittt e 5
Multivariate Bayesian Scan StatiStics. . . ... ..ottt 7
Fast Subset Sums. . . ... 10
Learning Models for Bayesian Spatial Scanning. ............... ... ... ... ... ..., 12
Alternative Approaches to Bayesian Spatial Scanning. ............. ... ... ... . .... 13
Bayesian Network Scan StatiStics. .. ... ..ottt e 14
Bayesian Cluster Detection and Modeling Approaches. ........... ... ... ... ........ 16
Summary and Future DireCtions. . . ... ....oo ot 18
References. . .. ..o 20

Abstract

In this chapter we describe Bayesian scan statistics, a class of methods which
build both on the prior literature on scan statistics and on Bayesian approaches
to cluster detection and modeling. We first compare and contrast the Bayesian
scan to the traditional, frequentist hypothesis testing approach to scan statistics
and summarize the advantages and disadvantages of each approach. We then
focus on three different Bayesian scan statistic approaches: the Bayesian variable
window scan statistic, the multivariate Bayesian scan statistic and extensions,
and scan statistic approaches based on Bayesian networks. We describe each of
these approaches in detail and compare these to related Bayesian scan methods
and to the wider literature on Bayesian cluster detection and modeling. Finally,
we discuss several promising areas for future work in Bayesian scan statistics,
including multiple cluster detection, nonparametric Bayesian approaches, exten-
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sion of Bayesian spatial scan to nonspatial datasets, and computationally efficient
methods for model learning and detection.
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Introduction

Bayesian scan statistics are a relatively new class of methods that build both on
the prior literature on scan statistics (Naus, 1965), particularly spatial and subset
scanning (Kulldorff, 1997; Neill, 2012), as well as Bayesian approaches to cluster
detection and modeling (Lawson and Denison, 2002). Bayesian scan methods view
the detection problem from the perspective of Bayesian statistical inference, as
opposed to the more traditional, frequentist hypothesis testing approaches pioneered
by Naus (1965) and Kulldorff (1997). In practice, this differing perspective often
results in three main distinctions between frequentist and Bayesian scans:

1. Bayesian scans tend to incorporate informative prior information about the
expected size, shape, and other attributes of the affected subset of the data, as
well as how this subset is affected by the event of interest. For example, the
multivariate Bayesian scan statistic (Neill et al., 2007; Neill and Cooper, 2010),
a Bayesian extension of Kulldorff’s spatial scan statistic, models multiple event
types, specifying for each event type both its prior distribution over space-time
regions and its effects on the monitored data streams.

2. Bayesian scans tend to output probabilistic inferences about the posterior
probabilities of different alternative hypotheses, thus quantifying their degree
of uncertainty regarding the distribution over possible hypotheses. Frequentist
scans, on the other hand, tend to identify a single, most likely alternative hypoth-
esis, and then perform hypothesis testing to decide whether the null hypothesis
can be rejected in favor of this alternative. For example, given a set of alternative
hypotheses H;(S), each representing the occurrence of an event of interest (e.g.,
a spatial cluster of disease cases) in some subset of the data S, and the null
hypothesis H representing no events of interest, the Bayesian spatial scan (Neill
et al., 2006a,b) computes the posterior probability Pr(H,(S) | D), given the
observed dataset D, for each alternative hypothesis. Applying Bayes’ theorem,
we can write Pr(H(S) | D) = Pr(D | Hi(S))Pr(H,(S))/Pr(D). The traditional
spatial scan approach (Kulldorff, 1997), on the other hand, computes the hypoth-
esis H1(S) which maximizes the likelihood ratio Pr(D|H(S))/Pr(D|Hy).

We note that both Pr(D) and Pr(D|H,), in the expressions above, are
independent of S. Thus, the subset S which maximizes posterior probability in
the Bayesian setting, given a uniform prior over subsets Pr(H;(S)), is identical
to the subset that maximizes the frequentist likelihood ratio statistic, assuming
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an identical model for the likelihood of the data in each case. Nevertheless,
the frequentist and Bayesian approaches would provide different information
about the alternative hypothesis H1(S): the former indicates whether H;(S)
is sufficiently high scoring to reject the null hypothesis at a given significance
level o, while the latter compares the posterior probability of H;(S) to other
alternative hypotheses and to the null hypothesis H.

3. Bayesian scans tend to use a marginal likelihood approach, performing Bayesian
model averaging to compute the total (summed) likelihood of multiple hypothe-
ses of interest, or averaging over multiple parameter values for a given hypoth-
esis. Frequentist scans, on the other hand, tend to use a maximum likelihood
approach, computing the single most likely hypothesis and assuming the param-
eter values that maximize the likelihood of each hypothesis. More precisely,
assuming that the null hypothesis Hy and each alternative hypothesis H;(S)
are point hypotheses with no free parameters, the frequentist scan uses the
likelihood ratio Pr(D|H(S))/Pr(D|Hy), as noted above. A more interesting
situation arises when each hypothesis has some parameter space @: let 6;(S) €
®1(S) denote parameters for the alternative hypothesis H(S), and let 6, € 6
denote parameters for the null hypothesis Hy. For example, Kulldorff’s spatial
scan (Kulldorff, 1997) uses the maximum likelihood values of the relative risks
¢in and gy inside and outside region S, assuming ¢; ~ Poisson(gi,b;) for
locations s; € S and ¢; ~ Poisson(qoub;) for locations s; & S, respectively, and
the maximum likelihood value of the relative risk g,; under the null hypothesis
Hy, assuming ¢; ~ Poisson(q.b;). The typical, maximum likelihood framework
uses the estimates of each set of parameters that maximize the likelihood of the
data:

maxg, sy, (s) Pr(D|H{(S), 01(S))

F(S) =
( ) maxg,eco, PI‘(D|H0,90)

The marginal likelihood framework instead averages over the possible values of
each parameter:

Jo, (s)eo,(s) PIDH1(S), 01(5))Pr(6,(S5))
Joveo, Pr(D1Ho, 00)Pr(6o)

