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Introduction
• Many real-world tasks in surveillance, 

scientific discovery and data cleaning y g
involve monitoring routinely collected data

• Want to detect “events of interest” which areWant to detect events of interest which are 
usually anomalous events that rarely occur

• These events typically affect a subgroup of• These events typically affect a subgroup of 
the data rather than an individual data point
E l t f ll• Examples to follow…
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Introduction
Early detection of disease outbreaks

• Bioterrorist attacks are a very real, and 
scary, possibility

100 kg anthrax released over D C100 kg anthrax, released over D.C., 
could kill 1-3 million and hospitalize 
millions more.

• Emerging infectious diseases
“Conservative estimate” of 2-7 
million deaths from pandemic avianmillion deaths from pandemic avian 
influenza.

• Better response to common outbreaks 
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(seasonal flu, GI)



Introduction
Benefits of early detection: 

Reduces cost to society, both in lives and in dollars!y,
Without 

treatment, 95% 
mortality rate

Post-symptomatic 
treatment, 40% 
mortality rate

Pre-symptomatic 
treatment, 1% 
mortality rate

incubation

y

stage 1 stage 2

yy

Day 0 Day 10Day 4
Exposure to 
inhalational

Acute respiratory 
distress high fever

Flu-like symptoms: 
headache cough feverinhalational 

anthrax
distress, high fever, 

shock, death
headache, cough, fever
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DARPA estimate: a two-day gain in detection 
time could reduce fatalities by a factor of six.



Introduction

Start of Definitive

Early detection is hard

Start of 
symptoms

Definitive 
diagnosis

Lag time

incubation stage 1 stage 2

Day 0 Day 10Day 4

Buys OTC drugs?

Skips work/school?

5

Visits doctor/hospital/ED?

p



Introduction
Start of 

symptoms
Definitive 
diagnosis

incubation stage 1 stage 2

Day 0 Day 10

incubation

Day 4

stage 1 stage 2

Buys OTC drugs? Cough 
medication 

sales in 
affected area

D ft

6

Days after 
attack



Introduction
Start of 

symptoms
Definitive 
diagnosis

incubation stage 1 stage 2
We can achieve very early detection of outbreaks 

by gathering syndromic data and identifying

Day 0 Day 10

incubation

Day 4

stage 1 stage 2by gathering syndromic data, and identifying 
emerging spatial clusters of symptoms.

Buys OTC drugs? Cough 
medication 

sales in 
affected area

D ft

7

Days after 
attack



Introduction
Spike in sales of pediatric electrolytes near Columbus, Ohio
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Introduction
Application to law enforcement: 

detecting crime hot-spots.

Crime hot-spot detection

Hot-spot = neighborhood or 
other spatial area with an 
unexpected rise in crime.

Goal: early detection to 
enable targeted enforcement.

Even better goal: predict where 
hot spots of crime are going to 

occur, and prevent them.

We demonstrated1 that hot-spots of violent crime can be predicted 
1-3 weeks in advance, by detecting clusters of “leading indicator” 
crimes such as disorderly conduct trespass and simple assault

9

crimes such as disorderly conduct, trespass, and simple assault.

1D.B. Neill and W.L. Gorr, Proc. ISDS Annual Conf. 2007.



Introduction
Detecting clusters of pipe breaks

Application to civil engineering: 
Monitoring a city’s water distribution 

system to detect anomalous 
clusters of pipe breakage 1

Pittsburgh

clusters of pipe breakage.1

Different distance metric: flow 
distance along pipes, not g

Euclidean distance. 

Must account for pipe age, 
dimensions and material whendimensions, and material when 

computing expected number of breaks.
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1D. Olivera, et al., in preparation.  Thanks to 
Daniel Olivera for providing this picture.



Introduction

Goal is to detect patterns of suspicious 
hi t di t ill l

Detecting illicit container shipments

shipments corresponding to illegal 
activity (terrorism, smuggling, etc.)

We can achieve this goal by detecting 
anomalous, self-similar groups of records.

No “spatial” dimension in the standard 
sense, but we can define a dissimilaritysense, but we can define a dissimilarity 
metric between shipments and detect 
anomalous patterns in metric space.

FPORT USPORT COUNTRY SLINE VESSEL SHIPPER NAME F NAME COMMODITY SIZE MTONS VALUE

YOKOHAMA SEATTLE JAPAN CSCO LING_YUN_HE AMERICAN_TRI_NET_EXPRETRI_NET EMPTY_RACK 0 5.6 27579
YOKOHAMA SEATTLE JAPAN CSCO LING_YUN_HE ORDER ORDER_OUSED_TIRE 2 13.43 9497
YOKOHAMA SEATTLE JAPAN CSCO LING_YUN_HE ORDER ORDER_OUSED_TIRE 2 13.43 9497
YOKOHAMA SEATTLE JAPAN CSCO LING_YUN_HE AMERICAN_TRI_NET_EXPRETRI_NET CRUDE_IODINE_PURITY 1 17.68 251151
YOKOHAMA SEATTLE JAPAN CSCO LING_YUN_HE NEW_WAVE_TRANSPORT JIT PANELS_F_MODEL_98 3 39.57 65169
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YOKOHAMA SEATTLE JAPAN CSCO LING_YUN_HE NEW_WAVE_TRANSPORT JIT PANELS_F_MODEL_98 3 39.57 65169
YOKOHAMA SEATTLE JAPAN CSCO LING_YUN_HE NEW_WAVE_TRANSPORT JIT PANELS_F_MODEL_98 3 39.57 65169
YOKOHAMA SEATTLE JAPAN CSCO LING_YUN_HE ORDER ORDER_OUSED_TIRES 2 13.43 9497
YOKOHAMA SEATTLE JAPAN CSCO LING_YUN_HE CHINA_OCEAN_SHPG CHINA_OCEMPTY_CONTAINERS 0 0 0
YOKOHAMA SEATTLE JAPAN CSCO LING_YUN_HE CHINA_OCEAN_SHPG CHINA_OCEMPTY_CONTAINERS 0 0 0



Introduction
Environmental Monitoring

Remote Sensors are becoming the 
new standard for collecting field data

Nearly continuous observation of a 
given domain, generating large 

l f d tvolumes of data

Data must be cleaned before being 
given to outside researchers. 

R i l f l d tRequires removal of anomalous data 
points.

Anomalies can be simple or very 
challenging!challenging!

From: Dereszynski, E., Dietterich, T. (2007). Probabilistic 
Models for Anomaly Detection in Remote Sensor Data 
Streams. Proceedings of the 23rd Conference on Uncertainty g y
in Artificial Intelligence (UAI-2007). 75-82. Thanks to Ethan 
Dereszynski for the slide materials.



Introduction

Central Met. Week 40, 1999

Simple Anomaly Types
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Introduction
More difficult anomaly types

Central Met Week 6 1996
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Introduction
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Introduction
Suppose you have data D = {x1, ..., xn} where 

xi arrives over timei

• Can we detect a time t when an event of 
interest occurs?interest occurs?

• The question we are asking is: at what point 
in time is the data is “different”?in time is the data is different ?



Introduction
Simple example: xi is a scalar eg. a count
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Introduction
Harder example: xi is a vector of categorical values

Gender Age Zip

M 60s 97332

Gender Age Zip

F 50 97330

Gender Age Zip

M 20s 97331

Gender Age Zip

F 20 97330

Gender Age Zip

F 20s 97331

Gender Age Zip

M 40s 97331

F 50s 97330

Gender Age Zip

M 20s 97331

F 20s 97330

Time06/01/09 06/01/09 Time06/01/09

09:00

06/01/09

09:30



Introduction

Even harder example: xi is spatial data

1. How do we determine if the 
data is “different”?

2. How can we figure out what 
makes the data different?

Time06/01/09 06/01/09

09:00 09:30



Introduction
Goals of event detection: 
• Identify if an event of interest has occurredy
• Characterize the event

• Pinpoint the affected subgroup of the data ie. po t t e a ected subg oup o t e data e
what features describe the event (eg. spatial 
area, time duration)?

/ f ?• What is the severity/magnitude of the event?
• Detect as accurately as possible
• Detect as early as possible



Introduction
How is event detection different from:
1. Supervised Learning: p g

• Abnormal events are extremely rare, normal events are 
plentiful

2. Clustering:
• Clustering = partitioning data into groups

N t th fi di t ti ti ll l• Not the same as finding statistically anomalous groups
3. Outlier Detection:

Events of interest are usually not individual outliers• Events of interest are usually not individual outliers
• The event typically affects a subgroup of the data rather 

than a single data pointg p



Introduction
How do we evaluate event detection algorithms?
• Can’t use prediction accuracy for “event” vs p y

“non-event”
Class imbalance: many more “non-events” than 
“ t ”“events”
Guessing “non-event” all the time results in very good 
accuracyaccuracy

• Most event detection algorithms have a tunable 
threshold for when an alarm is raised

Trades off accuracy and false alarm rate
Need performance over multiple thresholds



Introduction
How do we evaluate event detection algorithms?

Better
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False Positive Rate False Positive Rate

To evaluate accuracy, use a 
Receiver Operating 

Characteristic (ROC) curve

To evaluate timeliness of 
detection, use an Activity 

Monitoring Operating 
Characteristic (AMOC) curve 
(Fawcett and Provost 1999)



Introduction
Challenges:
• Incorporating spatial and/or temporal p g p p

information
• Integrating information from multiple g g p

features or data streams 
• Distinguishing between multiple event typesDistinguishing between multiple event types
• Computational complexity



Outline
1. Introduction
2 Temporal Event Detection2. Temporal Event Detection
3. Spatio-Temporal Event Detection
4 F t W k4. Future Work



Univariate Temporal MethodsUnivariate Temporal Methods



Univariate Methods

Examples of univariate time series
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From: Dereszynski, E., Dietterich, T. (2007). Probabilistic 
M d l f A l D t ti i R t S D tFienberg, S. E. (2002).  Early statistical detection of 

anthrax outbreaks by tracking over-the-counter 
medication sales. Proceedings of the National Academy of 
Sciences (pp. 5237-5249) 

Models for Anomaly Detection in Remote Sensor Data 
Streams. Proceedings of the 23rd Conference on Uncertainty 
in Artificial Intelligence (UAI-2007). 75-82.



Univariate Methods
This is a time series of counts of primary-
physician visits in data from Norfolk in 
D b 2001 I dd d f k tb kDecember 2001. I added a fake outbreak, 
starting at a certain date. Can you guess 
when?



Univariate Methods
This is a time series of counts of primary-
physician visits in data from Norfolk in 
D b 2001 I dd d f k tb k

Here (much too 
high for a Friday)

December 2001. I added a fake outbreak, 
starting at a certain date. Can you guess 
when?

(Ramp attack)



Univariate Methods
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• Easy case: when does an “event” happen?
• How can we detect this with an algorithm?• How can we detect this with an algorithm?



