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My research is focused at the intersection of machine learning and public policy.

Increasingly critical importance of 
addressing global policy problems 

(disease pandemics, crime, terrorism…)

Continuously increasing size and 
complexity of policy data, and rapid growth 

of new and transformative technologies.

Machine learning has become increasingly essential for data-driven policy analysis 
and for the development of new, practical information technologies that can be 
directly applied for the public good (e.g. public health, safety, and security)

My research in this area has two main goals: 

1) Develop new machine learning methods for better (more scalable and accurate) 
detection and prediction of events and other patterns in massive datasets.

2) Apply these methods to improve the quality of public health, safety, and security.



Medicine: Discovering new 
“best practices” of patient 

care, to improve outcomes 
and reduce costs.

Disease Surveillance: 
Very early and 

accurate detection of 
emerging outbreaks. 

Law Enforcement: 
Detection, prediction, 

and prevention of “hot-
spots” of violent crime.

Our disease surveillance 
methods are in use for deployed 

systems in the U.S., Canada, 
India, and Sri Lanka; currently 

collaborating with NYC DOHMH.

Our “CrimeScan” software has been in 
day-to-day operational use for predictive 

policing by the Chicago Police Dept.
“CityScan” has been used by Chicago city 

leaders for prediction and prevention of 
rodent infestations using 311 call data.
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Today’s talk:
• Public health surveillance

• Early outbreak detection (fast subset scan)
• Accidental drug overdose surveillance 

(multidimensional scan)
• “Novel” outbreak detection (semantic scan)

• CrimeScan and CityScan
• Crime prediction and prevention
• Improving city services by predicting emerging 

patterns of citizen needs.
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Why worry about disease outbreaks?
• Bioterrorist attacks are a very 

real, and scary, possibility
Large anthrax release over a 
major city could kill 1-3 million 
and hospitalize millions more.

• Emerging infectious diseases
“Conservative estimate” of 2-7 
million deaths from pandemic 
avian influenza.

• Better response to common 
outbreaks and emerging 
public health trends.
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Benefits of early detection
Reduces cost to society, both in lives and in dollars!

Day 0 Day 10

incubation

Day 4

Without 
treatment, 95% 
mortality rate

stage 1 stage 2

Post-symptomatic 
treatment, 40% 
mortality rate

Pre-symptomatic 
treatment, 1% 
mortality rate

Exposure to 
inhalational 

anthrax

Acute respiratory 
distress, high fever, 

shock, death

Flu-like symptoms: 
headache, cough, fever

DARPA estimate: a two-day gain in detection time and public 
health response could reduce fatalities by a factor of six.
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Uses Google, Facebook, Twitter
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Early detection is hard

Day 0 Day 10

incubation

Day 4

stage 1 stage 2

Start of 
symptoms

Definitive 
diagnosis

Visits doctor/hospital/ED

Buys OTC drugs

Skips work/school

Lag time
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Syndromic surveillance

Day 0 Day 10

incubation

Day 4

stage 1 stage 2

Start of 
symptoms

Definitive 
diagnosis

Buys OTC drugs? Cough 
medication 

sales in 
affected area

Days after 
attack
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Syndromic surveillance

Day 0 Day 10

incubation

Day 4

stage 1 stage 2

Start of 
symptoms

Definitive 
diagnosis

Buys OTC drugs? Cough 
medication 

sales in 
affected area

Days after 
attack

We can achieve very early detection of outbreaks 
by gathering syndromic data, and identifying 

emerging spatial clusters of symptoms.
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Outbreak detection example
Spike in sales of pediatric electrolytes near Columbus, Ohio
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Multivariate event detection

Spatial time series data from 
spatial locations si (e.g. zip codes)

Time series of counts 
ci,m

t for each zip code si
for each data stream dm.

d1 = respiratory ED

d2 = constitutional ED

d3 = OTC cough/cold

d4 = OTC anti-fever

Outbreak detection

(etc.)

Main goals: 

Detect any emerging events.

Pinpoint the affected subset of 
locations and time duration.

Characterize the event, e.g., by 
identifying the affected streams.