F(S) =

Both maximum likelihood and marginal likelihood approaches have certain
advantages. Maximum likelihood leads to a generalized likelihood ratio test
(GLRT) in the frequentist scan framework, and in certain cases, such as
Kulldorff’s spatial scan (Kulldorff, 1997), this leads to an individually most
powerful statistical test under the given model assumptions. On the other hand,
marginal likelihood tends to produce better posterior probability estimates for the
Bayesian scan framework, since it incorporates the uncertainty (and if available,
informative prior information) about the distribution of parameter values.
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‘We note that each of these typical differences between frequentist and Bayesian
scan statistics may be individually insufficient to distinguish the two classes of
methods. Bayesian scan statistics may use an uninformative prior, while prior
information can be incorporated into frequentist scan statistic approaches via hard
constraints, e.g., on spatial proximity (Neill, 2012), or via maximization of a penal-
ized likelihood ratio statistic (Gangnon and Clayton, 2004; Cancado et al., 2010;
Speakman et al., 2013). In the latter case, penalties have been applied to counteract
the inherent bias of spatial scanning toward finding clusters in areas with higher
spatial resolution (Gangnon and Clayton, 2004), to penalize irregularly shaped
and disconnected clusters (Cancado et al., 2010), and to reward dynamic clusters
that change smoothly over time (Speakman et al., 2013). These penalties can be
roughly interpreted as the prior log-odds of each alternative hypothesis (Speakman
et al., 2013), resulting in a maximum a posteriori (MAP) estimate of the true
affected subset. Similarly, marginal likelihood approaches have been used in a
frequentist setting, either with informative prior weights (Gangnon and Clayton,
2001, 2004) or with uninformative priors, resulting in a simpler “average likelihood”
approach (Chan, 2009). In either case, proponents of marginal likelihood argue that
such approaches make better use of secondary cluster information as compared
to the standard spatial scan, since the null hypothesis can be rejected based on
multiple, moderately high-scoring clusters rather than a single, extremely high-
scoring cluster (Chan, 2009). Nevertheless, these approaches generally do not
compute the marginal likelihood over a continuous parameter space, in contrast to
the Bayesian and multivariate Bayesian scan statistics (Neill et al., 2006a,b, 2007;
Neill and Cooper, 2010) described below.

While we do not attempt to weigh in on the age-old debate between frequentist
and Bayesian statistical methods in general (Neapolitan, 2008), we note that the
Bayesian scan has both advantages and disadvantages compared to the more typical,
frequentist scan approach:

¢ Bayesian methods can better quantify their uncertainty over alternative hypothe-
ses, as well as integrate this information into interpretable graphical displays such
as the posterior probability map. Frequentist methods instead draw conclusions,
based on significance testing, as to whether to reject the null in favor of an
alternative hypothesis H;(S) signifying an event of interest and characterizing
the affected subset of the data.

e Bayesian scanning tends to have higher detection power when an informative
prior can be accurately specified but can lose power for poorly chosen pri-
ors (Neill and Cooper, 2010). When expert knowledge is unavailable to specify
the priors, this fact makes it essential to develop methods for efficiently learning
models from data in the Bayesian framework (Makatchev and Neill, 2008a,b).

e With uninformative priors, maximization of the posterior probability in the
Bayesian setting may reduce to likelihood ratio maximization, possibly with
extra layers of hierarchy, e.g., a Gamma-Poisson statistic instead of a Poisson
likelihood ratio (Neill et al., 2006a,b). Such hierarchical models may improve
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detection or may simply complicate the model, making computation more
difficult.

* Both frequentist and Bayesian approaches can be computationally expensive in
some cases: frequentist methods may require randomization testing to determine
statistical significance, while Bayesian methods may also require simulation
(e.g., by Markov chain Monte Carlo) unless simple, conjugate priors are used.
Nevertheless, both settings enable novel algorithmic approaches to efficiently
search over the exponentially many subsets of the data, such as linear-time subset
scanning (Neill, 2012) in the frequentist setting, or fast subset sums (Neill, 2011;
Neill and Liu, 2011; Shao et al., 2011) in the Bayesian setting.

* Both frequentist and Bayesian approaches can be extended to integrate informa-
tion from multiple data streams (Kulldorff et al., 2007; Neill et al., 2007), while
approaches such as the multivariate Bayesian scan statistic can accurately model
and distinguish between multiple event types (Neill and Cooper, 2010).

In the remainder of this chapter, we focus on three different Bayesian scan statis-
tic approaches: the Bayesian variable window scan statistic (Zhang and Glaz, 2008),
the multivariate Bayesian scan statistic and extensions (Neill et al., 2007; Neill and
Cooper, 2010), and scan statistic approaches based on Bayesian networks (Neill
et al., 2009). These approaches are described in some detail, as representatives of
the larger class of Bayesian scan methods, and are compared to related methods as
well as the large body of prior work on Bayesian mapping and modeling, which has
also led to useful Bayesian approaches for cluster detection (Lawson and Denison,
2002).