Univariate Methods
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General framework:
1 Learn model to predict expected signal value1. Learn model to predict expected signal value
2. Measure difference between actual and expected
3. Compute alarm value



Univariate Methods
Methods we will discuss
• Control Chart (Shewhart 1931)( )
• Moving Average
• Exponentially Weighted Moving Average (Roberts p y g g g (

1959)
• CUSUM (Page 1954)( g )
• Regression

For a reference on Statistical Quality Control techniques such as control charts, 
EWMA and CUSUM, see (Montgomery 2001)



Univariate Methods (Control Chart)
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Control chart (from Statistical Quality Control)
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Univariate Methods (Control Chart)
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Control chart (from Statistical Quality Control)
• Alternately, useAlternately, use

• And signal alarm when alarm level > threshold

⎟
⎠
⎞

⎜
⎝
⎛ −

Φ=
σ

μ
ˆ

)ˆ,0max(  level Alarm iX N(0,1)for  CDF   where =Φ

• And signal alarm when alarm level > threshold



Univariate Methods (Control Chart)
Alarm LevelControl chart 

applied to Norfolkapplied to Norfolk 
data



Univariate Methods (Control Chart)
Alarm LevelControl chart 

applied to Norfolkapplied to Norfolk 
data (long term)



Univariate Methods (Control Chart)
Alarm LevelControl chart 

applied to Norfolkapplied to Norfolk 
data (long term)



Univariate Methods (Moving Average)

• Let W be the window size
• A moving average window predicts the following:

)(1
+++= XXXX )...( 111 −−−+ +++= Wtttt XXX

W
X

Setting the alarm value:
• Fit a Gaussian to the W observations within the window ie. estimate      and

C l l t th l l l b f

μ̂ σ̂

• Calculate the alarm level as before

⎟
⎠
⎞

⎜
⎝
⎛ −

Φ=
σ

μ
ˆ

)ˆ,0max(  level Alarm iX



Univariate Methods (Moving Average)

Moving Average 
applied to Norfolkapplied to Norfolk 
data



Univariate Methods (Moving Average)

Moving Average 
applied to Norfolkapplied to Norfolk 
data (long term)



Univariate Methods (Moving Average)

Moving Average 
applied to Norfolkapplied to Norfolk 
data (long term)



Univariate Methods (EWMA)

• Exponentially Weighted Moving Average 
(EWMA) - a variation on the moving average

• Let Zi be the EWMA statistic (which is i (
monitored):

)1( ZXZ λλ 10h ≤< λ1)1( −−+= iii ZXZ λλ 10 where ≤< λ
Observations in the past receive a 
decreasing amount of weightdecreasing amount of weight



Univariate Methods (CUSUM)
• CUmulative SUM Statistics
• Good at detecting shifts from the mean moreGood at detecting shifts from the mean more 

quickly than control chart
• Keep a running sum of “surprises”: a sum of• Keep a running sum of surprises : a sum of 

excesses each day over the mean
Wh thi d th h ld H i l• When this sum exceeds threshold H, signal 
alarm and reset sum



Univariate Methods (CUSUM)

• r = reference value eg. mean
X ith b ti• Xi = ith observation

• Si = ith cumulative sum

+−=−+−=
−=

SrXrXrXS
rXS 11

)()()( +=+=

k

SrXrXrXS 12122 )()()(
M

∑
=

−+−=
k

i
kkk SrXS

1
1)(

When a shift from the 
mean occurs S willmean occurs, Si will 
start to increase



Univariate Methods (CUSUM)

• If we are only tracking increases, we can do the 
f ll ifollowing:

))(,0max( 1−+−= kkk SrXS

Ensures we don’t go below 0

• We can also add a tolerance or a slack K

))(,0max( 1−++−= kkk SKrXS



Univariate Methods (CUSUM)

CUSUM applied 
to Norfolk datato Norfolk data 



Univariate Methods (CUSUM)

CUSUM applied 
to Norfolk datato Norfolk data 
(long term)



Univariate Methods (CUSUM)

CUSUM applied 
to Norfolk datato Norfolk data 
(long term)



Univariate Methods
• Data often consists of trends eg. 

• Seasonal effectSeaso a e ec
• Day-of-week effects
• Holiday effectHoliday effect

• None of the methods discussed so far 
explicitly model these trendsexplicitly model these trends

• Regression (eg. linear regression) can be 
d ith t t f th t dused with extra terms for the trends



Univariate Methods (Regression)

Regression example to model seasonal effects and 
Monday effects:

iiii IsMondaylightHoursOfDayY εβββ +++= )()( 210

Monday effects:

Boolean feature – adds 
a “bump” to the value 
of Y if it is a Monday⎟

⎞
⎜
⎛ −

31)July  since days num(2sin ππ
Could be defined as: Normally distributed 

noise with mean 0, 
known variance σ2of Y if it is a Monday⎟

⎠
⎜
⎝ 2365.25

sin

Regression learns the β parameters from data to minimize the residual sum of 

known variance σ2

squares 



Univariate Methods (Regression)
Regression applied to 
Norfolk data using 
H OfD li ht dHoursOfDaylight and 
IsMonday terms



Univariate Methods (Regression)

Regression applied to 
Norfolk data using 
H OfD li ht dHoursOfDaylight and 
IsMonday terms (long 
term)



Univariate Methods (Other)
Other state-of-the-art methods not discussed 

in this tutorial
• Box-Jenkins models eg. ARMA, ARIMA
• Wavelets• Wavelets
• Change-point detection
• Kalman filters
• Hidden Markov Models



Multivariate Temporal 
Methods



Multivariate Methods

Each data point (recorded at some time point) is now a multivariate vector

Date Time Gender Age Prodrome Home 
Location

Work 
Location

Many 
more…

eg. patient records from an Emergency Department 

6/1/09 9:12 M 20s Fever NE NE …

6/1/09 10:45 F 40s Diarrhea NE NE …

6/1/09 11:03 F 60s Respiratory NE N …

6/1/09 11:07 M 60s Diarrhea E W …

: : : : : : : :



Multivariate Methods
How are patient records from 6/1/09 different

Date Time Gender Age Prodrome Home 
Location

Work 
Location

Many 
more…

6/1/09 9:12 M 20s Fever NE NE …

6/1/09 10:45 F 40s Diarrhea NE NE …

6/1/09 11:03 F 60s Respiratory NE N …

: : : : : : : :

from patient records from 6/2/09?

Date Time Gender Age Prodrome Home 
Location

Work 
Location

Many 
more…

6/2/09 9:15 M 60s Respiratory E NE …

6/2/09 10:01 F 50s Respiratory N NW …

6/2/09 13:05 F 40s Respiratory SW SW …

: : : : : : : :



Multivariate Methods
Note: need to split data into two groups according to time:

1 T i i d t l d l1. Training: used to learn model

Date Time Gender Age Prodrome Home 
Location

Work 
Location

Many 
more…

6/1/09 9:12 M 20s Fever NE NE6/1/09 9:12 M 20s Fever NE NE …

6/1/09 10:45 F 40s Diarrhea NE NE …

6/1/09 11:03 F 60s Respiratory NE N …

: : : : : : : :

2. Testing: used to identify events with respect to the learned model

D t Ti G d A P d H W k MDate Time Gender Age Prodrome Home 
Location

Work 
Location

Many 
more…

6/2/09 9:15 M 60s Respiratory E NE …

6/2/09 10:01 F 50s Respiratory N NW …

6/2/09 13:05 F 40s Respiratory SW SW …

: : : : : : : :



Multivariate Methods
We make the following distinction
• Multivariate Changepoint Detection:Multivariate Changepoint Detection:

• Detects that a change has happened
• Does not identify the subgroup of data that has• Does not identify the subgroup of data that has 

changed the most
• Multivariate Event Detection• Multivariate Event Detection

• Detects that a change has happened
Id tifi th b th t h h d th• Identifies the subgroup that has changed the 
most



Multivariate Methods
Outline
• Multivariate Changepoint DetectionMultivariate Changepoint Detection

• Multivariate Statistical Quality Control
• Others• Others

• Multivariate Event Detection
E i P tt• Emerging Patterns

• STUCCO
• WSARE 2.0
• WSARE 3.0



Multivariate Changepoint Detection 
(Hotelling’s T2)( ote g s )

Multivariate version of control chart is Hotelling’s T2

ˆ

statistic (Hotelling 1931)

)ˆ(ˆ)ˆ( 12 μXSμX ii −−= −cT

Sample size that covariance EstimatedSample size that covariance 
matrix was estimated from

Estimated 
covariance matrix

Estimated 
mean

Other multivariate statistical quality control methods:Other multivariate statistical quality control methods:
• Multivariate CUSUM (Crosier 1988)
• Multivariate EWMA (Lowry et al. 1992)

All make strong assumptions about the underlying model



Multivariate Changepoint Detection
Other methods:
• Cross-match test (Rosenbaum 2005)Cross match test (Rosenbaum 2005)
• kdq-tree (Dasu et al. 2006)

D it T t (S t l 2007)• Density Test (Song et al. 2007)



Multivariate Event Detection
General framework:
1.Learn model to predict expected signal value for p p g

the given subgroup
2. Measure difference between actual and expected
3.Compute alarm value (now more involved)



Multivariate Event Detection

Algorithm Data Model Measuring Differences
Emerging 
Patterns 
(Dong and Li 
1999)

Categorical Counts Increase in support ratio

1999)
STUCCO 
(Bay and 
Pazzani 1999)

Categorical Counts Chi-square, Bonferroni

Pazzani 1999)
WSARE 2.0 
(Wong et al. 
2005)

Categorical Counts Fisher’s Exact test, 
Randomization test

2005)
WSARE 3.0 
(Wong et al. 
2005)

Categorical Bayesian 
network

Fisher’s Exact test, 
Randomization Test



Multivariate Event Detection (Categorical Data)

How can we find differences in multivariate 

Multivariate Event Detection (Categorical Data)

categorical data?
Date Time Gender Age Prodrome Home 

L ti
Work 

L ti
Many 

Location Location more…

6/2/09 9:15 M 60s Respiratory E NE …

6/2/09 10:01 F 50s Respiratory N NW …

6/2/09 13:05 F 40s Respiratory SW SW6/2/09 13:05 F 40s Respiratory SW SW …

: : : : : : : :

Idea from association rule mining: 
Characterize differences by rules ie. 
conjunctions of attribute value pairsconjunctions of attribute-value pairs 



Multivariate Event Detection (Categorical Data)Multivariate Event Detection (Categorical Data)
Training Date Time Gender Age Prodrome Home 

Location
Work 

Location
Many more…

6/1/09 9:12 M 20s Fever NE NE …

6/1/09 10:45 F 40s Diarrhea NE NE …

6/1/09 11:03 F 60s Respiratory NE N …

: : : : : : : :

Testing Date Time Gender Age Prodrome Home 
Location

Work 
Location

Many more…

6/2/09 9:15 M 60s Respiratory E NE …

6/2/09 10:01 F 50s Respiratory N NW …

Find which rules predict unusually high proportions in test data when compared

6/2/09 13:05 F 40s Respiratory SW SW …

: : : : : : : :

Find which rules predict unusually high proportions in test data when compared 
to the training data eg.

92/180 records from Testing have Gender = Male AND Age = 60s

43/200 records from Training have Gender = Male AND Age = 60s



Multivariate Event Detection 
(Emerging Patterns)

• Let D = {X1, …, XN} be a data set with N
(Emerging Patterns)

data points
• Define the support of a rule R to be:pp

||
)(supp

D
Rcount(R) D

D =

where countD(R) = number of data points 
th t t h l R

|| D

that match rule R



Multivariate Event Detection 
(Emerging Patterns)(Emerging Patterns)

Suppose we are given data sets D1 and D2Suppose we are given data sets D1 and D2. 
Define the GrowthRate(R) from D1 to D2 as:

⎧

⎪⎪
⎪

⎨

⎧

≠=∞
==

= 0(R)suppand 0(R)suppif,
0(R)supp and 0(R)supp if ,0

)( D2D1

D2D1

RGrowthRate

⎪
⎪
⎪

⎩

⎨

otherwise ,
)(supp
)(supp

0( )suppa d0( )supp,)(

1

2

D2D1

R
R

G owth ate

D

D

⎩ )(pp 1D



Multivariate Event Detection 
(Emerging Patterns)

• Given ρ > 1, a rule R is said to be a ρ-emerging 

(Emerging Patterns)

pattern from D1 to D2 if
GrowthRate(R) ≥ ρ

• Goal: For a given ρ, find all ρ-emerging patterns

See (Dong and Li 1999) for efficient algorithms to find 
emerging patterns using borders to describe large 
collections of itemsets co ect o s o te sets



Search and Testing for 
U d d bl C iUnderstandable Consistent 

Contrasts (STUCCO)Contrasts (STUCCO)



Multivariate Methods (STUCCO)
• Define a contrast set as a conjunction of attribute-

value pairs (ie. what we defined as a rule)
• Search for contrast sets CS such that:

1. )|()|( TestingCSPTrainingCSP ≠



Multivariate Methods (STUCCO)
• Define a contrast set as a conjunction of attribute-

value pairs 
• Search for contrast sets CS such that:

1. )|()|( TestingCSPTrainingCSP ≠

This says that the distribution of the contrast set CS is different 
“ ff fin the Training and Testing data. “Different” will be defined 

shortly.



Multivariate Methods (STUCCO)
• Define a contrast set as a conjunction of attribute-

value pairs
• Search for contrast sets CS such that:

1. )|()|( TestingCSPTrainingCSP ≠

2. δ≥− |),(),(| TestingCSSupportTrainingCSSupport



Multivariate Methods (STUCCO)
• Define a contrast set as a conjunction of attribute-

value pairs
• Search for contrast sets CS such that:

1. )|()|( TestingCSPTrainingCSP ≠

2. δ≥− |),(),(| TestingCSSupportTrainingCSSupport

The support of a contrast set is the percentage of data points 
(in the Training / Testing data) where the contrast set is true



Multivariate Methods (STUCCO)
Search for contrast sets involves efficient breadth-first 
search of a set enumeration tree (Rymon 1992)( y )

{ }

Gender=M Gender=F Age=Young Age=Old . . .

Gender=M 
AND 
Age=Young

Gender=M 
AND 
Age=OLD

Gender=F 
AND 
Age=Young

Gender=F 
AND 
Age=Old

. . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

A variety of 
pruning methods 
makes this search 
efficientefficient



Multivariate Methods (STUCCO)
• How do we determine that the distributions of 

contrast sets are different between training and 
testing?