Compare hypotheses:

H1(D, S, W)

D = subset of streams                           
S = subset of locations                         

W = time duration

vs. H0: no events occurring
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Expectation-based scan statistics
(Kulldorff, 1997; Neill and Moore, 2005)

We search for spatial regions 
(subsets of locations) where the 

recently observed counts for 
some subset of streams are 

significantly higher than expected.

Expected 
counts

Historical 
counts

Current counts 
(3 day duration)

We perform time series analysis 
to compute expected counts 

(“baselines”) for each location and 
stream for each recent day.

We then compare the actual and 
expected counts for each subset 
(D, S, W) under consideration.
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We find the subsets with highest 
values of a likelihood ratio statistic, 
and compute the p-value of each 
subset by randomization testing.

Maximum subset 
score = 9.8

2nd highest 
score = 8.4

Significant! (p = .013)

Not significant 
(p = .098)

…
F1* = 2.4 F2* = 9.1 F999* = 7.0To compute p-value

Compare subset score 
to maximum subset 
scores of simulated 
datasets under H0.

Expectation-based scan statistics
(Kulldorff, 1997; Neill and Moore, 2005)
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Likelihood ratio statistics

Expectation-based Poisson Expectation-based Gaussian

H0: ci,m
t ~ Gaussian(bi,m

t, σi,m
t)H0: ci,m

t ~ Poisson(bi,m
t)

H1(S): ci,m
t ~ Poisson(qbi,m

t) H1(S): ci,m
t ~ Gaussian(qbi,m

t, σi,m
t)

Let C = ∑S ci,m
t and B = ∑S bi,m

t. Let C’ = ∑S ci,m
t bi,m

t  / (σi,m
t)2

and B’ = ∑S (bi,m
t)2 / (σi,m

t)2. 

Maximum likelihood: q = C / B. Maximum likelihood: q = C’ / B’.

F(S) = C log (C/B) + B – C F(S) = (C’)2 / 2B’ + B’/2 – C’

Many possibilities: exponential family, nonparametric, Bayesian…

For our expectation-based scan statistics, the null hypothesis 
H0 assumes “business as usual”: each count ci,m

t is drawn 
from some parametric distribution with mean bi,m

t.  H1(S) 
assumes a multiplicative increase for the affected subset S.
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Which regions to search?
Typical approach: “spatial scan” (Kulldorff, 1997)

Each search region S is a sub-region of space.
• Choose some region shape (e.g. circles, rectangles) and 

consider all regions of that shape and varying size.
• Low power for true events that do not correspond well to 

the chosen set of search regions (e.g. irregular shapes).

Our approach: “subset scan” (Neill, 2012)
Each search region S is a subset of locations.

• Find the highest scoring subset, subject to some 
constraints (e.g. spatial proximity, connectivity).

• For multivariate, also optimize over subsets of streams.
• Exponentially many possible subsets, O(2N x 2M): 

computationally infeasible for naïve search.



Fast subset scan
• In certain cases, we can optimize F(S) over the 

exponentially many subsets of the data, while 
evaluating only O(N) rather than O(2N) subsets.

• Many commonly used scan statistics have the 
property of linear-time subset scanning:
• Just sort the data records (or spatial locations, etc.) from 

highest to lowest priority according to some function…
• … then search over groups consisting of the top-k 

highest priority records, for k = 1..N.

The highest scoring subset is 
guaranteed to be one of these!

Sample result: we can find the most anomalous subset 
of Allegheny County zip codes in 0.03 sec vs. 1024 years.

20

(Neill, 2012)
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Linear-time subset scanning
• Example: Expectation-Based Poisson statistic

• Sort data locations si by the ratio of observed to 
expected count, ci / bi. 

• Given the ordering s(1) … s(N), we can prove that the 
top-scoring subset F(S) consists of the locations s(1) … 
s(k) for some k, 1 ≤ k ≤ N.

• Key step: if there exists some location sout ∉ S with 
higher priority than some location sin ∈ S, then we can 
show that F(S) ≤ max(F(S U {sout}), F(S \ {sin})). 

• Theorem: LTSS holds for expectation-based scan 
statistics in any exponential family.