Univariate Bayesian Scan Statistics

Work on Bayesian change-point detection in time series data has been ongoing
since the 1970s (Smith, 1975; Barry and Hartigan, 1993). However, it is only
in the last decade that researchers have integrated more general scan statistic
approaches with Bayesian modeling and have applied these Bayesian scan statistic
approaches to spatial (two-dimensional or higher-dimensional) data or to more
general datasets. The first such approaches include the Bayesian variable window
scan statistic (Zhang and Glaz, 2008) and the univariate Bayesian spatial scan (Neill
etal., 2006a,b). Both approaches build on the two-dimensional discrete scan statistic
setting (Chen and Glaz, 1996) and on Kulldorff’s spatial scan (Kulldorff, 1997).
They assume small-area count data mapped to a uniform grid and extend the
frequentist (Poisson or binomial) likelihood ratio statistics through the development
of Bayesian hierarchical models. The univariate Bayesian spatial scan is a special
case of the multivariate Bayesian scan statistic (MBSS) approach (Neill et al.,
2007; Neill and Cooper, 2010) described in detail below, so we focus mainly on
the Bayesian variable window scan (Zhang and Glaz, 2008), which we denote by
BVWS, in this section.
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As noted above, BVWS assumes small-area counts y;; aggregated to an N X
N grid. Following the two-dimensional discrete scan statistic setting of Chen and
Glaz (1996), it scans over the set of alternative hypotheses H;(S), each assuming
a cluster in some m x m square subregion S of the grid. The null hypothesis H
assumes that no clusters are present. The counts y;; are modeled as independent
Poisson or Bernoulli random variables. For each grid square (i, j), we have either
yij ~ Poisson(6;;) or y;; ~ Bernoulli(p;;), where the Poisson means 6;; or the
Bernoulli log-odds 6;; = log(p;; /(1 — p;;)) are assumed to be latent variables with
a two-stage prior (Fig. 1). The first-stage prior for ¢;; is assumed to be normally
distributed with mean o and variance . The second-stage prior for « is a normal
distribution with mean y and variance o2, where .t = j, under the alternative
hypothesis H; and ;. = 1o under the null hypothesis Hj. The second-stage prior for
B is an inverse Gamma distribution with shape parameter a and scale parameter b.
The values of w1, wo, 02, a, and b are assumed to be known. Since a non-conjugate
prior is used, the likelihoods of the data given each hypothesis cannot be computed
in closed form. Instead, a Gibbs sampling approach with auxiliary variables is used
to generate posterior samples Qi(jg) (n) and Gi(jl) (n), forn = 1... Neamples, under the
null and alternative hypotheses, respectively. See Zhang and Glaz (2008) for further
details. Then, following Kass and Raftery (1995), the Bayes factor By;(S) for a
given subset S is defined to be the ratio of the harmonic means of the likelihood
values given samples §;; from the null and alternative distributions, respectively:

-1
0 —
(75 Tomtorame [T s PO 165 ) )
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1
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N, samples

Boi(S) =

We can then compute the p-value p(.S) corresponding to the observed Bayes factor
By1(S) for each S, comparing the observed value to the expected distribution of
By1(S) under Hy, and use py;, = ming p(S) as a test statistic. Finally, in order
to account for multiple hypothesis testing over the potentially large set of square
regions S, statistical significance is computed by randomization, where the p-value
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is obtained by comparing pp, to its expected distribution under the null hypothesis
Hp.

The univariate Bayesian spatial scan (denoted here as UBSS) is described
below as a special case of MBSS with a single event type and single monitored
data stream. UBSS differs from BVWS in several important ways. First, while
UBSS also incorporates a hierarchical model (Gamma priors and Poisson counts),
the parameters of the Gamma priors (o and ) are fit directly from data in an
“empirical Bayes” approach. BVWS uses a more “fully Bayesian” approach with
a two-stage hierarchical model, which may better capture the uncertainty in these
parameter estimates. Second, UBSS uses a conjugate Gamma-Poisson prior, which
enables the computation of an efficient, closed-form expression for the posterior
probabilities. BVWS assumes a non-conjugate prior, necessitating the use of
more computationally expensive Gibbs sampling techniques to compute posteriors.
Finally, BVWS uses the Bayes factors By;(S) to compute p-values in a frequentist
hypothesis testing approach, while UBSS incorporates the prior distribution over
hypotheses Pr(H(S)) and computes the posterior distribution Pr(H(S)|D).

Multivariate Bayesian Scan Statistics

Building on the univariate Bayesian spatial scan (Neill et al., 2006a,b), Neill et
al. proposed the multivariate Bayesian scan statistic (MBSS) approach for event
detection and characterization using multivariate spatial time series data (Neill
et al., 2007; Neill and Cooper, 2010). The authors argue that MBSS has several
advantages over the previously proposed, frequentist scan statistic approaches to
event detection:

1. MBSS achieves high detection power, even when relatively uninformative priors
are used, by combining information from multiple data streams, spatial locations,
and time steps.

2. MBSS can incorporate informative priors, enabling much higher detection power
for the specified and modeled event types. Priors can be pre-specified by expert
knowledge or learned from labeled training data, as described below.

3. MBSS can accurately characterize events by specifying models for multiple
event types and computing the probability that each type of event has occurred.
This enables MBSS to model and distinguish between relevant events (e.g., a
disease outbreak of interest to public health) and irrelevant events (e.g., a spike
in over-the-counter medication sales that is due to a promotional sale rather than
an outbreak).

4. MBSS is computationally efficient because of the use of conjugate priors. Unlike
the frequentist approach, randomization testing is not necessary, which reduces
runtime and leads to easier calibration of alerting thresholds.

5. MBSS results are easy to interpret, visualize, and use for decision-making.
MBSS outputs the total posterior probability of each event type as well as the
posterior probability that no events have occurred. For each event type, MBSS
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provides the distribution of the posterior probability over space-time regions
S. An intuitive way of viewing these results, the posterior probability map, is
described below.

Given a set of space-time regions S to search and a set of event types E, MBSS
computes the posterior probability Pr(H,(S, E)|D) that each event type E has
affected each space-time region S, given the observed dataset D consisting of
multiple data streams D; ... Dys. Each data stream consists of spatial time series
data collected at a set of spatial locations s;, and for each combination of location
s; and stream D,,, we observe a time series of counts cl’m For example, in the
multivariate disease surveillance problem, a given count C;,m could represent the
number of emergency department visits with a specific symptom type D,, in zip
code s; on day 7.

Given the multivariate, space-time count data, our task is threefold: to detect
whether any events are occurring, characterize the event type, and pinpoint the
affected space-time region (i.e., identifying both the affected subset of locations
and the time duration for which these locations were affected). Thus, the MBSS
approach has the goal of distinguishing between the set of alternative hypotheses
H, (S, E), each representing the occurrence of an event of type E in a space-time
region S, and the null hypothesis H that no events have occurred. Each hypothesis
H,(S, E) is assumed to be mutually exclusive, and thus we have Pr(H,) +
Y s 2 g Pr(Hi(S, E)) = 1. Neill and Cooper (2010) assume a uniform prior over
event types and space-time regions, i.e., Pr(H (S, E)) = Pr(H,)/(Ns Ng) for all S
and E, where Ng and N, respectively, represent the numbers of space-time regions
and event types under consideration. As described below, nonuniform priors can
be estimated by various approaches for model learning from labeled (or partially
labeled) training data.

