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Synonyms

Biosurveillance; Event detection; Graph mining;
Scan statistics; Spatial scan statistic

Glossary

Event Detection Identifying patterns of interest
in large temporal datasets

Spatial Scan Statistic A method for identify-
ing hotspots in spatial data, widely used in
epidemiology and biosurveillance

Disciplinary

Scoring Function An objective function that
measures the anomalousness of a subset of
data

LTSS Linear-time subset scanning

Time to Detect Evaluation metric; time delay
before detecting an event

Overlap Evaluation metric;
detected subsets of data

Detection Power Evaluation metric; proportion
of detected events

accuracy  of

Definition

GraphScan is a novel method for detecting arbi-
trarily shaped connected clusters in graph or net-
work data. Given a graph structure, data observed
at each node of the graph, and a score function
defining the anomalousness of a set of nodes,
GraphScan can efficiently and exactly identify
the most anomalous (highest-scoring) connected
subgraph. Additionally, GraphScan can be used
to discover an unknown, underlying graph struc-
ture from unlabeled data.

Introduction

Many of the most interesting and relevant dis-
coveries that can be made from data arise not
from the evaluation of single records but from
identifying a group of records that are collectively
anomalous in some interesting way. To this end,
the “subset scan” approach to pattern detection
treats the problem as a search over subsets of
data, with the goal of finding the most anomalous
subsets. One major challenge of the subset scan
approach is the computational problem that arises
from attempting to search over the exponentially
many subsets of the data. Linear-time subset
scanning (LTSS) (Neill 2012) is a novel approach
to anomalous pattern detection that addresses this
issue by identifying the most anomalous subset of
the data without requiring an exhaustive search,
reducing computation time from years to mil-
liseconds.

Social networks and many other data sources
that contain emerging events of public interest
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are commonly represented with a graph struc-
ture. For such data, methods should identify the
most anomalous subgraph or connected subset
of records. Therefore, GraphScan (Speakman and
Neill 2010; Speakman et al. 2012) was developed
to extend the exactness and efficiency of the LTSS
property to data sets that have an underlying
graph structure.

In the disease surveillance domain,
researchers are typically concerned with finding
an anomalous spatial region which may be
indicative of an emerging outbreak. Kulldorff’s
spatial scan statistic (Kulldorff 1997) can be
used in these settings to detect circular clusters
of anomalous locations. However, consider an
outbreak from a waterborne illness that leads
to an increased number of hospital visits from
patients who live in zip codes along a river
or coastline. This non-compact spatial pattern
would be hard to detect using circular proximity
constraints. Taking advantage of an underlying
graph structure based on zip code adjacency
allows GraphScan to consider sets of connected
zip codes, increasing its power to detect these
irregularly shaped clusters. Empirical results
show that GraphScan is able to detect synthetic
disease outbreaks several days earlier than the
circular scan, with fewer than half as many
missed outbreaks.

Historical Background

Anomaly detection in graphs can take on many
different forms. The goal of GraphScan is to
efficiently and exactly identify an anomalous
subset of records that are connected to each
other in the graph structure. It is not attempting
to identify anomalous graph structure. In other
words, the network structure is a constraint on
the anomaly detection rather than the objective.
For example, given a time series of the number
of texts or calls of each individual in a friendship
network, GraphScan can identify which group
of friends (connected subgraph) is currently
having the most anomalous activity. Both
FlexScan (Tango and Takahashi 2005) and Upper
Level Sets (ULS) (Patil and Taillie 2004) share
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this definition of anomalous subgraphs. However,
FlexScan suffers from computational limitations,
and ULS is not guaranteed to identify the most
anomalous subgraph. These approaches are in
contrast to (Akoglu et al. 2010), which identifies
anomalous network structure within a node’s
egonet such as near-cliques or dominant heavy
links between two nodes. AutoPart (Chakrabarti
2004) defines an information theoretic distance
metric to identify subgraphs that are “far away”
from other subgraphs as anomalous. Although
the output of all these methods is subgraphs, the
latter two methods measure anomalousness by
edge weight or graph structure rather than activity
at the nodes. From this point forward, we will
reference anomalous subgraphs as anomalous
subsets of records (nodes) that form a connected
subgraph.

Basic Methodology

Spatial event detection methods typically monitor
a data stream (such as Emergency Department
visits with respiratory complaints or over-the-
counter cough and cold medication sales) across
a collection of spatial locations and over time.
These streams are represented as a series of
counts cf , from location s;, and time step f.
This stream of counts is also used to deter-
mine the historical baselines (expected counts)
b!. The amount of anomalous activity in a region
is quantified by the scoring function, F(S) =
F(C(S), B(S)) where C(S) and B(S) represent
the aggregate count and baseline of subset §,
respectively.