)(~:0 ii DistxH µ

)(~:1 ii qDistxH µ)|(
))(|(logmax)(

0

1
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SHDataPSF

q>
=

(Speakman et al., 2015)
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• To incorporate spatial proximity constraints, we 
maximize the likelihood ratio over all subsets of the local 
neighborhoods consisting of a center location si and its 
(k-1) nearest neighbors, for a fixed neighborhood size k. 

• Naïve search requires O(N · 2k) time and is 
computationally infeasible for k > 25.

• For each center, we can search over all subsets of its local 
neighborhood in O(k) time using LTSS, thus requiring a 
total time complexity of O(Nk) + O(N log N).

• This approach dramatically improves the timeliness and 
accuracy of outbreak detection for irregularly-shaped 
disease clusters. (Neill, JRSS-B, 2012)

LTSS is a new and powerful tool for exact combinatorial 
optimization. But it only solves the “best unconstrained subset” 

problem, and cannot be used directly for constrained optimization.
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Multivariate event detection

Spatial time series data from 
spatial locations si (e.g. zip codes)

Time series of counts 
ci,m

t for each zip code si
for each data stream dm.

d1 = respiratory ED

d2 = constitutional ED

d3 = OTC cough/cold

d4 = OTC anti-fever

Outbreak detection

(etc.)

Main goals: 

Detect any emerging events.

Pinpoint the affected subset of 
locations and time duration.

Characterize the event, e.g., by 
identifying the affected streams.

Compare hypotheses:

H1(D, S, W)

D = subset of streams                           
S = subset of locations                         

W = time duration

vs. H0: no events occurring



Multidimensional event detection

Spatial time series data from 
spatial locations si (e.g. zip codes)

Time series of counts 
ci,m

t for each zip code si
for each data stream dm.

d1 = respiratory ED

d2 = constitutional ED

d3 = OTC cough/cold

d4 = OTC anti-fever

(etc.)

Additional goal: identify any differentially affected 
subpopulations P of the monitored population.

Gender (male, female, both)
Age groups (children, adults, elderly)

Ethnic or socio-economic groups
Risk behaviors: e.g. intravenous drug 

use, multiple sexual partners

More generally, assume that we have a set 
of additional discrete-valued attributes 

A1..AJ observed for each individual case.

We identify not only the affected streams, 
locations, and time window, but also a 

subset of values for each attribute.

Outbreak detection



• Our MD-Scan approach (Neill and Kumar, 2013) 
extends LTSS to the multidimensional case:  
• For each time window and spatial neighborhood 

(center + k-nearest neighbors), we do the following:

1. Start with randomly chosen subsets of locations S, 
streams D, and values Vj for each attribute Aj (j=1..J).

2. Choose an attribute (randomly or sequentially) and use 
LTSS to find the highest scoring subset of values, 

locations, or streams, conditioned on all other attributes.

3. Iterate step 2 until convergence to a local maximum of 
the score function F(D,S,W, {Vj}), and use multiple                     

restarts to approach the global maximum.

Multidimensional LTSS



• We first evaluated the detection performance of 
MD-Scan for detecting simulated disease 
outbreaks injected into real-world Emergency 
Department data from Allegheny County, PA.

• For outbreaks with differential effects by age and 
gender, MD-Scan demonstrated more timely
and more accurate detection, and accurately 
characterized the affected subpopulations.

Evaluation of MD-Scan

Nice proof of 
concept…

But what can we learn 
about real patterns of 
interest to public health?



• We analyzed county medical examiner data for 
fatal accidental drug overdoses, 2008-2015.

• ~2000 cases: for each overdose victim, we have 
date, location (zip), age, gender, race, and the 
set of drugs present in their system.

• Reduced to 30 dimensions (age decile, gender, 
race, presence/absence of 27 common drugs) 
plus space and time.

• Clusters discovered by MD-Scan were shared 
with Allegheny County’s Department of Human 
Services; planned collaboration to build a 
prospective overdose surveillance tool.

Allegheny County Overdose Data



MD-Scan Overdose Results (1)
Fentanyl is a dangerous drug which has 

been a huge problem in western PA.  
It is often mixed with white powder 
heroin, or sold disguised as heroin.