Given the prior distribution over hypotheses, MBSS applies Bayes’ theorem to
compute the posterior probability of each hypothesis, integrating prior information
about each event type with the observed multivariate dataset D:

Pr(D|Hy(S, E))Pr(H(S, E))
Pr(D|Ho)Pr(Ho) + 3.5 > Pr(DIH\(S, E)Pr(H (S, E))

Pr(H\(S. E)|D) =

The likelihood of the data given an alternative hypothesis H;(S, E) is computed
assuming the Bayesian hierarchical model in Fig.2. Observed counts ¢/, are each
assumed to have been drawn from a Poisson distribution with mean equal to the
product of the expected count b}, and the relative risk g;,, where the expected
counts are learned from historical data by time series analysis. (One weakness
of the MBSS approach is that it does not model the uncertainty introduced by
estimating b}, from data.) Relative risks ¢;, are assumed to be drawn from
a Gamma distribution with parameters @ = x{,a, and f = f,, where the
parameters of the Gamma distribution for each stream under the null hypothesis

(o, Bim) are estimated from historical data using an empirical Bayes approach. The
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Fig. 2 Bayesian hierarchical model for the multivariate Bayesian scan statistic with generalized
fast subset sums (Neill and Liu, 2011; Shao et al., 2011). Solid lines denote observed variables or
those with values assumed to be known. Dashed lines denote latent variables. Note that the original
multivariate Bayesian scan statistic (Neill et al., 2007; Neill and Cooper, 2010) and the original
fast subset sums method (Neill, 2011) can be considered special cases of the generalized fast
subset sums framework with sparsity parameter p = 1 and p = 0.5, respectively. The univariate
Bayesian spatial scan can be considered a special case with sparsity parameter p = 1, a single
event type E, and a single monitored data stream (M = 1)

x!,, represent the multiplicative effects of an event on the expected counts for each
combination of location s;, data stream D,,, and time step . We note that x},, = 1
for all unaffected locations, streams, and time steps; under the null hypothesm Hy,
xf n = 1 foralls;, D,, and ¢. Additionally, for a given occurrence of an event,

x!,, is assumed to be uniform over the affected space-time region S for each data
stream D,,. The effect X, on a given data stream D,, is assumed to be a function of
the event type E (which defines the “average” percent increase in each data stream
given that event type) and the event severity (which multiplies the “average” percent
increase for each data stream by the same constant 6). Effects of each event type on
each data stream can be learned from labeled training data via maximum likelihood
estimation, as described below. Alternatively, MBSS can be used as a “general”
rather than “specific” event detector by defining 2 — 1 event models, each of which
assumes that an event has uniform effects on some subset of the M monitored data
streams (Neill and Cooper, 2010). As a “general” event detector, MBSS was able to
achieve high detection power on a semisynthetic multivariate disease surveillance
task and to identify the affected subset of data streams. When specific event models
were learned from the data, these models dramatically increased detection power as
well as enabling MBSS to distinguish between the multiple event types.
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Fig. 3 Examples of posterior probability maps, from Neill (2011). The center and right panels are
posterior probability maps formed by the multivariate Bayesian scan statistic (Neill et al., 2007;
Neill and Cooper, 2010) and fast subset sums (Neill, 2011) methods, respectively, at the midpoint
of a simulated disease outbreak. Darker shading denotes higher summed posterior probability
Pr(H(s;)|D) = ZS:S,ES Pr(H;(S)|D) for the given zip code s;. Shaded zip codes in the left
panel denote the true outbreak region

Fast Subset Sums

As discussed above, the multivariate Bayesian scan statistic (MBSS) can integrate
information from multiple data streams and can model and distinguish between
multiple event types. Given a set of space-time regions S, a set of modeled event
types E, and the multivariate dataset D, MBSS calculates the posterior probabilities
Pr(H,(S, E)|D) that each event type has affected each space-time region. One
useful and intuitive visualization of these outputs is the posterior probability map.
Since the set of hypotheses H, (S, E) are assumed to be mutually exclusive, the total
posterior probability that a given event type E has affected each spatial location
s; can be computed by summing the probabilities of all regions S containing
sit Pr(Hy(si, E)|D) = D g..es Pr(H1(S, E)|D). These summed probabilities
for each location can then be displayed on a map (Fig. 3), where darker shading
corresponds to higher probability and different colors can be used for different
event types. Unlike standard spatial scan visualizations, which do not compute
probabilities but instead show the most likely cluster, this method is able to quantify
its uncertainty about the spatial extent and type of events.

One disadvantage of the MBSS method, however, is the need to search over a
typically very large number of space-time regions S, either to identify the hypothesis
H, (S, E) with highest posterior probability, to enumerate all posterior probabilities
Pr(H,(S, E)|D) above some threshold value, or to compute the summed posterior
probabilities Pr(H, (s;, E)| D) in order to display the posterior probability map. This
limitation restricts the original MBSS approach to searching over regions of fixed
shape, such as circles or rectangles, for computational feasibility. As a result, MBSS
suffers from reduced power to detect elongated or irregular cluster shapes.

More recently, Neill (2011) proposed an efficient fast subset sums method
which substantially improves detection power and accuracy for irregularly shaped
regions. Fast subset sums extends the MBSS method by defining a hierarchical
prior which assigns nonzero prior probabilities Pr(H,(S, E)) to every subset of
locations while maintaining efficient computation of the posterior probability map.
The key step is a computational shortcut that efficiently and exactly computes
the summed posterior probability Pr(H;(s;, E)|D) = .. csPr(Hi(S, E)|D)
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over all subsets containing location s;, without computing the posterior probability
of each individual subset. See Fig.3 for an example comparing the posterior
probability maps produced by MBSS (assuming a uniform prior over circular
clusters) and fast subset sums for a simulated, irregularly shaped disease cluster.
Fast subset sums is better able to capture the irregular shape of the cluster, enabling
more timely and more accurate event detection.