• For each contrast set, construct a 2x2 contingency 
t bltable

Count (Training) Count (Testing)( g) ( g)

Age = Young 25 52

Age ≠ Young 101 206



Multivariate Methods (STUCCO)
• Perform Chi-Square test of independence

• Compute χ2 statistic:

• Where Oij = observed frequency count for the cell in row i and

∑∑
= =

−
=

2

1

2

1

2
2 )(

i j ij

ijij

E
EO

χ

Where Oij  observed frequency count for the cell in row i and 
column j

• Eij is the expected frequency count for the cell in row i and 
column j given independence of the row and column variables iecolumn j given independence of the row and column variables ie.

NOOE
i j

ijijij /
2

1

2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑ ∑

= =

Where N = total number of 
observations in all cells

• To obtain a p-value, compare χ2 statistic to a chi-square 
distribution

j ⎠⎝



Multivariate Methods (STUCCO)
• If we perform a Chi-Square test on the 2x2 

contingency table below, we get a p-value of 
0.0074

• This is significant at the α = 0.05 level
• Report contrast sets with p-value < 0.05

C t (T i i ) C t (T ti )Count (Training) Count (Testing)

Age = Young 25 100

Age ≠ Young 101 206Age ≠ Young 101 206



Multivariate Methods (STUCCO)
• But…we can’t interpret this p-value at face value
• The search suffers from a multiple hypothesis p yp

testing problem
• Need to correct the p-values to compensate for 

multiple hypothesis testing



Multivariate Methods (STUCCO) 
Multiple Hypothesis Testing
• Suppose we reject null hypothesis when p-value < pp j yp p

α, where α = 0.05
• For a single hypothesis test, the probability of a 

false positive = α
• Suppose we do 1000 tests, one for each possible 

rule
• Probability(false positive) could be as bad as: 

1 – ( 1 – 0.05)1000 >> 0.05 



Multivariate Methods (STUCCO) 
Bonferroni Correction:
• If you are performing n hypothesis tests forIf you are performing n hypothesis tests for 

hypotheses h1, …, hn, 
• Adjust significance level for test i to be• Adjust significance level for test i to be

i
αα =

• Reject hypothesis hi if
n

ii α≤pvalue



Multivariate Methods (STUCCO) 
Two problems:
1. We do not know n as we incrementally mine each level of 

th tthe tree
2. Same cutoff for contrast sets with different numbers of 

attribute-value pairs (want more power on smallerattribute value pairs (want more power on smaller 
conjunctions)

STUCCO’s solution
α )|,|/
2

min( 1−= llll C ααα

Significance threshold at 
level l of the tree 

Number of candidates at level l



Multivariate Methods (STUCCO)

Traverse set-enumeration tree using Breadth-First Search

Summary
Traverse set-enumeration tree using Breadth-First Search
For each contrast set at depth l of tree:

1. Form 2x2 contingency tableg y
2. Compute p-value using chi-square test
3. Account for multiple hypothesis testing by computing 

significance level αl

4. If p-value < αl , report contrast set



Multivariate Methods (WSARE 2.0)

For each rule in rule set:
Summary
For each rule in rule set:

1. Form 2x2 contingency table
2. Compute rule score using Fisher’s Exact test / Chi-p g

square test
3. Account for multiple hypothesis testing by 

randomization testrandomization test
4. If p-value from randomization test < alarm value, report rule



Multivariate Methods (WSARE 2.0)

For each rule in rule set:

Difference #1

Diff #2

Summary
For each rule in rule set:

1. Form 2x2 contingency table
2. Compute rule score using Fisher’s Exact test / Chi-

Difference #2

p g
square test

3. Account for multiple hypothesis testing by 
randomization testrandomization test

4. If p-value from randomization test < alarm value, report rule
Difference #3



Multivariate Methods (WSARE 2.0)
Difference #1 (from STUCCO)
• Rule set defined as all rules with a maximumRule set defined as all rules with a maximum 

of k conjunctions of attribute-value pairs
• No need to search set enumeration tree• No need to search set-enumeration tree



Multivariate Methods (WSARE 2.0)
Difference #2 (from STUCCO)
• Use of Fisher’s Exact Test for rules withUse of Fisher s Exact Test for rules with 

small counts that violate assumptions of Chi-
square testsquare test



Multivariate Methods (WSARE 2.0)
Difference #3 (from STUCCO)
• Bonferroni correction is very conservativeBonferroni correction is very conservative
• Increases risk of Type II errors (not rejecting 

null hypothesis when it is false)null hypothesis when it is false)
• Very hesitant to declare something as an 

“ t”“event”
• Randomization test is a better alternative 

with more statistical power



Multivariate Methods (WSARE 2.0)
Aug 16, 2008 C2
Aug 17, 2008 C3
Aug 17, 2008 C4

Aug 16, 2008 C2
Aug 17, 2008 C3
Aug 24, 2008 C4Aug 17, 2008 C4

Aug 17, 2008 C5
Aug 17, 2008 C6
Aug 17, 2008 C7

Aug 24, 2008 C4
Aug 17, 2008 C5
Aug 24, 2008 C6
Aug 17, 2008 C7

Aug 21, 2008 C8
Aug 21, 2008 C9
Aug 22, 2008 C10

Aug 21, 2008 C8
Aug 21, 2008 C9
Aug 22, 2008 C10

Aug 23, 2008 C11
Aug 23, 2008 C12
Aug 24, 2008 C13
A 24 2008 C14

Aug 23, 2008 C11
Aug 23, 2008 C12
Aug 17, 2008 C13
A 17 2008 C14

Randomization Test
• Take the training data points and the testing data points Shuffle the

Aug 24, 2008 C14 Aug 17, 2008 C14

• Take the training data points and the testing data points.  Shuffle the 
date field to produce a randomized dataset called DBRand

• Find the rule with the best score on DBRand.



Multivariate Methods (WSARE 2.0)

Repeat the procedure on the 
previous slide for 1000previous slide for 1000 
iterations.  Determine how 
many scores from the 1000 
iterations are better than the 
original score.

If the original score were here, it would 
place in the top 1% of the 1000 scores from 
the randomization test We would bethe randomization test. We would be 
impressed and an alert should be raised.  

Corrected p-value of the rule is:p

# better scores / # iterations



Multivariate Methods (WSARE 3.0)

For each rule in rule set:
Summary
For each rule in rule set:

1. Learn a Bayesian network from training data. 
Sample a baseline data set using Bayesian 
network.

2. Form 2x2 contingency table using counts from 
Baseline data and TestingBaseline data and Testing.

3. Compute rule score using Fisher’s Exact test / Chi-
square test

4. Account for multiple hypothesis testing by 
randomization test

5 If l f d i i l l5. If p-value from randomization test < alarm value, report 
rule



Multivariate Methods (WSARE 3.0)

For each rule in rule set:
Summary Difference #1

For each rule in rule set:
1. Learn a Bayesian network from training data. 

Sample a baseline data set using Bayesian 
network.

2. Form 2x2 contingency table using counts from 
Baseline data and TestingBaseline data and Testing.

3. Compute rule score using Fisher’s Exact test / Chi-
square test

4. Account for multiple hypothesis testing by 
randomization test

5 If l f d i i l l5. If p-value from randomization test < alarm value, report 
rule



Multivariate Methods (WSARE 3.0)
Difference #1 (from WSARE 2.0)
• Need to account for trends in the data

From: Goldenberg, A., Shmueli, G., Caruana, R. A., and Fienberg, S. E. (2002).  Early statistical 
detection of anthrax outbreaks by tracking over-the-counter medication sales.  Proceedings of 
the National Academy of Sciences (pp. 5237-5249)



Multivariate Methods (WSARE 3.0)
• Temporal trends in health care data:

• Seasonal effects in temperature and weatherSeaso a e ec s e pe a u e a d ea e
• Day of Week effects
• HolidaysHolidays
• Etc.

• Not accounting for these trends can• Not accounting for these trends can 
adversely affect the detection time and false 
positives ratepositives rate



Multivariate Methods (WSARE 3.0)

• “Taking into account that today is a public holiday ”

Generating the Baseline:
• Taking into account that today is a public holiday…
• “Taking into account that this is Spring…”
• “Taking into account recent heatwave…”
• “Taking into account recent flu levels…”
• “Taking into account that there’s a known natural Food-

borne outbreak in progress ”borne outbreak in progress…



Multivariate Methods (WSARE 3.0)
Generating the Baseline:
• “Taking into account that today is a public holiday ”• Taking into account that today is a public holiday…
• “Taking into account that this is Spring…”
• “Taking into account recent heatwave…”
• “Taking into account recent flu levels…”
• “Taking into account that there’s a known natural Food-

borne outbreak in progress ”borne outbreak in progress…

Use a Bayesian network (Pearl 1988) toUse a Bayesian network (Pearl 1988) to 
model the joint probability distribution 

of the attributes.



Multivariate Methods (WSARE 3.0)

All Historical
D t

Obtaining Baseline Data
Data

Today’s 

1. Learn Bayesian Network 
using Optimal 
Reinsertion [Moore andy

Environment
Reinsertion [Moore and 
Wong 2003]

2. Generate baseline given 
today’s environment

Baseline
today s environment



Multivariate Methods (WSARE 3.0)

All Historical
D t

Obtaining Baseline Data
Data

Today’s 

1. Learn Bayesian Network 
using Optimal 
Reinsertion [Moore andy

Environment
Reinsertion [Moore and 
Wong 2003]

2. Generate baseline given 
today’s environment

Baseline
today s environment



Multivariate Methods (WSARE 3.0)
Divide the data into two types of attributes:
• Environmental attributes: attributes thatEnvironmental attributes: attributes that 

cause trends in the data eg. day of week, 
season weather flu levelsseason, weather, flu levels

• Response attributes: all other non-
environmental attributes eg age genderenvironmental attributes eg. age, gender



Multivariate Methods (WSARE 3.0)
When learning the Bayesian network structure, do not allow 

environmental attributes to have parents.
Wh ?Why? 
• We are not interested in predicting their distributions
• Instead we use them to predict the distributions of the• Instead, we use them to predict the distributions of the 

response attributes

Season Day of Week Weather Flu Level



Multivariate Methods (WSARE 3.0)

All Historical
D t

Obtaining Baseline Data
Data

Today’s 

1. Learn Bayesian Network 
using Optimal 
Reinsertion [Moore andy

Environment
Reinsertion [Moore and 
Wong 2003]

2. Generate baseline given 
today’s environment

Baseline
today s environment



Multivariate Methods (WSARE 3.0)
Season Day of Week Weather Flu Level

Today Winter Monday Snow High

Suppose we know the 
following for today:

Season = 
Winter

Day of Week = 
Monday

Weather = 
Snow

Flu Level = 
HighWe fill in these 

values for the 
environmental 
attributes in the 
learned Bayesianlearned Bayesian 
network

We sample 10000 records 
from the Bayesian network 

d k thi d t t th
Baseline

and make this data set the 
baseline



Multivariate Methods (WSARE 3.0)
Season Day of Week Weather Flu Level

Today Winter Monday Snow High

Suppose we know the 
following for today:

Season = 
Winter

Day of Week = 
Monday

Weather = 
Snow

Flu Level = 
HighWe fill in these 

values for the 
Sampling is easy 

because
environmental 
attributes in the 
learned Bayesian

because 
environmental 

attributes are at the 
learned Bayesian 
network

top of the Bayes Net

We sample 10000 records 
from the Bayesian network 

d k thi d t t th
Baseline

and make this data set the 
baseline



Multivariate Methods (WSARE 3.0)
Season Day of Week Weather Flu Level

Today Winter Monday Snow High

Suppose we know the 
following for today:

Season = 
Winter

Day of Week = 
Monday

Weather = 
Snow

Flu Level = 
HighWe fill in these 

values for the 
environmental 
attributes in the 
learned Bayesian

An alternate 
possible technique learned Bayesian 

network is to use inference

We sample 10000 records 
from the Bayesian network 

d k thi d t t th
Baseline

and make this data set the 
baseline



Multivariate Methods (WSARE 3.0)

For each rule in rule set:
Summary
For each rule in rule set:

1. Learn a Bayesian network from training data. 
Sample a baseline data set using Bayesian 
network.

2. Form 2x2 contingency table using counts from 
Baseline data and TestingBaseline data and Testing.

3. Compute rule score using Fisher’s Exact test / Chi-
square test

4. Account for multiple hypothesis testing by 
randomization test

5 If l f d i i l l5. If p-value from randomization test < alarm value, report 
rule



Multivariate Methods (WSARE 3.0)
Side Note:
• Conditional Anomaly Detection (Song et al. 2007) y ( g )

is a similar approach
• Uses a Gaussian Mixture Model instead of a 

Bayesian Network
• Applicable to continuous multivariate data

But:

It discovers individual data points that are anomalies, 
not anomalous groups of data points



Multivariate Methods
Open Questions
• What about continuous features?What about continuous features?
• What about mixed discrete and continuous 

features?features?
• Can we develop faster methods, especially 

th th t id d i ti t ti ?those that can avoid randomization testing?
• Can we discover interesting (not just 

statistically significant) events?
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Outline of this part
A. Introduction to spatial event detection

Problem statement and overview of 
approaches.