40-100x more 
potent than 
heroin or 
morphine!

January 16-25, 2014: 
14 deaths county-wide 

from fentanyl-laced heroin. 

March 27 to April 21, 2015: 
26 deaths county-wide from 

fentanyl, heroin only present in 11.

Started in the SE suburbs of Pittsburgh, 
including a cluster of 5 cases around 

McKeesport between March 27 and April 8.

Cluster score became significant March 29th

(4 nearby cases, white males ages 20-49) 
and continued to increase through April 20th.

Fentanyl, heroin, and combined deaths 
remained high through end of June (>100).

January 10 to February 7, 2015: 
Cluster of 11 fentanyl-related 

deaths, mainly black males over 
58 years of age, centered in 

Pittsburgh’s downtown Hill District.
Very unusual demographic: 

common dealer / shooting gallery?



MD-Scan Overdose Results (2)

From 2013-2015: no M&X overdose 
clusters; 33% and 47% drops in yearly 

methadone and M&X deaths respectively. 

Another set of discovered overdose clusters each 
involved a combination of Methadone and Xanax.

Methadone: an opioid used 
for chronic pain relief and to 
treat heroin addiction, but 

also addictive and risk of OD.

Xanax (alprazolam):
a benzodiazepine 

prescribed for panic 
and anxiety disorders.

The combination produces a strong high but 
can be deadly (~30% of methadone fatal ODs).

From 2008-2012: multiple M&X OD clusters, 
3-7 cases each, localized in space and time.

Why did these deaths cluster, when methadone 
and methadone + other benzo deaths did not?

What factors could explain the dramatic 
reduction in M&X overdose clusters?



MD-Scan Overdose Results (2)
Another set of discovered overdose clusters each 
involved a combination of Methadone and Xanax.

Methadone: an opioid used 
for chronic pain relief and to 
treat heroin addiction, but 

also addictive and risk of OD.

Xanax (alprazolam):
a benzodiazepine 

prescribed for panic 
and anxiety disorders.

Why did these deaths cluster, when methadone 
and methadone + other benzo deaths did not?

What factors could explain the dramatic 
reduction in M&X overdose clusters?

Increased state oversight of methadone 
clinics and prescribing physicians after 
passage of the Methadone Death and 

Incident Review Act (Oct 2012).

Approval of generic suboxone 
(buprenorphine + naloxone) in early 2013 

lowered cost of suboxone treatment as 
an alternative to methadone clinics.



Today’s talk:
• Public health surveillance

• Early outbreak detection (fast subset scan)
• Accidental drug overdose surveillance 

(multidimensional scan)
• “Novel” outbreak detection (semantic scan)

• CrimeScan and CityScan
• Crime prediction and prevention
• Improving city services by predicting emerging 

patterns of citizen needs.



Asyndromic surveillance
1 year of free-text ED 
chief complaint data 
from 3 hospitals in 

North Carolina.

Date/time Hosp. Age Complaint
Jan 1 08:00 A 19-24 runny nose
Jan 1 08:15 B 10-14 fever, chills
Jan 1 08:16 A 0-1 broken arm
Jan 2 08:20 C 65+ vomited 3x
Jan 2 08:22 A 45-64 high temp

Key challenge: A syndrome cannot be created to identify 
every possible cluster of potential public health significance.  

A method is needed to identify relevant clusters of                           
disease cases without pre-classification into syndromes.

Use case proposed by NC DOH and NYC DOHMH, solution 
requirements developed through a public health consultancy  

at the International Society for Disease Surveillance.



From structured to unstructured…
nose caught in door nausea 

vomiting

rabies shot

food 
poisoning

tired weak

n v d

diarrhea

a fib

fever

Each ED case does not just contain 
structured information, but also free 
text: the patient’s chief complaint.  

Q: How can we use this unstructured
data to enhance detection?

Possible approach: map ED cases to 
broad syndrome categories 

(“prodromes”) and do a 
multidimensional scan.



Where do existing methods fail?
The typical, prodrome-based 
scan statistic approach can 
effectively detect emerging 
outbreaks with commonly 
seen, general patterns of 

symptoms (e.g. ILI).