This work was further extended to the generalized fast subset sums (GFSS)
framework through incorporation of an additional parameter which allows the
sparsity of the detected region to be controlled (Neill and Liu, 2011; Shao et al.,
2011). As shown in Fig.2, GFSS extends the Bayesian hierarchical model of
MBSS (Neill and Cooper, 2010) by assuming that the affected spatial region S, for
a given event of type E, is drawn from a hierarchical prior distribution with three
steps. First, the center location s, is drawn from a multinomial distribution. Second,
the neighborhood size k is drawn from a multinomial distribution, thus defining
the neighborhood S, consisting of location s, and its k — 1 nearest neighbors.
Third, each location s; in neighborhood S, is independently drawn from a Bernoulli
distribution with parameter p, where s; is included in the affected region S with
probability p and excluded with probability 1 — p. The sparsity parameter p can
be viewed as the expected proportion of locations affected within a given (circular)
local neighborhood, and thus the original MBSS method (Neill and Cooper, 2010),
assuming a uniform prior over circular regions, corresponds to a special case of
GFSS with p = 1. The original fast subset sums method (Neill, 2011) does not
include the sparsity parameter p, assuming uniform distributions over the center
location s. and the neighborhood size k and a uniform distribution over subsets
S € Sck. Shao et al. (2011) show that this is a special case of GFSS with p = 0.5.
Additionally, they demonstrate that appropriate choice of the sparsity parameter p
enables GFSS to achieve higher detection power and spatial accuracy than either
MBSS or the original fast subset sums method. Moreover, they show that the
distribution of the sparsity parameter can be accurately learned from a small amount
of labeled training data, leading to improved detection, as described below.

Naive computation of the posterior probability map using GFSS would require
computation of posterior probabilities for a number of subsets that scales exponen-
tially with neighborhood size, which is computationally infeasible for k > 25.
However, Shao et al. (2011) show that, for any value 0 < p < 1, the posterior
probability map can be computed without computing each individual region prob-
ability, thus reducing the run time from exponential to polynomial in k. The key
trick is to note that the likelihood ratio of spatial region S (as compared to Hy)
for a given event type E and event severity 6 can be found by multiplying the
individual likelihood ratios LR(s;|E, 0) for all locations s; € S. Then the average
likelihood ratio of the 2% subsets for a given center s. and neighborhood size k can
be transformed from a sum of products to a product of sums, enabling us to write this
quantity as the product of the smoothed likelihood ratios (p x LR(s; | E, 8)+(1—p))
for all locations s; € S.x. The contribution to the average likelihood ratio from
the 2¥=! subsets containing a given location s; can be found by computing this
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product of smoothed likelihood ratios for all locations s; € Sck, j # i, and
multiplying by (p x LR(s;|E, 8)). We can then marginalize over the distributions
of centers s., neighborhood sizes k, and severity values 6 and normalize to compute
the posterior probability map. More details are provided in Shao et al. (2011). In
practice, this enables GFSS to run in time comparable to MBSS, i.e., computing the
posterior probability map in seconds for each day of data, for the real-world disease
surveillance tasks described by Shao et al. (2011).

Learning Models for Bayesian Spatial Scanning

As noted above, the multivariate Bayesian scan statistic can model and distinguish
between multiple event types E. To do so, various parameters must be specified
for each event model, including the prior probability Pr(H;(E)), the distribution
of this prior probability over space-time regions Pr(H;(S, E)), and the average
effects of event E on each of the M monitored data streams. The original MBSS
approach (Neill et al., 2007; Neill and Cooper, 2010) assumes a uniform distribution
over event types and space-time regions but learns the average effects xymayg Of
each event type Ej; on each monitored data stream D, by maximum likelihood
estimation. Assuming labeled training examples for which the event type E and
affected subset S are known, Xy ave can be computed as the average ratio of the total
count ) ¢}, tototal baseline ) b for data stream D,, in regions affected by event
type Ej. This approach was shown to improve detection power for the modeled
event types as well as enabling MBSS to accurately determine which event type is
occurring. Neill (2007) also proposes learning the prior probability of each event
type Pr(H;(E)) and the conditional probability that the event occurs in each spatial
region Pr(H,(S, E)|E) by smoothed maximum likelihood estimation. However,
the number of possible space-time regions is typically large, and a very large
number of training examples are typically needed to accurately model a nonuniform
distribution over regions.

An alternative approach is to assume a parameterized prior distribution over
spatial regions S and to learn the parameters of that distribution for each event
type E. Makatchev and Neill (2008a,b) propose a simple generative model that
assumes a latent center location s, and radius parameter r for each event. Each
location is assumed to be affected with probability (1 + exp((d — r)/h))"!,
where d is the location’s distance from the center. The center location s. for a
given event type E follows a multinomial distribution. The radius r is assumed
to follow a uniform or Gaussian distribution with mean pu learned from data,
and the bandwidth % is also learned from data. Since each example specifies
the affected spatial region S but not the underlying model parameters, parameter
distributions are estimated using a generalized expectation-maximization (GEM)
algorithm. Then the prior probabilities Pr(H, (S, E)) can be calculated directly from
the learned models. Makatchev and Neill (2008b) show that event models can be
accurately learned from a small number of labeled training examples and that the
resulting models significantly improve detection performance as compared to MBSS
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with uninformative priors. Two disadvantages of this approach are the significant
computational expense of the GEM algorithm and the restriction (as in the original
MBSS approach) to a relatively small, exhaustively enumerable set of search regions
S, such as circular or rectangular regions.

As noted above, the generalized fast subset sums framework (Neill and Liu,
2011; Shao et al., 2011) also proposes a parameterized prior distribution over the
hypotheses Pr(H,(S, E)) for each event type E. However, this framework allows
efficient computation of the posterior probability map, summing probabilities over
the exponentially many subsets of the data S that contain a given location s;, to
calculate the total posterior Pr(H,(s;, E)| D). As noted above, the GFSS framework
assumes a hierarchical model where the center location s, and neighborhood size
k are drawn from multinomial distributions, and then each location in the resulting
neighborhood S, is either included with probability p or excluded with probability
1 — p, for some sparsity parameter p. Shao et al. (2011) show that the distribution
of the sparsity parameter p can be accurately learned from a small amount of
labeled training data and that the resulting GFSS method with learned p distribution
outperforms MBSS, the original fast subset sums method, and GFSS with a uniform
p distribution. They also demonstrate that two otherwise identical event types
with different sparsities can be reliably distinguished by learning each event’s p
distribution. Finally, they show that learning both an event’s sparsity distribution and
its relative effects on different data streams, as in Neill and Cooper (2010), leads to
more timely detection and better characterization than learning either parameter on
its own. Even better detection and characterization accuracy might be achieved in
future work by jointly learning each event type’s distribution over center locations
s¢, neighborhood sizes k, and sparsity parameters p, as discussed below.