B. Univariate scan statistic approachesB. Univariate scan statistic approaches
Spatial and space-time.

C Multivariate scan statistic approachesC. Multivariate scan statistic approaches
Parametric, non-parametric, and Bayesian.

D C t d f t di tiD. Current and future directions    
Incorporating learning; fast algorithms.
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A Introduction toA. Introduction to 
Spatial Event Detectionp
1. The spatial event detection problem
2 Approaches to spatial event detection2. Approaches to spatial event detection

a. Top-down and bottom-up approaches
b. Parallel monitoring approachesb. Parallel monitoring approaches
c. Scan statistic approaches
d. Other approaches from spatial statistics
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Spatial event detection

D1 = respiratory ED

Outbreak detection

Time series of counts 
ci,m

t for each location si

D2 = constitutional ED

D3 = OTC cough/cold

D4 = OTC anti-fever

Spatial time series data from 
spatial locations si (e.g. zip codes)

,
for each data stream Dm.

G l f d t ti t k d t t i t ( di tb k )

(etc.)

Goals of detection task: detect any emerging events (e.g. disease outbreaks), 
pinpoint the affected spatial area, and characterize the type of event.

Informally, we want to know: Formally, we will distinguish between:

Is there anything happening?

If so, what and where?

Null hypothesis H0 (no events)

Set of alternative hypotheses H1(S, Ek)
= event of type E in spatial region S

113

= event of type Ek in spatial region S. 



Spatial event detection

D1 = respiratory ED

Outbreak detection

Time series of counts 
ci,m

t for each location si

D2 = constitutional ED

D3 = OTC cough/cold

D4 = OTC anti-fever

Spatial time series data from 
spatial locations si (e.g. zip codes)

,
for each data stream Dm.

G l f d t ti t k d t t i t ( di tb k )

(etc.)

Goals of detection task: detect any emerging events (e.g. disease outbreaks), 
pinpoint the affected spatial area, and characterize the type of event.

This formulation assumes count data aggregated to                     
discrete time steps (e.g. days) and small areas (e.g. zips).

More generally, we can have a set of data records (observations) 
where each observation has a time-stamp, location information, and 

114

possibly other attributes.  Each count represents the number of 
observations with given attributes in a given area and time interval.



Spatial event detection

D1 = respiratory ED

Outbreak detection

Time series of counts 
ci,m

t for each location si

D2 = constitutional ED

D3 = OTC cough/cold

D4 = OTC anti-fever

Spatial time series data from 
spatial locations si (e.g. zip codes)

,
for each data stream Dm.

G l f d t ti t k d t t i t ( di tb k )

(etc.)

Goals of detection task: detect any emerging events (e.g. disease outbreaks), 
pinpoint the affected spatial area, and characterize the type of event.

This formulation assumes count data aggregated to                     
discrete time steps (e.g. days) and small areas (e.g. zips).

We assume that an event will result in anomalously                      
high counts for some subset of data streams for                               

115

the affected spatial region and time interval.



Spatial event detection

D1 = respiratory ED

Outbreak detection

Time series of counts 
ci,m

t for each location si

D2 = constitutional ED

D3 = OTC cough/cold

D4 = OTC anti-fever

Spatial time series data from 
spatial locations si (e.g. zip codes)

,
for each data stream Dm.

G l f d t ti t k d t t i t ( di tb k )

(etc.)

Goals of detection task: detect any emerging events (e.g. disease outbreaks), 
pinpoint the affected spatial area, and characterize the type of event.

We will initially make three additional assumptions:

Purely spatial detection problem                                               
(only a single time interval to consider)

Monitoring a single data stream D

116

Monitoring a single data stream Dm

Attempting to detect a single event type Ek



A Introduction toA. Introduction to 
Spatial Event Detectionp
1. The spatial event detection problem
2 Approaches to spatial event detection2. Approaches to spatial event detection

a. Top-down and bottom-up approaches
b. Parallel monitoring approachesb. Parallel monitoring approaches
c. Scan statistic approaches
d. Other approaches from spatial statistics
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Top-down and bottom-up detection
Top-down detection approaches Bottom-up detection approaches

1. Are there any globally 
interesting patterns?

1. Find individual data points 
with “interesting” localinteresting patterns?

2. If so, find the most interesting 
sub-partition of the data and  
search it recursively

with interesting  local 
neighborhoods 

2. Aggregate interesting 
points into clusterssearch it recursively. points into clusters.

Bottom-up: density-based 
clustering (e.g. DBSCAN2)

Top-down: bump hunting1

118
2M. Ester et al., KDD 1996.

Thanks to Daniel Olivera for these examples. 1J. Friedman and N. Fisher, 1999.



Greedy approaches can fail!
Top-down detection approaches Bottom-up detection approaches

1. Are there any globally 
interesting patterns?

1. Find individual data points 
with “interesting” localinteresting patterns?

2. If so, find the most interesting 
sub-partition of the data and  
search it recursively

with interesting  local 
neighborhoods 

2. Aggregate interesting 
points into clusterssearch it recursively. points into clusters.

Top-down fails when the affected 
region is too small to significantly 

Bottom-up fails when the affected 
region is not dense enough for the 

119

g g y
affect the global aggregate statistics.

g g
local neighborhoods to be interesting.



Greedy approaches can fail!
Top-down detection approaches Bottom-up detection approaches

1. Are there any globally 
interesting patterns?

1. Find individual data points 
with “interesting” localinteresting patterns?

2. If so, find the most interesting 
sub-partition of the data and  
search it recursively

with interesting  local 
neighborhoods 

2. Aggregate interesting 
points into clusterssearch it recursively. points into clusters.

How can we detect both 
small, dense clusters and 

l l d l t ?

How can we move beyond 
cluster detection, to detect 

t th t i ti ?larger, less dense clusters? events that emerge in time?

One answer: Parallel Monitoring
Partition the monitoredPartition the monitored 
area into subregions.

Then separately monitor each 
subregion using purely temporal

Fixed partition: 
zip code

Fixed partition: 
uniform grid

Ad-hoc partition: 
data clustering

120

subregion using purely temporal 
detection methods (see Part 1!)

zip code 
boundaries

uniform grid data clustering



Challenges of parallel monitoring
One major challenge of parallel 

monitoring is choosing an appropriate 
partitioning of the monitored area. g

A given partitioning has high power to detect 
events corresponding to a single partition (red), 

but is suboptimal for events which affectbut is suboptimal for events which affect 
multiple partitions (yellow), part of a partition 
(white), or parts of multiple partitions (pink).

Coarse partitions lose power for small regionsCoarse partitions lose power for small regions, 
fine partitions lose power for large regions, and 

both lose power for unaligned regions.
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Challenges of parallel monitoring
One major challenge of parallel 

monitoring is choosing an appropriate 
partitioning of the monitored area. 

A second challenge of parallel 
monitoring is the problem of 

multiple hypothesis testing.g

A given partitioning has high power to detect 
events corresponding to a single partition (red), 

but is suboptimal for events which affect

p yp g

Monitoring thousands of spatial 
partitions, and performing a 
separate significance test forbut is suboptimal for events which affect 

multiple partitions (yellow), part of a partition 
(white), or parts of multiple partitions (pink).

Coarse partitions lose power for small regions

separate significance test for 
each, leads to huge numbers 

of false positive alerts. 

The Bonferroni correction forCoarse partitions lose power for small regions, 
fine partitions lose power for large regions, and 

both lose power for unaligned regions.

The Bonferroni correction for 
multiple tests leads to greatly 

reduced detection power.  

S l ti t th fi t h ll th ti l t ti ti

1. Form a very fine partitioning of the monitored area into individual locations
(e.g. zip codes or census tracts, depending on spatial resolution of the data).

Solution to the first challenge: the spatial scan statistic.

2. Rather than monitoring each partition separately, examine a huge number of 
overlapping spatial regions, each consisting of a group of locations.
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Challenges of parallel monitoring
One major challenge of parallel 

monitoring is choosing an appropriate 
partitioning of the monitored area. 

A second challenge of parallel 
monitoring is the problem of 

multiple hypothesis testing.g

A given partitioning has high power to detect 
events corresponding to a single partition (red), 

but is suboptimal for events which affect

p yp g

Monitoring thousands of spatial 
partitions, and performing a 
separate significance test forS hibut is suboptimal for events which affect 

multiple partitions (yellow), part of a partition 
(white), or parts of multiple partitions (pink).

Coarse partitions lose power for small regions

separate significance test for 
each, leads to huge numbers 

of false positive alerts. 

The Bonferroni correction for

Spatial scan approaches 
have high power to 

detect events affecting 
small or large regions

Searching over so many 
regions makes the 

multiple hypothesis testing 
problem even worse…

S l ti t th fi t h ll th ti l t ti ti

Coarse partitions lose power for small regions, 
fine partitions lose power for large regions, and 

both lose power for unaligned regions.

The Bonferroni correction for 
multiple tests leads to greatly 

reduced detection power.  

small or large regions. problem even worse…

Solution to the first challenge: the spatial scan statistic.

1. Form a very fine partitioning of the monitored area into individual locations
(e.g. zip codes or census tracts, depending on spatial resolution of the data).

But we can solve the multiple testing problem by:

1. Finding the most significant regions.

2 D t i i h lik l ld b t2. Rather than monitoring each partition separately, examine a huge number of 
overlapping spatial regions, each consisting of a group of locations.
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2. Determining how likely we would be to see 
any regions that significant due to chance.



Other methods from spatial statistics

Clustered?

Tests for “general clustering”
(Whittemore, Tango, Knox, Mantel, etc.)

Not 
clustered?

Determine whether there is sufficient 
evidence of spatial or space-time 
clustering in the data, but without 

detecting specific clustersdetecting specific clusters.

Tests for “focused clustering”g
(Lawson, Stone, Waller, Diggle, etc.)

Determine whether the risk is 

Focus?

Not a ?
significantly increased near a 

given point (e.g. possible 
environmental hazard).

focus?
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Neither method detects cluster locations!



Spatial risk mapping approaches

Spatial 
smoothing

Original risk map 
(observed / expected)

Smoothed risk map

EB (Gangnon & Clayton; Mollie)
Often based on Bayesian modeling

Advantages: Explicit modeling of spatial correlation structure

( g y ; )

FB (Lawson et al.)

Disadvantages: Cannot automatically determine whether an event

Advantages: Explicit modeling of spatial correlation structure, 
useful for data visualization, can detect areas with high risk.
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Disadvantages: Cannot automatically determine whether an event 
has occurred; cannot identify the spatial area and time duration.



B Univariate ScanB. Univariate Scan 
Statistic Approachespp

1. Kulldorff’s spatial scan statistic
2 Variants of spatial scan:2. Variants of spatial scan:

• Which spatial regions to search?
• How to evaluate the score of a region?

3. Extensions to space-time scanning 
(expectation-based scan statistic)

©2009 Carnegie Mellon University 126



The spatial scan statistic
(Kulldorff 1997)

Rather than monitoring 
individual locations, we

(Kulldorff, 1997)

individual locations, we 
examine groups of locations.

Imagine moving a spatial 
window around the monitored 

area, allowing the size and 
shape of the window to vary.
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The spatial scan statistic
(Kulldorff 1997)

Rather than monitoring 
individual locations, we

(Kulldorff, 1997)

individual locations, we 
examine groups of locations.

Imagine moving a spatial 
window around the monitored 

area, allowing the size and 
shape of the window to vary.
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The spatial scan statistic
(Kulldorff 1997)

Rather than monitoring 
individual locations, we

(Kulldorff, 1997)

individual locations, we 
examine groups of locations.

Imagine moving a spatial 
window around the monitored 

area, allowing the size and 
shape of the window to vary.
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The spatial scan statistic
(Kulldorff 1997)

I have a population 
of 6000, of whom 90 

Rather than monitoring 
individual locations, we

(Kulldorff, 1997)

,
(1.5%) are sick.

individual locations, we 
examine groups of locations.