In practice, these scoring functions are
typically log-likelihood ratio statistics such as
the expectation-based Poisson statistic: F(S) =
Clog($) + B—C,if C > B,and F(S) = 0
otherwise (Neill et al. 2005). The more that the
total count exceeds the total baseline, the higher
the score of the region. The goal of GraphScan
is to efficiently and exactly identify the highest-
scoring (i.e., most interesting) subset of data
S, subject to the connectivity constraints of the
underlying graph structure.
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To do so, GraphScan builds on the “linear-
time subset scanning” (LTSS) property (Neill
2012), a novel feature of commonly used scor-
ing functions. For the expectation-based Poisson
statistic, the highest-scoring subset of records
can be found by first ordering the records ac-
cording to their count-to-baseline ratio Z—i This
ordering is referred to as a record’s “priority”
and represents the jth-highest priority record as
R(}y. For clarification, R() is the highest priority
record. The highest-scoring subset can then be
proven to consist of the top-j highest priority
records for some (unknown) value of j. Please
refer to Neill (2012) for more details on the
LTSS property. In its simplest form, the LTSS
property of scoring functions states: “If record
R}y is included in the optimal subset S, then all
higher priority records R(jy ... R(;j—1) must also
be included in that subset”” When connectivity
constraints are introduced, this statement of the
LTSS property must be extended in order to be
effectively applied to the task of identifying the
highest scoring connected subset.

Enforcing Connectivity Constraints

There are two different reasons for including
a record into a potentially highest-scoring con-
nected subset. The first and most obvious reason
is because the record contributes a large number
of counts with a relatively low baseline: it is inter-
esting of its own accord. However, some records
may be included in the highest-scoring connected
subset because they are simply enforcing the con-
nectivity constraint, connecting other higher pri-
ority records while contributing very few counts
and baselines themselves. Taking this observa-
tion into account, the GraphScan logic extends
the LTSS property to state: “If R(;) is included
in the highest scoring connected subset S, and
removing R(;y does not disconnect the subset,
then all higher priority neighbors of S must also
be included in the optimal subset.” Unlike the
rule implemented within the ULS method, this
approach is guaranteed to identify the highest-
scoring connected subset because it allows lower
priority records to be included in the optimal
subset to enforce the connectivity constraints of
the graph structure. In practice, this logic allows
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the GraphScan algorithm to prove that many con-
nected subsets are suboptimal, excluding these
subsets from the search without scoring each sub-
set individually and thus dramatically reducing
computation time. This efficient implementation
of the LTSS property with additional connectivity
constraints allows GraphScan to scale up to much
larger data sets than FlexScan (Tango and Taka-
hashi 2005), which naively scores all connected
subsets of the graph structure. The details of
the implementation of GraphScan are provided
in Speakman et al. (2012).

Incorporating Proximity Constraints

The major focus of the GraphScan algorithm
is combining connectivity constraints with the
LTSS property in order to efficiently determine
the highest-scoring connected subset of records.
However, if the data set has both spatial and graph
information available, then GraphScan may
use both proximity and connectivity constraints
simultaneously. For a given distance metric, a
“local neighborhood” may be formed consisting
of a central record and its k — 1 nearest neighbors.
This approach can be applied in the disease
surveillance domain, where we have access to the
latitude and longitude coordinates of the centroid
of each zip code. For social networks, these
additional constraints can be based on graph-
distance (length of shortest path) between two
nodes.

The GraphScan algorithm then finds the
highest-scoring connected cluster within each
of these “local neighborhoods” by forming a
connectivity graph that only consists of the
records in this neighborhood. The highest-
scoring connected subset using this “k-nearest
neighbor” approach is simply the highest-scoring
connected subset found from the N possible
neighborhoods.

Graph Structure Learning

If the underlying graph structure is known, we
have seen that GraphScan (Speakman and Neill
2010) can be used to identify an anomalous
subgraph, which may be indicative of an
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emerging event. However, events might spread
over some latent network structure, such as
disease outbreaks spreading from person to
person or information spreading through a social
network. In Somanchi and Neill (2011, 2012),
we present an approach for learning the network
structure from unlabeled data, given only the time
series of data at each network node.

Our solution builds on the GraphScan
(Speakman and Neill 2010) and linear-time
subset scanning (Neill 2012) approaches,
comparing the most anomalous subsets detected
with and without connectivity constraints. We
consider a large set of potential graph structures;
a greedy edge removal approach is used to search
over the space of graph structures, as described
in Somanchi and Neill (2012). We efficiently
compute the highest-scoring connected subgraph
for each graph structure and each training
example using GraphScan. We normalize each
score by dividing by the maximum unconstrained
subset score for that training example (computed
efficiently using LTSS). We then compute the
mean normalized score averaged over all training
examples. If a given graph is close to the true
underlying structure, then its maximum graph-
constrained score will be close to the maximum
unconstrained score for many training examples.
If the graph is missing essential connections, then
the maximum graph-constrained score given that
structure will be much lower than the maximum
unconstrained score. However, any graph with a
large number of edges will also score close to the
maximum unconstrained score. Thus, we com-
pare the mean normalized score of a given graph
structure to the distribution of mean normalized
scores for random graphs with the same number
of edges, and we choose the graph structure with
the most statistically significant score given this
distribution.