Alternative Approaches to Bayesian Spatial Scanning

We now consider how the multivariate Bayesian scan statistic framework described
above differs from the previous work of Gangnon and Clayton (2001, 2004) on
weighted average likelihood ratio (WALR) scan statistics, as well as describing
several recent variants of Bayesian spatial scan. Gangnon and Clayton (2001)
define the WALR statistic as a weighted average of the likelihood ratio statistics
F(S) = Pr(D|H,(S))/Pr(D|Hy), i.e., WALR = ) weight(S)F(S), where
weight(S) corresponds to the (unnormalized) prior probability of H;(S). They then
estimate the posterior probabilities Pr(H,(S)|D) o weight(S) F(S)/WALR. This
approach differs from MBSS in three ways: first, it does not incorporate multiple
data streams or multiple event types. Second, it uses maximum likelihood estimates
of the relative risk parameters (¢in, Gout> gan), rather than marginal likelihoods,
thus presenting an upwardly biased estimate of each posterior probability. Third,
it uses a hypothesis test to decide whether to reject Hy in favor of H, instead of
incorporating the prior probabilities Pr(H;(S)) and calculating the corresponding
posterior probabilities. Thus, the WALR statistic can be thought of as a maximum
likelihood approximation to the posterior probabilities Pr(H(S)|D) computed by
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the MBSS approach. Similarly, the WALRS statistic (Gangnon and Clayton, 2004)
computes a weighted average of the likelihood ratios for regions containing a
given location: WALRS (s;) = Y s:5;5 Weight(S) F(S), with the maximum value
WALRS = max,, WALRS (s;) used as a frequentist test statistic. This approach
can be considered a maximum likelihood-based approximation to the posterior
probability map, Pr(H,(s;)| D) = ZS:S;ES Pr(H,(S)|D), computed by MBSS.

Recently proposed variants of UBSS and MBSS include the Bayesian beta-
Bernoulli scan statistic (Read, 2011) and the rank-based scan statistic (Que and
Tsui, 2008, 2011), as well as the Bayesian network scan statistics described below.
Read (2011) proposes a straightforward variation of UBSS that substitutes a beta-
Bernoulli model in place of the Gamma-Poisson model and argues that this approach
is more appropriate for spatially distributed, binary labeled point data, as opposed to
small-area count data as in the UBSS approach. Que and Tsui (2008, 2011) use the
UBSS approach in two stages, first computing Pr(H(S)|D) for the single-element
subsets S consisting of each individual location, and ranking the locations by these
posterior probabilities. Then a greedy growth heuristic is used to form and evaluate
clusters, where at each step the algorithm adds the highest-ranked adjacent location
to the cluster and each such cluster is scored using the posterior computed by UBSS.
Empirical results suggest that this approach is effective at identifying anomalous
clusters. One disadvantage of the rank-based approach, as compared to UBSS, is
that the “prior” distribution over clusters (assumed to be uniform over all clusters
created by the algorithm) is specified after rather than prior to the search, and as
such one would expect the resulting “posterior” probabilities to be upwardly biased,
since higher priors are placed on subsets with higher observed likelihood given the
data.

Bayesian Network Scan Statistics

Bayesian networks, a type of probabilistic graphical model, are a useful tool for
modeling, inference, and learning from multivariate data. As described by Neill
et al. (2009), several recent scan statistic approaches incorporate Bayesian networks
either implicitly (e.g., the relationships between the variables in the MBSS approach
can be described using a Bayesian network) or explicitly. Here we review several
of the approaches described by Neill et al. (2009), including the entity-based scan
statistic (Jiang et al., 2010) and anomalous group detection (Das et al., 2009), as
well as several more recent methods (Jiang and Cooper, 2010; McFowland III et al.,
2013).

Jiang et al. (2010) developed a Bayesian network scan statistic approach,
the entity-based scan statistic (EBSS), which combines spatial and population-
based approaches to detection. EBSS builds on both the multivariate Bayesian
scan statistic (Neill et al., 2007; Neill and Cooper, 2010) and the Bayesian
network model of PANDA (Cooper et al., 2004). PANDA models the
relationships between variables including the presence, type, and severity of
a disease outbreak, latent variables representing the underlying disease state
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D, € {anthrax,influenza,...,none} of each individual r in the population,
and observed variables I, € {cough, fever,chest pain,...,other,no ED}
representing whether that individual visits the emergency department with a
particular chief complaint type or does not visit the emergency department. The
EBSS model adds a spatial component to the PANDA model, modeling the spatial
region S affected by the outbreak as a latent variable (as in MBSS) and specifying
the effects of an outbreak on individuals’ disease states in the affected region. EBSS
is similar to MBSS in that it uses a Bayesian model to differentiate between multiple
event types and computes the posterior probabilities Pr(H, (S, E)|D), but it models
the effects of the event on each individual in a population rather than on a set of
monitored data streams. This approach may be preferable to MBSS given detailed
individual-level data, but it may be less useful when only aggregate count data is
available. Jiang and Cooper (2010) further extend the approach of Jiang et al. (2010)
by explicitly modeling the temporal trend of case counts given that an outbreak is
occurring. This method assumes a linear increase in cases over time and models the
number of days since the start of the outbreak as a latent variable.