Imagine moving a spatial 

Everywhere else has a 
population of 2.2 
million of whom

window around the monitored 
area, allowing the size and 

shape of the window to vary.

Is there any position of the 
window such that the points 

inside form a significant cluster? 

million, of whom 
20,000 (0.9%) are sick.

g

We compute a score for each 
spatial region, and then test 
whether the highest scoring

How to evaluate a region?

Which regions to search?
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whether the highest scoring 
regions are significant.How to search them efficiently?



Finding the most 
significant regionssignificant regions
• Define models:

• of the null hypothesis 
H0: no events. 

• of the alternative 

K lld ff’ d l

hypotheses H1(S): 
event in region S.

Kulldorff’s model

ci ~ Poisson(qbi)

H : q = q everywhere

ci = count for location si (e.g. number of disease cases)

bi = baseline for location si (e.g. population at-risk, or 
expected count computed from historical data)

H0: q = qall everywhere

H1(S): q = qin inside S,   
q = qout outside,

q = risk (expected ratio of count to baseline)

131

q  qout outside,
qin > qout.



Finding the most 
significant regionssignificant regions
• Define models:

• of the null hypothesis 
H0: no events. 

• of the alternative 

K lld ff’ d l

hypotheses H1(S): 
event in region S.

Kulldorff’s model

ci ~ Poisson(qbi)

H : q = q everywhereH0: q = qall everywhere

H1(S): q = qin inside S,   
q = qout outside,

132
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Finding the most 
significant regionssignificant regions
• Define models:

• of the null hypothesis 
H0: no events. 

• of the alternative 

K lld ff’ d l

hypotheses H1(S): 
event in region S.

• Derive a score function:

)| DataPr(
))(| DataPr()(F

0

1

H
SHS =

Kulldorff’s model

ci ~ Poisson(qbi)

H : q = q everywhere

• Likelihood ratio:

H0: q = qall everywhere

H1(S): q = qin inside S,   
q = qout outside,
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q  qout outside,
qin > qout.



Finding the most 
significant regions

Score = 1.3

significant regions
• Define models:

• of the null hypothesis 
H0: no events. 

• of the alternative 

K lld ff’ d l

hypotheses H1(S): 
event in region S.

• Derive a score function:

)| DataPr(
))(| DataPr()(F

0

1

H
SHS =

Kulldorff’s model

ci ~ Poisson(qbi)

H : q = q everywhere

• Likelihood ratio:

totCCtotCC CCCC
−−

⎟
⎞

⎜
⎛

⎟
⎞

⎜
⎛ −

⎟
⎞

⎜
⎛

H0: q = qall everywhere

H1(S): q = qin inside S,   
q = qout outside,

134

tot

tot

tot

tot

B
C

BB
CC

B
CS ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎠
⎞

⎜
⎝
⎛=)F(

q  qout outside,
qin > qout.



Finding the most 
significant regions

Score = 1.3

significant regions
• Define models:

• of the null hypothesis 
H0: no events. 

• of the alternative 

K lld ff’ d l

hypotheses H1(S): 
event in region S.

• Derive a score function:

)| DataPr(
))(| DataPr()(F

0

1

H
SHS =

Kulldorff’s model

ci ~ Poisson(qbi)

H : q = q everywhere

• Likelihood ratio:

Total count and Total count and H0: q = qall everywhere

H1(S): q = qin inside S,   
q = qout outside,

ota cou t a d
baseline of region S

ota cou t a d
baseline of search area

totCCtotCC CCCC
−−

⎟
⎞

⎜
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⎛
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Finding the most 
significant regions

Score = 1.3

significant regions
• Define models:

• of the null hypothesis 
H0: no events. 

• of the alternative 

K lld ff’ d l

hypotheses H1(S): 
event in region S.

• Derive a score function:

)| DataPr(
))(| DataPr()(F

0

1

H
SHS =

Kulldorff’s model

ci ~ Poisson(qbi)

H : q = q everywhere

• Likelihood ratio:

H0: q = qall everywhere

H1(S): q = qin inside S,   
q = qout outside,totCCtotCC CCCC

−−

⎟
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⎛
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Finding the most 
significant regions

Score = 1.3

significant regions
• Define models:

• of the null hypothesis 
H0: no events. 

• of the alternative 

K lld ff’ d l

hypotheses H1(S): 
event in region S.

• Derive a score function:

)| DataPr(
))(| DataPr()(F

0

1

H
SHS =

Kulldorff’s model

ci ~ Poisson(qbi)

H : q = q everywhere)(Fmaxarg* SS

• Likelihood ratio:

• To find the most 
significant regions: H0: q = qall everywhere

H1(S): q = qin inside S,   
q = qout outside,

)(Fmaxarg* SS
S

=significant regions:

totCCtotCC CCCC
−−
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Finding the most 
significant regions

2nd highest 
score = 8.4significant regions

• Define models: Maximum region
• of the null hypothesis 

H0: no events. 
• of the alternative 

Maximum region 
score = 9.8

K lld ff’ d l

hypotheses H1(S): 
event in region S.

• Derive a score function:

)| DataPr(
))(| DataPr()(F

0

1

H
SHS =

Kulldorff’s model

ci ~ Poisson(qbi)

H : q = q everywhere)(Fmaxarg* SS

• Likelihood ratio:

• To find the most 
significant regions: H0: q = qall everywhere

H1(S): q = qin inside S,   
q = qout outside,

)(Fmaxarg* SS
S

=significant regions:

totCCtotCC CCCC
−−

⎟
⎞

⎜
⎛

⎟
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⎜
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⎟
⎞
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Which regions are 
significant?

2nd highest 
score = 8.4RB = 97, p = .098significant?

• Randomly generate counts for 
R 999 li d t t d Maximum region

B , p

R = 999 replica datasets under 
H0 (i.e. assuming no events).

• Find maximum region score 
F*= max F(S) of each replica

Maximum region 
score = 9.8

RB = 12, p = .013
F = maxS F(S) of each replica.

• p-value of region S = (RB+1) / 
(R+1), where RB =  # of replicas 
with F* ≥ F(S).

Thi i i i ifi t t 05
( )

• All regions with p-values < α
are significant at level α.  

This region is significant at α = .05; 
no other regions are significant.

…
F* = 2.4 F* = 9.1 F* = 7.0

139
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B Univariate ScanB. Univariate Scan 
Statistic Approachespp

1. Kulldorff’s spatial scan statistic
2 Variants of spatial scan:2. Variants of spatial scan:

• Which spatial regions to search?
• How to evaluate the score of a region?

3. Extensions to space-time scanning 
(expectation-based scan statistic)
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Choosing the set of search regions
• Some practical considerations:

• Set of regions should cover entire search space.
• Regions should overlap, not partition the space.

• Choose a set of regions that corresponds well with 
the size/shape of the clusters we want to detect.
• Typical approaches consider some fixed shape (circles, 

rectangles) and vary the location and dimensionsrectangles) and vary the location and dimensions.

Don’t search too few regions: Don’t search too many regions:
Overall power to detect any given 

subset of regions reduced because of 
multiple hypothesis testing.

Reduced power to detect clusters 
outside the search space.

141

Computational infeasibility!



Choosing the set of search regions
• Kulldorff’s original spatial scan 

searches over circular regions of 
varying radius, centered at each 

ti l l tispatial location si.
• Since the score function F(S) 

depends only on which locations 
are included we need to searchare included, we need to search 
O(N2) regions, each consisting of 
a center location and its k-NN.

• Advantages: computationally• Advantages: computationally 
efficient, generalizable to arbitrary 
metric spaces, high detection 
power for compact clusters.power for compact clusters.

• Disadvantage: low power for 
elongated/irregular clusters.

April 1979: inadvertent release of 
anthrax from a Soviet biological 

weapons facility, 77 cases confirmed.

142

Disease cluster elongated due to wind.



Choosing the set of search regions
• Kulldorff’s original spatial scan 

searches over circular regions of 
varying radius, centered at each 

ti l l ti

Many recent spatial scan 
variants search over 

elongated clusters, e.g. 
spatial location si.

• Since the score function F(S) 
depends only on which locations 
are included we need to search

g g
rectangles1 or ellipses2

Other variants: heuristic 
h ll t dare included, we need to search 

O(N2) regions, each consisting of 
a center location and its k-NN.

• Advantages: computationally

search over all connected 
regions3, or exhaustive 
search over a subset of 

connected regions4 5• Advantages: computationally 
efficient, generalizable to arbitrary 
metric spaces, high detection 
power for compact clusters.

connected regions4,5

Main challenge: 
efficient computation!power for compact clusters.

• Disadvantage: low power for 
elongated/irregular clusters.

1Neill and Moore, KDD 2004
2Kulldorff et al., Stat. Med., 2007

3D l d A CSDA 2004

p
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3Duczmal and Assuncao, CSDA, 2004
4Tango and Takahashi, IJHG, 2005

5Patil and Taillie, EES, 2004



Computing the score function
Method 1 (Frequentist, hypothesis testing approach):

Use likelihood ratio
)|P (
))(|Pr()( 1

HD t
SHDataSF =
)|Pr( 0HData

Method 2 (Bayesian approach):
Use posterior probability ))(Pr())(|Pr()( 11 SHSHDataSF

Prior probability of region S

Use posterior probability
)Pr(

))(())(|()( 11

Data
SF =

144



Computing the score function
Method 1 (Frequentist, hypothesis testing approach):

Use likelihood ratio
)|P (
))(|Pr()( 1

HD t
SHDataSF =
)|Pr( 0HData

Method 2 (Bayesian approach):
Use posterior probability ))(Pr())(|Pr()( 11 SHSHDataSF

Prior probability of region S

Use posterior probability
)Pr(

))(())(|()( 11

Data
SF =

What to do when each hypothesis has a parameter space Θ?What to do when each hypothesis has a parameter space Θ?

Method A (Maximum likelihood approach)
)|P ()|P ( θHDHD

Method B (Marginal likelihood approach)

),|Pr(max)|Pr( )( θθ HDataHData HΘ∈=

∫
145

∫
Θ∈

=
)(

)Pr(),|Pr()|Pr(
H

HDataHData
θ

θθ



Computing the score function
Method 1 (Frequentist, hypothesis testing approach):

Use likelihood ratio
)|P (
))(|Pr()( 1

HD t
SHDataSF =
)|Pr( 0HData

Most common (frequentist) approach: use 
likelihood ratio statistic with maximum likelihoodlikelihood ratio statistic, with maximum likelihood 
estimates of any free parameters, and compute 

statistical significance by randomization1,2

Method A (Maximum likelihood approach)
)|P ()|P ( θHDHD

1Kulldorff, 1997
2Neill and Moore, 

),|Pr(max)|Pr( )( θθ HDataHData HΘ∈= ADKDD 2005.

Many possible variants, depending on how we model the 
lik lih d f th d t d h h th i H (S) d H
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likelihood of the data under each hypothesis H1(S) and H0
(Poisson, Gaussian, exponential, negative binomial, etc.)



Computing the score function
Advantages: Randomization testing 

unnecessary (1000x speedup), can be 
extended to multiple data streams and 

multiple event types (more on this later)

Method 2 (Bayesian approach):
Use posterior probability ))(Pr())(|Pr()( 11 SHSHDataSF

multiple event types (more on this later).

Use posterior probability
)Pr(

))(())(|()( 11

Data
SF =

Bayesian spatial scan statistic1,2: 

A Bayesian marginal likelihood approach, efficiently 
computable using conjugate priors (Gamma-Poisson).

Method B (Marginal likelihood approach)

∫

1Neill et al., NIPS 2005
2Neill and Cooper, Machine 
L i 2009 i

147

∫
Θ∈

=
)(

)Pr(),|Pr()|Pr(
H

HDataHData
θ

θθ Learning, 2009, in press.



B Univariate ScanB. Univariate Scan 
Statistic Approachespp

1. Kulldorff’s spatial scan statistic
2 Variants of spatial scan:2. Variants of spatial scan:

• Which spatial regions to search?
• How to evaluate the score of a region?

3. Extensions to space-time scanning 
(expectation-based scan statistic)
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Expectation-based scan statistics
(K lld ff 2001 N ill t l KDD 2005)(Kulldorff, 2001; Neill et al., KDD 2005)

To detect emerging events, we can 
search for space-time regions wheresearch for space-time regions where 

the recently observed counts are 
significantly higher than expected.

Imagine moving a space-time
window around the scan area, 

allowing the window size, 
h d d ishape, and duration to vary.
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Expectation-based scan statistics
(K lld ff 2001 N ill t l KDD 2005)(Kulldorff, 2001; Neill et al., KDD 2005)

To detect emerging events, we can 
search for space-time regions wheresearch for space-time regions where 

the recently observed counts are 
significantly higher than expected.