Evaluation on Spatial Disease
Surveillance

GraphScan’s detection power was evaluated
using a set of simulated respiratory disease
outbreaks injected into real-world Emergency
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Department data from Allegheny County,
Pennsylvania. Multiple methods were compared:
“circles” (Kulldorff 1997) (traditional approach,
returns the highest-scoring circular cluster of
locations), “all subsets” (Neill 2012) (LTSS
implemented without proximity or connectivity
constraints, returns the highest-scoring uncon-
strained subset of locations), “ULS” (Patil and
Taillie 2004) (returns a high-scoring connected
subset based on the Upper Level Set scan
statistic within a neighborhood size of k), and
“GraphScan” (Speakman et al. 2012) (returns
the highest-scoring connected subset within a
neighborhood size of k). The expectation-based
Poisson (EBP) scoring function (Neill et al. 2005)
was used for each of these methods.

Various types of spatial injects were created
and randomly inserted in the 2-year time frame
of the Emergency Department data. Each of these
injects had a duration of 14 days with linearly
increasing severity. At a fixed false-positive rate
of 1 per month, we recorded the proportion of
outbreaks detected and average number of days
required to detect an outbreak for each method.

Figure 1 provides the time to detect
and overall detection rate for these injects.
Averaging across all ten inject types (2,000
outbreaks in total), GraphScan with a neigh-
borhood size of k = 15 provides shortest
detection time and greatest detection power. ULS
provides similar, but slightly lower, detection
power due to the fact that it is not guaranteed to
identify the highest-scoring connected subset.
GraphScan detected 1.79 days earlier than
the circular scan and had fewer than half as
many missed outbreaks. Note the low detection
power of the unconstrained LTSS method. This
emphasizes the importance of incorporating
spatial and/or connectivity constraints for
adequate performance on the spatial event
detection task.

Results on Graph Structure Learning

We generated simulated disease outbreaks that
spread based on the zip code adjacency graph
with additional edges added to simulate travel
patterns and injected these outbreaks into our
real-world hospital data. We evaluated detection
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graphs, from Somanchi and Neill (2012)

time and spatial accuracy using the learned
graphs for these simulated injects (Fig. 2).

This figure also shows the detection
performance given the true (adjacency plus
travel) graph and the adjacency graph without
travel patterns. We observe that the learned graph
achieves comparable spatial accuracy to the true
graph, while the adjacency graph has lower
accuracy. Additionally, the learned graph is able
to detect outbreaks over a day earlier than the
true graph and 1.5 days earlier than the adjacency
graph without travel patterns. Thus, our method
can successfully learn the additional edges due to
travel patterns, substantially improving detection
performance.

Key Research Findings and
Conclusions

GraphScan is a novel method for efficient pattern
detection that incorporates linear-time subset
scanning with connectivity constraints (Speak-
man et al. 2012). Although similar to the previ-
ously proposed FlexScan algorithm, GraphScan
is able to scale to much larger graphs of over
100 nodes, with a 450,000-fold increase in
speed compared to FlexScan for neighborhoods
of size k = 30. Along with the enormous
speed improvements, GraphScan is guaranteed
to identify the highest-scoring connected
subset.



Distance and Similarity Measures

The GraphScan algorithm was evaluated
against the circular space-time scan statis-
tic (Kulldorff 1997) and the Upper Level
Set scan statistic (Patil and Taillie 2004) on
synthetic disease outbreaks injected into real-
world Emergency Department data from 97 zip
codes in Allegheny County, PA. Compared to the
competing methods, GraphScan had higher de-
tection power with shorter time required to detect
the events, as well as fewer missed events overall.

We also proposed a novel framework which
uses GraphScan to learn graph structure from
unlabeled data (Somanchi and Neill 2012). This
approach can accurately learn a graph structure
which can then be used by graph-based event
detection methods, enabling more timely and
accurate detection of outbreaks which spread
based on that latent structure. Our results show
that the learned graph structure is similar to
the true underlying graph structure. Interestingly,
the resulting graph often has higher detection
power than the true graph, enabling more timely
detection of outbreaks, while achieving similar
spatial accuracy to the true graph. This is because
the learning procedure is designed to capture
not only the underlying graph structure but the
characteristics of the events which spread over
that graph. By finding graphs where the highest
connected subgraph score is consistently close to
the highest unconstrained subset score when an
event is occurring, we identify a graph structure
which is optimized for event detection.

Cross-References

Data Mining

Social Networks in Emergency Response

Social Networks in Healthcare, Case Study

Spatio-Temporal  Outlier and Anomaly
Detection
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