Another recent set of approaches (Das et al., 2009; McFowland III et al., 2013)
use Bayesian networks to detect patterns in general datasets, where each data
record R; has observed values v;; for a set of categorical attributes A;. These
approaches first learn the structure and/or parameters of a Bayesian network model
M, given the null hypothesis Hj, using “clean” training data that is assumed not
to contain any patterns of interest. Given a separate set of test data, which may
contain patterns of interest, the goal is to find related subsets of data records that are
collectively anomalous given the null model M,. The anomalous group detection
(AGD) approach (Das et al., 2009; Neill et al., 2009) scans over related subsets of
the data (as enumerated by a greedy search method), computes a likelihood ratio
statistic for each subset, and reports the highest-scoring subsets. The novelty of this
approach is that the likelihood ratio statistic F'(S) compares the likelihood of the
observed data given a “local Bayesian network” (learned only from the given subset
of the data S) to the likelihood of that data given the “global Bayesian network”
learned from the entire training dataset. This method was demonstrated to accurately
detect anomalous groups in disease surveillance and container shipping datasets but
risks overfitting by learning a complex, multivariate model from a small subset of
data records. It also has the disadvantage of high computational complexity, since a
Bayesian network must be learned “on the fly” for each evaluated subset.

More recently, McFowland III et al. (2013) proposed a “Fast Generalized
Subset Scan” approach for pattern detection. This approach consists of four
steps: (1) efficiently learning a Bayesian network which represents the assumed
null distribution of the data; (2) computing the conditional probability of each
attribute value in the dataset given the Bayesian network, conditioned on the other
attribute values for that record; (3) computing an empirical p-value corresponding
to each attribute value by ranking the conditional probabilities, where under the
null hypothesis we expect empirical p-values to be uniformly distributed on [0,1];
and (4) using a nonparametric scan statistic to detect subsets of records and
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attributes with an unexpectedly large number of low (significant) empirical p-
values. The final step is computationally expensive (exponential in the numbers
of records and attributes for a naive search), but the linear-time subset scanning
property (Neill, 2012) can be used to speed up this search, converging to a local
maximum of the score function and ensuring that each iteration step is linear (not
exponential) in the number of records or attributes. FGSS was evaluated on multiple
application domains, including early detection of simulated anthrax bio-attacks,
discovery of patterns of illicit container shipments for customs monitoring, and
network intrusion detection, demonstrating improved detection accuracy, efficient
runtime, and ability to correctly characterize the affected subset of attributes in each
domain. FGSS was shown to consistently outperform AGD and other previously
proposed methods in terms of detection power and characterization accuracy and
scales to much larger datasets. It is worth noting, however, that neither FGSS
nor AGD are Bayesian approaches in the sense of incorporating priors over the
possible alternative hypotheses H;(S) and computing the posterior probability
of each hypothesis. Instead, Bayesian networks are used as a component of a
frequentist approach that identifies high-scoring subsets and optionally computes
their statistical significance by randomization testing. As discussed below, extension
of truly “Bayesian” scan statistic approaches such as MBSS to more general datasets
remains an interesting open problem.

Bayesian Cluster Detection and Modeling Approaches

Since the 1980s, the spatial epidemiology literature has developed a number
of Bayesian spatial modeling approaches that focus on estimating and mapping
spatially smoothed disease rates from small-area counts (Clayton and Kaldor, 1987;
Waller et al., 1997; Knorr-Held and Rafer, 2000; Gangnon and Clayton, 2000). For
example, Clayton and Kaldor (1987) assume a Gamma-Poisson model and estimate
the parameters of the Gamma distribution using an empirical Bayes approach, while
Waller et al. (1997) assume a log-linear model for location-specific disease rates.
These models can incorporate both spatial autocorrelation and spatial heterogeneity
but do not explicitly model cluster locations.

More recent approaches such as Knorr-Held and Rafer (2000) and Gangnon and
Clayton (2000, 2003, 2007) propose Bayesian models that are more appropriate
for cluster detection. These spatial cluster modeling methods attempt to combine
the benefits of disease mapping and spatial cluster detection, by constructing a
probabilistic model in which the underlying clusters are explicitly represented. For
a more detailed discussion of spatial cluster modeling, see Lawson and Denison
(2002). A typical approach is to assume that the observed counts are generated by
some underlying process model which depends on a set of cluster centers, where
the number and locations of cluster centers are unknown. Typically, a common
disease rate for locations in the same cluster is assumed (Knorr-Held and Raper,
2000; Gangnon and Clayton, 2000). Then we attempt to simultaneously infer all
the parameters of the model, including the cluster centers and the disease risks in
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each cluster. Knorr-Held and RaBer (2000) assume that the study area is partitioned
based on a set of latent center locations, where each location belongs to the partition
with nearest center. Most similarly to the scan statistic approaches described
above, Gangnon and Clayton (2000, 2003, 2007) assume a large background area
and a small number of clusters, where the prior probability of a set of clusters is
determined based on geographic characteristics such as size and shape.

These Bayesian cluster modeling approaches have many similarities to the
Bayesian scan statistic methods described above, as well as some distinct advantages
and disadvantages. Typically, precise cluster locations are inferred, and models
with different numbers of cluster centers can be compared, giving an indication
of both whether there are any clusters and where each cluster is located. Cluster
modeling approaches can better model the presence of multiple clusters, as well
as adjusting for observed covariates and accounting for spatial autocorrelation.
Additionally, hidden Markov models can be used to model the underlying latent
state of each location on each time step, thus allowing recently proposed Bayesian
cluster modeling approaches such as Heaton et al. (2012) to capture the spatial
spread of events over time. A similar generative model of event propagation was
used in the frequentist, penalized likelihood ratio scan setting by Speakman et al.
(2013), but incorporation of temporal dynamics into the Bayesian scan setting is
still in its early stages.