Imagine moving a space-time
window around the scan area, 

allowing the window size, 
h d d i

Historical Current counts

shape, and duration to vary.
(Consider most recent w days, w = 1…Wmax)

Historical 
counts

Current counts 
(1 day duration)
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Expectation-based scan statistics
(K lld ff 2001 N ill t l KDD 2005)(Kulldorff, 2001; Neill et al., KDD 2005)

To detect emerging events, we can 
search for space-time regions wheresearch for space-time regions where 

the recently observed counts are 
significantly higher than expected.

Imagine moving a space-time
window around the scan area, 

allowing the window size, 
h d d i

Historical Current counts

shape, and duration to vary.
(Consider most recent w days, w = 1…Wmax)

Historical 
counts

Current counts 
(2 day duration)
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Expectation-based scan statistics
(K lld ff 2001 N ill t l KDD 2005)(Kulldorff, 2001; Neill et al., KDD 2005)

To detect emerging events, we can 
search for space-time regions wheresearch for space-time regions where 

the recently observed counts are 
significantly higher than expected.

Imagine moving a space-time
window around the scan area, 

allowing the window size, 
h d d i

Historical Current counts

shape, and duration to vary.
(Consider most recent w days, w = 1…Wmax)

For each space-time region, we 
compare the current counts for 

each location to the time series of 

Historical 
counts

Current counts 
(3 day duration)
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historical counts for that location. 



Expectation-based scan statistics
(K lld ff 2001 N ill t l KDD 2005)

For the standard scan statistic 
approach we assume that each

(Kulldorff, 2001; Neill et al., KDD 2005)

approach, we assume that each 
count is drawn from a Poisson 

distribution with unknown mean.

We perform time series analysis 
to find the expected counts for 
each recent day, then compare 

Historical Current counts

actual to expected counts.

Expected 
t

Historical 
counts

Current counts 
(3 day duration)For each space-time region, we 

compare the current counts for 
each location to the time series of 
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Expectation-based scan statistics
(K lld ff 2001 N ill t l KDD 2005)

For the standard scan statistic 
approach we assume that each

(Kulldorff, 2001; Neill et al., KDD 2005)

approach, we assume that each 
count is drawn from a Poisson 

distribution with unknown mean.

Similarly, we can compute a 
Gaussian scan statistic by 

obtaining the expectations and 

Historical Current counts

variances from historical data.

Historical 
counts

Current counts 
(3 day duration)For each space-time region, we 

compare the current counts for 
each location to the time series of Expected 

t
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historical counts for that location. counts



Expectation-based scan statistics
(K lld ff 2001 N ill t l KDD 2005)

As before, we find the regions with 
highest values of the likelihood ratio

2nd highest 
score = 8 4

Not significant 
(p = 098)

(Kulldorff, 2001; Neill et al., KDD 2005)

highest values of the likelihood ratio 
statistic, and compute the p-value of 

each region by randomization.
Maximum region

score = 8.4(p = .098)

)|DataPr(
))(| DataPr()(F

0

1

H
SHS =

Alternative hypothesis: 
event in region S

Maximum region 
score = 9.8

Significant! (p = .013) )|DataPr( 0H
Null hypothesis: 

no events

g ( )

…
F1* = 2.4 F2* = 9.1 F999* = 7.0To compute p-value

Compare region score 
to maximum region 
scores of simulated
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…scores of simulated 
datasets under H0.



Poisson scan statistic models
Counts are Poisson distributed: ci

t ~ Poisson(qi
tbi

t)
qi

t is relative risk, 
bi

t is expected 
count under H0

Expectation-based Poisson (EBP) Population-based Poisson (PBP)
(Neill et al., KDD 2005) (Kulldorff, 1997, 2001)

H0: qi
t = 1 everywhere       

(counts = expected)
H0: qi

t = qall everywhere 
(inside = outside)

H1(S): qi
t = qin in S and qi

t = 1 
outside, for some qin > 1. 
(counts > expected in S)

H1(S): qi
t = qin in S and qi

t = qout 
outside, for some qin > qout. 

(inside > outside)

qin = 1.2 qin = 1.3

156156

qout = 1.1



Poisson scan statistic models
Counts are Poisson distributed: ci

t ~ Poisson(qi
tbi

t)
qi

t is relative risk, 
bi

t is expected 
count under H0

Expectation-based Poisson (EBP) Population-based Poisson (PBP)
(Neill et al., KDD 2005) (Kulldorff, 1997, 2001)

H0: qi
t = 1 everywhere       

(counts = expected)
H0: qi

t = qall everywhere 
(inside = outside)

H1(S): qi
t = qin in S and qi

t = 1 
outside, for some qin > 1. 
(counts > expected in S)

H1(S): qi
t = qin in S and qi

t = qout 
outside, for some qin > qout. 

(inside > outside)
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Gaussian scan statistic models
Counts are Gaussian distributed: ci

t ~ Gaussian(qi
tbi

t, σi
t)

Let C’ = Σ ci
tbi

t / (σi
t)2 and B’ = Σ (bi

t)2 / (σi
t)2

Expectation-based Gaussian (EBG) Population-based Gaussian (PBG)
(Neill, Ph.D. thesis, 2006) (Neill, Ph.D. thesis, 2006)

H0: qi
t = 1 everywhere       

(counts = expected)
H0: qi

t = qall everywhere 
(inside = outside)

H1(S): qi
t = qin in S and qi

t = 1 
outside, for some qin > 1. 
(counts > expected in S)

H1(S): qi
t = qin in S and qi

t = qout 
outside, for some qin > qout. 

(inside > outside)
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Comparison of models and methods
• Expectation-based space-time scan statistics typically outperform 

purely spatial and purely temporal scans1 and parallel monitoring2.
• EBP and EBG statistics have consistently high detection power 

whether the affected region is large or small in size 3whether the affected region is large or small in size.
• Kulldorff’s statistic (PBP) has very low detection power for large 

regions.  For small regions, PBP beats EBP and EBG for large-count 
datasets, while EBP wins for small-count datasets.3
Diff t ti i th d b t f ti b li f• Different time series methods are best for computing baselines for 
different datasets; it is important to adjust for seasonal and day-of-week 
trends if these are present.2,3

• Randomization testing is often miscalibrated for public health datasets, g p ,
resulting in lower detection power and high false positive rates.  We 
suggest using the empirical distribution of maximum scores from 
historical data instead.2

• Bayesian4,5 and nonparametric6 approaches often outperform typicalBayesian and nonparametric approaches often outperform typical 
parametric scan statistics (more on these later).

1Neill, Ph.D. thesis, 2006 4Neill et al., NIPS 2005

159159

2Neill, IJF, 2009
3Neill, IJHG, 2009

5Neill and Cooper, MLJ, 2009
6Neill and Lingwall, ISDS 2007



Persistent vs. emerging clusters
Most space-time scan approaches assume that the 

relative risks qi
t are spatially uniform over the affected 

i d t t th d ti f th t

Good for detecting Not as good for detecting 

region, and constant over the duration of the event.

g
persistent clusters 
(e.g. shift in mean)

g g
clusters that emerge
gradually over time

Better idea: assume that relative risk is non-
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decreasing over the duration of the event.1
1Neill et al., KDD 2005.



Persistent vs. emerging example
Estimated values 
of relative risk for 

each day

Actual values 
of C/B for 
each day yy

Efficiently computable: 
q = Σ ci

t / Σ bi
t

Can be computed just 
as efficiently1, using 

dynamic programming!

t t
P i t t E i

161

tPersistent Emerging
1Neill et al., KDD 2005.



Static vs. dynamic clusters
Most space-time scan approaches 

assume that the affected set of spatial 
locations remains constant over time

t
locations remains constant over time.

We can think of this as a search over 
regions shaped like right prisms (with

Iyengar (KDD 2004) considers regions

regions shaped like right prisms (with 
both bases the same) in 3-D space-time. 

Iyengar (KDD 2004) considers regions 
with truncated pyramidal shapes in 

space-time.  This models regions which 
move, grow, or shrink linearly over time.

Exact search is computationally 
infeasible; heuristic search is used 
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From Iyengar, KDD 2004
to obtain an approximate solution.



C. Multivariate ScanC. Multivariate Scan 
Statistic Approachespp
1. Advantages of multivariate approaches
2 Parametric multivariate scan statistics2. Parametric multivariate scan statistics
3. Non-parametric scan statistics (NPSS)
4. Multivariate Bayesian scan statistics (MBSS)4. Multivariate Bayesian scan statistics (MBSS)
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Why multivariate event detection?
ED visits
(fever)

ED visits
(respiratory) …OTC sales

(nasal)
OTC sales

(cough)

Multivariate Event 
Detection System

No A th I flNo 
outbreak …Anthrax 

outbreak
in region S

Influenza
outbreak

in region S
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Why multivariate event detection?
ED visits
(fever)

ED visits
(respiratory) …OTC sales

(nasal)
OTC sales

(cough)

W t t d t t
Multivariate Event 
Detection System

We want to detect 
emerging events in the 
early stages, when they 
have a small impact on 

Goal 1: More 
timely detection.

No A th I fl

p
each individual stream.

No 
outbreak …Anthrax 

outbreak
in region S

Influenza
outbreak

in region S
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Why multivariate event detection?
ED visits
(fever)

ED visits
(respiratory) …OTC sales

(nasal)
OTC sales

(cough)

W t t di ti i h
Multivariate Event 
Detection System

We want to distinguish 
between different 

event types based on 
the affected region 

Goal 2: Event 
characterization.

No A th I fl

g
and streams.

No 
outbreak …Anthrax 

outbreak
in region S

Influenza
outbreak

in region S
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Why multivariate event detection?
ED visits
(fever)

ED visits
(respiratory) …OTC sales

(nasal)
OTC sales

(cough)

W t t d l
Multivariate Event 
Detection System

We want to model 
various other causes of 
a detected pattern and 
distinguish these from 

Goal 3: Reduce 
false positives.

No PromotionalA th I fl

g
relevant events. 

No 
outbreak

Promotional 
sale of OTC 
medications

Anthrax 
outbreak

in region S

Influenza
outbreak

in region S
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C. Multivariate ScanC. Multivariate Scan 
Statistic Approachespp
1. Advantages of multivariate approaches
2 Parametric multivariate scan statistics2. Parametric multivariate scan statistics
3. Non-parametric scan statistics (NPSS)
4. Multivariate Bayesian scan statistics (MBSS)4. Multivariate Bayesian scan statistics (MBSS)
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Parametric scan statistics
Parametric scan statistics find the 
regions with highest values of a 2nd highest 

score = 8 4
Not significant 

(p = 098) likelihood ratio statistic, and 
compute statistical significance of 

each region by randomization.
Maximum region

score = 8.4(p = .098)

)H|D tP (
))S(H| DataPr()S(F 1

=

Alternative hypothesis: 
outbreak in region S

Maximum region 
score = 9.8

Significant! (p = .013)
)H|DataPr(

)(
0

Null hypothesis: 
no outbreak

g ( )

1Typical multivariate approach1: assume 
streams are independent, conditional 
on whether an event has occurred and 

the affected space-time region S.

169169

the affected space time region S.  

1Kulldorff et al., Stat. Med., 2007



Parametric scan statistics
Parametric scan statistics find the 
regions with highest values of a 2nd highest 

score = 8 4
Not significant 

(p = 098) likelihood ratio statistic, and 
compute statistical significance of 

each region by randomization.
Maximum region

score = 8.4(p = .098)

)H|D tP (
))S(H| DataPr()S(F 1

=

Alternative hypothesis: 
outbreak in region S

Maximum region 
score = 9.8

Significant! (p = .013)
)H|DataPr(

)(
0

Null hypothesis: 
no outbreak

g ( )

1 Under this assumption we can multiplyTypical multivariate approach1: assume 
streams are independent, conditional 
on whether an event has occurred and 

the affected space-time region S. ∏ =
=

M

1m 0

1m

)H|DPr(
))S(H| DPr()S(F

Under this assumption, we can multiply 
the likelihood ratios for each stream:

170170

the affected space time region S.  ∏ 1m 0m )H|DPr(

1Kulldorff et al., Stat. Med., 2007



Parametric scan statistics
2nd highest 
score = 8 4

Not significant 
(p = 098)

This multivariate approach has 
several disadvantages:

1) Does not account for

Maximum region

score = 8.4(p = .098) 1) Does not account for 
correlations between streams.

2) Cannot determine which subset 
of streams have been affectedMaximum region 

score = 9.8

Significant! (p = .013)

of streams have been affected.

3) Tends to focus detection on 
streams with highest counts.

g ( )

1 Under this assumption we can multiply

4) Cannot distinguish between 
multiple types of event.