One typical disadvantage of Bayesian spatial cluster modeling methods, as
compared to Bayesian scan statistics, is their computational burden: the underlying
models rarely have closed-form solutions, and the Markov chain Monte Carlo
methods used to approximate the model parameters are often computationally
intensive. In these models, the number of clusters or partitions is typically unknown,
requiring the use of a reversible jump Markov chain Monte Carlo method (Green,
1995) which allows clusters to be added or deleted as part of the process of
sampling from the posterior distribution. This approach is computationally expen-
sive, but an alternative is to use a fixed, overly large number of cluster centers
or partitions (Gangnon and Clayton, 2007). This alternative approach simplifies
inference and leads to more efficient computation; though the identification of
clusters is less clear, the method is still able to present evidence of local clustering
through the use of Bayes factors. Finally, we note that, unlike the multivariate
Bayesian scan statistic framework (Neill et al., 2007; Neill and Cooper, 2010)
described above, Bayesian cluster modeling approaches are not typically able to
model and distinguish between multiple event types or to integrate multiple data
sources for detection. One exception is the recently proposed Bayesian conditional
autoregressive model of Banks et al. (2012), which considers disease surveillance
using multiple data streams, but it is unlikely that such an approach would scale to
large numbers of locations and data streams without the expenditure of vast amounts
of computing resources.
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Summary and Future Directions

Bayesian scan statistics are a recent and promising new development in the scan
statistics literature. These approaches can integrate prior information and multiple
data sources for more accurate cluster detection in both spatial and nonspatial data
and can model and distinguish between multiple event types. Bayesian scans can be
used to detect and pinpoint clusters as well as quantify the amount of uncertainty
in the spatial extent of each cluster, and the posterior probability map (representing
the summed posterior probability of all subsets containing a given location) is an
intuitive visual representation of the posterior probability distribution. Finally, the
use of conjugate priors and efficient computational methods such as the generalized
fast subset sums framework (Neill, 2011; Neill and Liu, 2011; Shao et al., 2011)
can enable Bayesian scan statistics to scale to large numbers of locations and
data streams while maintaining both flexible cluster models and computational
feasibility.

Future research in Bayesian scan statistics might proceed in many directions,
both addressing some of the current weaknesses of Bayesian scan approaches and
building on their strengths. For example, most Bayesian scan approaches assume
that at most one cluster is present in the data, comparing the alternative hypotheses
H,(S) (where S is the affected subset of the data) to the null hypothesis Hy of
no clusters. The prior distribution Pr(H,(S)) assumes that these hypotheses are
mutually exclusive, and thus the posterior distribution will often place all of its
probability on a single cluster even if multiple distinct clusters are present. Several
extensions of the Bayesian scan to multiple clusters might be possible. These
range from simple approaches that are common in the frequentist setting (such as
removing the most significant cluster and re-running the algorithm) to defining prior
distributions over multiple clusters as in Bayesian cluster modeling approaches.
However, the former approaches no longer produce a single, valid posterior
probability distribution, while the latter approaches may lose the computational
advantages of Bayesian scanning. For example, in the MBSS approach described
above, an exhaustive computation of the probability of each alternative hypothesis
H,(S1, S5, ...) would be difficult, since the number of hypotheses to be considered
would scale exponentially with the maximum allowable number of clusters. It is
an open question whether the posterior probability map (representing the summed
posterior probabilities over all of these exponentially many hypotheses) can be
efficiently computed in the generalized fast subset sums framework (Neill, 2011;
Neill and Liu, 2011; Shao et al., 2011). One interesting approach to multiple
cluster detection in the frequentist scan framework is the recently proposed latent
source model of Cheng et al. (2013), which extends the temporal multiple cluster
model of Xie et al. (2009) to spatial cluster detection. This approach demonstrated
promising results for a mobile sensor network application to surveillance of nuclear
materials, but it is not clear whether this hypothesis testing approach can be extended
to compute posterior probabilities in a Bayesian scan framework.
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Another interesting avenue for future research might be the extension of Bayesian
scan statistics from parametric to nonparametric models. For example, Gaussian
process regression is a useful representation that can be used for time series
forecasting while accounting for multivariate correlations, and Dirichlet process
priors can be useful for defining partition and cluster models. Finally, many
interesting detection problems involve unstructured data such as text, for which
Bayesian nonparametric models such as latent Dirichlet allocation (Blei et al.,
2003) provide a useful representation and efficient inference methods for modeling
“topics” (probability distributions over words). One recent approach that combines
topic modeling with spatial scan is the semantic scan statistic (Liu and Neill, 2011).
Semantic scan is able to detect novel disease outbreaks with previously unseen
patterns of symptoms. To do so, it analyzes free-text chief complaint data from
hospital emergency departments and identifies topics that are emerging in space and
time.

As noted above, learning of models from labeled training data is a challenging
but important aspect of the Bayesian scan framework. The incorporation of labeled
data enables better modeling of multiple event types, allowing relevant patterns to
be distinguished from irrelevant false positive clusters. While a variety of methods
have been proposed to learn models from data, ranging from simple maximum
likelihood to Bayesian network structure learning, few of these approaches have
been integrated into the Bayesian scan framework for cluster detection. For example,
expectation maximization (Dempster et al., 1977) is a useful approach to learning
model parameters in the presence of latent variables and might be applied for joint
learning of the multiple parameters (center location, neighborhood size, and sparsity
parameter) in the generalized fast subset sums framework. Additional challenges
arise when data is partially labeled (e.g., a training dataset might consist of multiple
positive examples for which a cluster is present, but the cluster locations are
not labeled), requiring the missing labels to be modeled as latent variables. The
development of effective approaches for model learning from partially labeled data
might enable incorporation of many more sources of data, leading to more accurate
models and better detection.

Finally, there is an inherent tension in the Bayesian scan between computational
efficiency (which often requires various simplifications and model assumptions)
and more accurate representation of the underlying models of the real-world
phenomena of interest. For example, Bayesian scan models typically assume a
single affected subset and fail to model spatial and temporal variation in the
effects of a cluster. Conjugate priors (such as the Gamma-Poisson model of MBSS)
enable efficient computation but may lose the flexibility to account for spatial and
temporal correlations, covariates, or other sources of variation in the data. Similarly,
computationally efficient Bayesian scan methods have been developed only for
spatiotemporal count data, but increased model flexibility (e.g., by the use of
Bayesian networks to model the joint probability distribution) may allow approaches
like MBSS to be extended to nonspatial datasets as well. The development of new
Bayesian models that preserve the computational advantages of Bayesian scanning
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while incorporating more flexible models might enable these approaches to be
useful for a wide array of new application domains.
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