Typical multivariate approach1: assume 
streams are independent, conditional 
on whether an event has occurred and 

the affected space-time region S. ∏ =
=

M

1m 0

1m

)H|DPr(
))S(H| DPr()S(F

Under this assumption, we can multiply 
the likelihood ratios for each stream:

171171

the affected space time region S.  ∏ 1m 0m )H|DPr(

1Kulldorff et al., Stat. Med., 2007
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The nonparametric scan statistic
Neill and Lingwall ISDS 2007

Rather than assuming a parametric distribution and learning the mean 
and variance parameters from past counts, NPSS compares the 

t t t th ti i i l di t ib ti f hi t i l t

Neill and Lingwall, ISDS 2007

current counts to the entire empirical distribution of historical counts.

Simple assumption: under H0, all counts for a given location and               
d t t d i d d tl f th di t ib tidata stream are drawn independently from the same distribution.

In this case, the proportion of historical counts that are greater than 
t t t ill b t ti ll if l di t ib t d [0 1]

Historical Current counts

current count ci,m
t will be asymptotically uniformly distributed on [0,1].

Compute the empirical p-value pi,m
t

corresponding to each current count ci m
t: Historical 

counts
Current counts 
(3 day duration)

corresponding to each current count ci,m :  

pi,m
t = (Tbeat + 1) / (T + 1)

173173

Total # of 
historical counts

# of historical 
counts > ci,m

t



The nonparametric scan statistic
Neill and Lingwall ISDS 2007Neill and Lingwall, ISDS 2007

Rather than assuming a parametric distribution and learning the mean 
and variance parameters from past counts, NPSS compares the 

t t t th ti i i l di t ib ti f hi t i l tcurrent counts to the entire empirical distribution of historical counts.

Simple assumption: under H0, all counts for a given location and               
d t t d i d d tl f th di t ib tidata stream are drawn independently from the same distribution.

In this case, the proportion of historical counts that are greater than 
t t t ill b t ti ll if l di t ib t d [0 1]

Compute the empirical p-value pi,m
t

corresponding to each current count ci m
t:

Under H0, pi,m
t ~ U[0,1]

current count ci,m
t will be asymptotically uniformly distributed on [0,1].

corresponding to each current count ci,m :  

pi,m
t = (Tbeat + 1) / (T + 1) Under H1(S), the counts in region 

S will be higher than expected 
under H and thus the empirical p

174174

Total # of 
historical counts

# of historical 
counts > ci,m

t

under H0, and thus the empirical p-
values will be lower than expected.



The nonparametric scan statistic
We search for regions (D, S, W) 
with a surprisingly large number 

f l i i l l

D: subset of data streams               
S: set of spatial locations                

W: duration (number of days)of low empirical p-values. W: duration (number of days)

Total number of empirical p-values in region: N = |D| x |S| x W

How many low empirical p-values (pi,m
t < α) do we expect under H0?

L t N # { t ) Th N Bi i l(N )Let Nα = # {pi,m
t < α).  Then Nα ~ Binomial(N, α), 

with mean Nα and variance Nα(1 – α).

Follo ing Donoho and Jin (2004) e define the higherFollowing Donoho and Jin (2004), we define the higher 
criticism statistic F(D, S, W) = maxα (Nα – Nα) / √Nα(1 – α).

We find the multivariate space time regions (D S W) with highest scores

175175

We find the multivariate space-time regions (D, S, W) with highest scores 
F(D, S, W), and compute statistical significance by randomization.



The nonparametric scan statistic
Advantages of the nonparametric scan statistic (NPSS) 

No parametric model assumptions.

Can easily combine information from multiple streams                       
and identify which subset of streams are affected.

Randomization testing is easy (draw each p t ~ U[0 1])Randomization testing is easy (draw each pi,m
t ~ U[0,1]).

NPSS assumes that all of the counts for a given time                        
series are drawn from the same (unknown) distributionseries are drawn from the same (unknown) distribution,                      
which will not be true if the time series is nonstationary.

Solution: use the standardized residuals ri m
t = (ci m

t – bi m
t) / √bi m

t,Solution: use the standardized residuals ri,m  (ci,m bi,m ) / √bi,m , 
where the expected counts bi,m

t are inferred by time series analysis.

Other nonparametric score functions F(D, S, W) = max F (N , N)

176176

Other nonparametric score functions F(D, S, W)  maxα Fα(Nα, N)              
can be defined, and in some cases these outperform higher criticism.



Preliminary comparison of methods
• We compared the parametric and nonparametric scan 

statistics on a variety of outbreak detection tasks using 
Emergency Department data from Allegheny County.g y p g y y

• Univariate detection performance was comparable; NPSS 
outperformed parametric scans for larger outbreaks, and 
for data that did not fit the parametric model assumptionsfor data that did not fit the parametric model assumptions.

• NPSS achieved significant gains in detection power on 
multivariate tasks, especially when only a subset of the 
monitored streams ere affectedmonitored streams were affected.

• NPSS was able to accurately identify the affected streams.
• A naïve implementation of NPSS is more computationally p p y

expensive than parametric scan, O(2M) for M streams.
• However, we have developed an efficient implementation 

that scales linearly with M using newly developed methodsthat scales linearly with M, using newly developed methods 
for linear-time subset scanning (LTSS).1

177177177

1Neill, ISDS 2008



C. Multivariate ScanC. Multivariate Scan 
Statistic Approachespp
1. Advantages of multivariate approaches
2 Parametric multivariate scan statistics2. Parametric multivariate scan statistics
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4. Multivariate Bayesian scan statistics (MBSS)4. Multivariate Bayesian scan statistics (MBSS)
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Overview of the MBSS method
Neill and Cooper MLJ 2009

Priors Multivariate 
Bayesian

Neill and Cooper, MLJ, 2009

Dataset Bayesian 
Scan 

StatisticModels

Outputs

Given a set of event types Ek, a set of spatial regions S, and the multivariate 
dataset D MBSS outputs the posterior probability Pr(H (S E ) | D) of each type

We must provide the prior probability Pr(H1(S, Ek)) of each event type Ek

dataset D, MBSS outputs the posterior probability Pr(H1(S, Ek) | D) of each type    
of event in each region, as well as the probability of no event, Pr(H0 | D).

y ( 1( k)) y k
in each region S, as well as the prior probability of no event, Pr(H0). 

MBSS uses Bayes’ Theorem to combine the data likelihood given each hypothesis 
ith th i b bilit f th t h th i P (H | D) P (D | H) P (H) / P (D)
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with the prior probability of that hypothesis: Pr(H | D) = Pr(D | H) Pr(H) / Pr(D).



The Bayesian hierarchical model
Type of event

Space-time 
region affected Effects on each 

data stream

region affected

Effects of 
event

Parameter priors

Expected counts Relative risks

180

Observed counts



The Bayesian hierarchical model
ci,m

t ~ Poisson(qi,m
tbi,m

t)
Count for data 
stream dm in 
location si at 

time t

bi,m
t is expected value of ci,m

t

under the null hypothesis, 
predicted from historical data.   

qi,m
t is relative risk.

Null hypothesis H0 
(no events)

Alternative hypothesis H1(S, Ek) 
(event of type Ek in region S)

qi,m
t ~ Gamma(αm, βm) 

everywhere
qi,m

t ~ Gamma(xmαm, βm) inside region S, 
qi,m

t ~ Gamma(αm, βm) elsewhere

αm and βm are learned from 
historical data for stream dm.

Event type Ek multiplies expected counts in S by 
some constant xm for each stream dm.

Gamma(α,β)   
μ= α / β      

σ2 = α / β2

Simple event model:  xm = 1 + θ (xkm,avg – 1)

Event severity

181

Average effect of event type Ek on stream dm.



Computing Bayesian likelihoods
• Marginal likelihood approach: integrate over possible values 

of the relative risks qi,m
t, weighted by their prior probabilities.

C j t i ll l d f l ti• Conjugate priors allow a closed form solution.
• Gamma priors, Poisson counts Negative binomial likelihoods.
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Computing Bayesian likelihoods
• Marginal likelihood approach: integrate over possible values 

of the relative risks qi,m
t, weighted by their prior probabilities.

C j t i ll l d f l ti• Conjugate priors allow a closed form solution.
• Gamma priors, Poisson counts Negative binomial likelihoods.

∏ tt )()|( ∏∝
t,m,i

mm
t
m,i

t
mi,0 ),,b,cNegBin()H|DPr( βα

dq))qbPo(~cPr()),Ga(~qPr(),,b,cNegBin( where βαβα ∫=
)(β α Γ
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Computing Bayesian likelihoods
• Marginal likelihood approach: integrate over possible values 

of the relative risks qi,m
t, weighted by their prior probabilities.

C j t i ll l d f l ti• Conjugate priors allow a closed form solution.
• Gamma priors, Poisson counts Negative binomial likelihoods.

∏ tt )()|( ∏∝
t,m,i

mm
t
m,i

t
mi,0 ),,b,cNegBin()H|DPr( βα

∏∝ tt )xbcNegBin(})x{)ES(H|DPr( βα∏
∈

∝
St,m,i

mmmm,imi,mk1 ),x,b,cNegBin(})x{),E,S(H|DPr( βα

∏
∉

×
Stmi

mm
t
m,i

t
mi, ),,b,cNegBin( βα

dq))qbPo(~cPr()),Ga(~qPr(),,b,cNegBin( where βαβα ∫=
)(β α Γ

∉St,m,i
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Computing Bayesian likelihoods
• Marginal likelihood approach: integrate over possible values 

of the relative risks qi,m
t, weighted by their prior probabilities.

C j t i ll l d f l ti• Conjugate priors allow a closed form solution.
• Gamma priors, Poisson counts Negative binomial likelihoods.

∏ tt )()|( ∏∝
t,m,i

mm
t
m,i

t
mi,0 ),,b,cNegBin()H|DPr( βα

∏∝ tt )xbcNegBin(})x{)ES(H|DPr( βα∏
∈

∝
St,m,i

mmmm,imi,mk1 ),x,b,cNegBin(})x{),E,S(H|DPr( βα

∏
∉

×
Stmi

mm
t
m,i

t
mi, ),,b,cNegBin( βα

∉St,m,i

To compute the data likelihood given the alternative 
hypothesis H (S E ) we marginalize over the values of x
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hypothesis H1(S, Ek), we marginalize over the values of xm.



Comparison to prior methods
We compared MBSS to the parametric multivariate scan 

statistic on outbreak detection using OTC medication sales.

Using uninformative priors, MBSS achieves similar detection 
performance to parametric scans, enabling its use as a general 

detector with high performance across many event types.

However, we can also incorporate prior information into event 
models, and thus use MBSS as a specific detector with much 
higher detection power for the given event type, achieving an 
average of 1.3 days faster detection than parametric scans.

Additionally, MBSS can be used to characterize events by 
specifying models for multiple event types and computing      
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the probability that each type of event has occurred. 



Testing discrimination power
• We examined the ability of MBSS to differentiate 

between two types of influenza-like illness using 
two streams of OTC data (cough/cold antifever)two streams of OTC data (cough/cold, antifever).

Outbreak E1 affects cough/cold twice as much as fever.  
O tb k E ff t f t i h h/ ld

100
ty

Outbreak E2 affects fever twice as much as cough/cold.

40

60

80
d 

Pr
ob

ab
ili

t

Correct type
Wrong type

MBSS was able to 
accurately discriminate 
between the two event 

0

20

40

Es
tim

at
ed No outbreaktypes by the second 

outbreak day.
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Interpretation and visualization
• MBSS gives the total posterior probability of each 

event type Ek, and the distribution of this 
probability over space time regions Sprobability over space-time regions S.

• Probabilistic basis for decision-making, given costs 
of false positives and false negativesof false positives and false negatives.

• Visualization: Pr(H1(si, Ek)) = Σ Pr(H1(S, Ek)) for all 
regions S containing location si.

Total posterior probability of a 
i t tb k i hrespiratory outbreak in each 

Allegheny County zip code on 6/3/05. 

Darker shading = higher probability.
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Advantages of MBSS
Results are easy to 

interpret, visualize, and 
use for decision-making.

Can incorporate prior knowledge of 
event prevalence, size, shape, 
duration, spread, and impact. use for decision making.duration, spread, and impact.

Computation is fast in the Bayesian 
framework and randomization

P(anthrax) = 22% 
P(influenza) = 13%framework, and randomization 

testing is not necessary.
P(influenza) = 13%
P(other ILI) = 33%

We can model and differentiate 
between multiple potential 

causes of an event.

We can detect faster and 
more accurately by integrating 

multiple data streams.
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D Current DirectionsD. Current Directions 
in Spatial Eventin Spatial Event 

Detection
1. Incorporating learning into detection
2. Very fast detection algorithms2. Very fast detection algorithms
3. Generalization of spatial methods to non-spatial data
4. Non-aggregated spatial and temporal data
5 I ti i h i f ti f b ti5. Incorporating rich information from observations
6. Detecting multiple, dynamic, irregular clusters
7. Integrating detection, tracking, and response

©2009 Carnegie Mellon University 190

8. Combining sensor placement and sensor fusion



Incorporating learning into detection
We have made major advances in detecting anomalous patterns, 

but not in determining which of these anomalies are relevant.

9/20, 15213, cough/cold, …

9/21, 15207, antifever, …

9/22, 15213, CC = cough, ...

1,000,000  more records…

Huge mass of data Detection algorithm “What am I supposed 
to do with this?”

Too many 
alerts

We must model and differentiate between multiple causes of a 
detected pattern, and provide only the relevant patterns to the user.

How can we classify patterns, and 
determine which ones are relevant 

191

to a given user at a given time?



Incorporating learning into detection
We have made major advances in detecting anomalous patterns, 

but not in determining which of these anomalies are relevant.

9/20, 15213, cough/cold, …

9/21, 15207, antifever, …

9/22, 15213, CC = cough, ...

1,000,000  more records…

Huge mass of data
Feedback loop

We must model and differentiate between multiple causes of a 
detected pattern, and provide only the relevant patterns to the user.

How can we classify patterns, and 
determine which ones are relevant 

Incorporate user feedback 
into the detection process, 
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to a given user at a given time? and use it to learn models!



Incorporating learning into MBSS
Many aspects of the MBSS framework can be learned from data.

The set of event types Ek, and the 
prevalence of each event type Pr(Ek).

We first consider the 
passive learning scenario, 

in which the user provides a
The space-time pattern of each 
event type, Pr(H1(S, Ek) | Ek).

in which the user provides a 
label (S, Ek) for each day.

The effects of each event type on the 
multiple data streams, Pr(D | H1(S, Ek)).

The relevance of each type

This label can be then used 
by the system to update its 

models and improve its 
The relevance of each type 

of event to the user.
performance for future days.
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Incorporating learning into MBSS
Many aspects of the MBSS framework can be learned from data.

We need to generalize over 
huge # of possible regions S.

The set of event types Ek, and the 
prevalence of each event type Pr(Ek).

The space-time pattern of each 
event type, Pr(H1(S, Ek) | Ek).

The effects of each event type on the 
multiple data streams, Pr(D | H1(S, Ek)).

The relevance of each typeThe relevance of each type 
of event to the user.
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Latent center model 
(Makatchev and Neill, 2008)



Incorporating learning into MBSS
Many aspects of the MBSS framework can be learned from data.

We can learn different temporalWe can learn different temporal 
patterns for different event types.The set of event types Ek, and the 

prevalence of each event type Pr(Ek).

The space-time pattern of each 
event type, Pr(H1(S, Ek) | Ek).

The effects of each event type on the 
multiple data streams, Pr(D | H1(S, Ek)).

The relevance of each type

We can detect events where the 
affected region changes over time.

The relevance of each type 
of event to the user.

195(Das, Schneider, & Neill, 2009)



Passive vs. active learning
So far, we have considered the passive learning scenario, in which 
each day is assigned a label by the user (no event, or event type 

Ek and affected area S) independently of the system’s outputEk and affected area S) independently of the system s output.

However, having a user in the loop allows for much interaction   
and learning than this simple framework In the active learningand learning than this simple framework.  In the active learning 
scenario, the system presents its output (detected clusters) to     
the user, and receives feedback on these clusters, each day.

This presents an interesting challenge: the system must strike a 
balance between exploration, presenting “unknown” examples that 

will best inform its models and exploitation presenting “known”will best inform its models, and exploitation, presenting known  
examples that have highest probability of relevance to the user.
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Active learning of new event types
This scenario allows the user to define new classes “on the fly”, by 
assigning a new label type to an example.  The system can then 
find other potential examples of the new class in historical data,find other potential examples of the new class in historical data,  
ask the user to label these, and learn a model for the new class.

“Any clusters of interest today?”

“Yes, this appears to be an anthrax attack, 
based on increased OTC cough and fever.”

“No, we don’t see a corresponding increase in ED 
visits.  I think this cluster is just a promotional sale.”j p

“OK.  Can you identify which of these historical 
clusters also correspond to promotional sales?”

“Yes, all of these.  Any other clusters of interest?” MBSS

The end goal is to transform the process of pattern discovery into a 
“conversation” between the user and system in which the system takes

“Not really, just more seasonal flu and another promotional sale.”
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conversation  between the user and system, in which the system takes 
an active role in identifying and explaining potentially interesting patterns.



D Current DirectionsD. Current Directions 
in Spatial Eventin Spatial Event 

Detection
1. Incorporating learning into detection
2. Very fast detection algorithms2. Very fast detection algorithms
3. Generalization of spatial methods to non-spatial data
4. Non-aggregated spatial and temporal data
5 I ti i h i f ti f b ti5. Incorporating rich information from observations
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8. Combining sensor placement and sensor fusion



Which subsets to scan?
Since there are exponentially many subsets of the data,      

it is often computationally infeasible to search all of them.

The most common approach is to use domain knowledgeThe most common approach is to use domain knowledge  
to restrict our search space: for example, we assume               
that an event will affect a contiguous spatial region,                  
and often further restrict the region size and shapeand often further restrict the region size and shape.

e.g. “search over circular regions centered at a data point” only N2 regions instead of 2N.

Another common approach is to perform a heuristicAnother common approach is to perform a heuristic          
search.  For example, we can greedily grow subsets             
starting from each data record, repeatedly adding the 

additional record that gives the highest scoring subset.1g g g

Tradeoff: much more efficient than naïve search, but not guaranteed to find highest scoring region.

In some cases, we can find the highest-scoring subsets         
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g g
without computing the scores of all possible subsets!

1Neill et al., in Scan Statistics: Methods and Applications, 2009.



Fast spatial scan over rectangles

Th b f h i l

Consider searching over all rectangular 
regions for data aggregated to a N x N grid.

The number of search regions scales as 
O(N4), making an exhaustive search 

computationally infeasible for large N.

We can find the highest scoring clusters without an exhaustive search 
using branch and bound: we keep track of the highest region score 
found so far, and prune sets of regions with provably lower scores.1,2, p g p y

A new multi-resolution data structure, 
the overlap-kd tree, enables us to 

k thi h ffi i t

We can now monitor nationwide 
health data in 20 minutes (vs. 1 week).

make this search efficient.

200

1Neill and Moore, KDD 2004
2Neill et al., NIPS 2004



Fast spatial scan over rectangles

Th b f h i l

Consider searching over all rectangular 
regions for data aggregated to a N x N grid.

The number of search regions scales as 
O(N4), making an exhaustive search 

computationally infeasible for large N.

We can find the highest scoring clusters without an exhaustive search 
using branch and bound: we keep track of the highest region score 
found so far, and prune sets of regions with provably lower scores.1,2, p g p y

Other recent work on efficiently maximizing scan statistics over gridded rectangles

W t l KDD 2009A l t l SODA 2006 KDD 2006 Wu et al., KDD 2009

Compute scores for subset of rectangles,           
bound scores of other rectangles by               

tiling with evaluated rectangles.

Agarwal et al., SODA 2006, KDD 2006

Fast approximate optimization of convex 
score functions.  Solution within ε of 
optimal, runtime O((1/ε) N2 log2 N).
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tiling with evaluated rectangles.  

Can be used for non-convex score functions. 

optimal, runtime O((1/ε) N log N).



Linear-time subset scanning
• In certain cases, we can optimize F(S) over 

the exponentially many subsets of locations, 
1while evaluating only O(N) regions.1

• Many commonly used scan statistics have 
the property of linear-time subset scanning:
• Just sort the locations from highest to lowest 

priority according to some functionpriority according to some function…
• … then search over groups consisting of the 

top-k highest priority locations for k = 1 Ntop k highest priority locations, for k  1..N.

The highest scoring subset is 
guaranteed to be one of these!
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guaranteed to be one of these!
1Neill, ISDS 2008



The LTSS property
• Example: Poisson statistics (Kulldorff, EBP)

• F(S) = F(C, B), where C = Σ ci and B = Σ bi are (S) (C, ), e e C ci a d bi a e
the aggregate count and baseline of region S.

• Sort locations si by the ratio of observed to i y
expected count, ci / bi. 

• Given the ordering s(1) … s(N), we can prove that (1) (N)
the top-scoring subset consists of the locations 
s(1) … s(k) for some k, 1 ≤ k ≤ N.

• This follows from the facts that F(S) is convex, 
increasing with C and decreasing with B.
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How to use LTSS in practice?
• Simplest case: assume all subsets are equally 

likely (e.g. outbreak that does not cluster spatially)
• LTSS gives highest-scoring subset by evaluating N

subsets instead of 2N for naïve search.
B t hat if e ant to se spatial information to• But what if we want to use spatial information to 
constrain our search over subsets?
• Soft constraints: some subsets of locations are more• Soft constraints: some subsets of locations are more 

likely than others (non-uniform priors).
• Hard constraints: some subsets of locations are not 

allowed (e.g. non-contiguous or highly irregular regions).
• In most cases, we cannot use LTSS directly to find 

th ti l b t bj t t th t i t
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the optimal subset subject to these constraints.



How to use LTSS in practice?
• We can use LTSS to speed up the 

constrained search problem in three ways:p y
1) For some hard constraints, we can compute the 

optimal subset by maximizing over multiple p y g p
LTSS searches (e.g. fast localized scan).

2) We can use the unconstrained maximum score 
as an upper bound on the constrained 
maximum (e.g. fast scan over rectangles).

3) For heuristic search, we can use the 
unconstrained maximum as a starting point, or 
use the LTSS ordering to guide our search
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use the LTSS ordering to guide our search.



Fast localized scan
• Maximize the spatial scan statistic over regions 

consisting of a “center” location si and any subset
of its k-nearest neighbors, for a fixed constant k.

• This is similar to FlexScan1 but does not force the 
i t b tiregion to be contiguous.

• Naïve search requires O(N · 2k) time and is 
t ti ll i f ibl f k > 20computationally infeasible for k > 20.

• For each center, we can search over all subsets 
of its k nearest neighbors in O(k) using LTSSof its k-nearest neighbors in O(k) using LTSS, 
thus requiring total time O(Nk) + O(N log N) for 
sorting by priority.
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sorting by priority.
1Tango and Takahashi, IJHG, 2005



Evaluation on ED data
We compared the time needed to perform localized 

scans with and without LTSS, as a function of the number 
of neighbors k for 281 days of Emergency Departmentof neighbors k, for 281 days of Emergency Department 

visit data from Allegheny County.

k  = 15: 869x speedup 
(4.42 sec. vs. over 1 hour)

k = 20: 38 460x speedupk  20: 38,460x speedup 
(4.69 sec. vs. over 50 hours)

k = 30: 5.21 sec. vs. ~9 yrs.

k = 88: 8.12 sec. vs. ~1026 yrs.
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Linear-time subset scanning
Linear-time subset scanning is a powerful and useful tool that enables 

us to speed up a wide variety of spatial event detection methods.

The Poisson, Gaussian, and nonparametric spatial scan statistics all 
satisfy the LTSS property, as do many other possible statistics.

LTSS makes “all subsets” search computationally feasible, makes 
localized scans feasible even for large values of k, and speeds up 
searches over “all distinct rectangles” by 2-3 orders of magnitude.searches over all distinct rectangles  by 2 3 orders of magnitude.

Many other LTSS-enabled searches are possible, and these will 
enable huge speedups for an even wider range of problems.g p p g p

Current work includes extending LTSS to the multivariate and         
space-time scan statistics, developing fast graph scan algorithms,   
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p , p g g p g ,
and incorporating LTSS into our Bayesian scan framework.
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Anomalous Group Detection
1. Learn a Bayesian Network model for the null hypothesis 

H0 (no events) from the training data.

US Port F Port

Shipper Name

Importer Name

Shipping Line

Country

Commodity

Size

Weight

Value

2. To evaluate a group of records S:
1. Fit the alternate hypothesis Bayesian Network (H1(S)) parameters 

using Datausing DataS.
2. Compute the group score using the likelihood ratio:

3. Greedily grow a group from each record, and output the 
)H|P(S

(S))H | P(S F(S)
0

1=

©2009 Carnegie Mellon University 210

groups with highest score.
Neill et al., in Scan Statistics: Methods and Applications, 2009.
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