Mapping specific chief complaints 
to a broader symptom category 
can dilute the outbreak signal, 

delaying or preventing detection.

What happens when something 
new and scary comes along?
- More specific symptoms 

(“coughing up blood”)
- Previously unseen 

symptoms (“nose falls off”)

If we were monitoring these 
particular symptoms, it would only 
take a few such cases to realize 

that an outbreak is occurring!



Where do existing methods fail?
The typical, prodrome-based 
scan statistic approach can 
effectively detect emerging 
outbreaks with commonly 
seen, general patterns of 

symptoms (e.g. ILI).

Mapping specific chief complaints 
to a broader symptom category 
can dilute the outbreak signal, 

delaying or preventing detection.

What happens when something 
new and scary comes along?
- More specific symptoms 

(“coughing up blood”)
- Previously unseen 

symptoms (“nose falls off”)

If we were monitoring these 
particular symptoms, it would only 
take a few such cases to realize 

that an outbreak is occurring!

Our solution is to combine text-
based (topic modeling) and event 
detection (multidimensional scan) 
approaches, to detect emerging 

patterns of keywords.



Time series of hourly counts for 
each combination of hospital and 

age group, for each topic φj.

Classify cases to topics φ1: vomiting, nausea, diarrhea, …
φ2: dizzy, lightheaded, weak, … 

φ3: cough, throat, sore, … 

β

α

Φ1 … ΦKTopics

Topic 
prior

Case 
prior

θ1 … θN
Distribution 
over topics 
per case

wij Observed 
words

Bayesian inference 
using LDA model

The semantic scan statistic
Date/time Hosp. Age Complaint

Jan 1 08:00 A 19-24 runny nose
Jan 1 08:15 B 10-14 fever, chills
Jan 1 08:16 A 0-1 broken arm
Jan 2 08:20 C 65+ vomited 3x
Jan 2 08:22 A 45-64 high temp

Now we can do a 
multidimensional scan, using 
the learned topics instead of 

pre-specified prodromes!



Multidimensional scanning
For each hour of data (~8K):
For each combination S of:

• Hospital
• Time duration (1-3 hours)
• Age range
• Topic

Count: C(S) = # of cases in that time interval matching on 
hospital, age range, topic.
Baseline: B(S) = expected count (28-day moving average).
Score: F(S) = C log (C/B) + B – C, if C > B, and 0 otherwise
(using the expectation-based Poisson likelihood ratio statistic)

We return cases corresponding to each top-scoring subset S.

(for learned topics)



Semantic scan detected simulated novel 
outbreaks more than twice as quickly as the 

standard prodrome-based method: 5.3 days vs. 
10.9 days to detect at 1 false positive per month.

green
nose

possible
color

greenish
nasal

…

Top words from 
detected topic

Semantic scan results (1)

Simulated novel 
outbreak: “green nose”



Semantic scan results (2)
Using a “leave one out” approach in which we hold out one International 
Classification of Diseases (ICD) code and inject cases as if from a novel 

outbreak, we observe huge improvements in detection power and accuracy 
vs. competing methods (Online LDA, Topic Over Time, Labeled LDA).

These gains resulted from development of a new contrastive topic 
modeling approach with higher power to detect newly emerging topics.

1) Learning a set of “background” 
topics from historical data.

2) Learning a set of “foreground” 
topics from recent data.

3) Combined LDA inference, 
holding the background topics 
constant, leads to discovery of 
foreground topics that are 
maximally different.



Semantic scan results (3)
We used a combined multidimensional and semantic scan on datasets 
provided by the North Carolina DOH, with simulated novel outbreaks of 

interest injected by the NC DETECT group, and New York City’s DOHMH.

Specific subpopulations: 
Seven young adults 
suffering from smoke 

inhalation

We identified clusters of cases referring to specific locations, unusual sets 
of symptoms, or affected subpopulations.   Here are some highlights:

Ten cases that mentioned 
a local middle school 

within a four-hour span 

Clusters with related chief complaints: 
chemical spill, motor vehicle accidents, 

contagious diseases (head lice, scabies) 

Location and symptoms: 
“sudden onset of rashes 

at the beach” 



Semantic scan results (4)
We compared the top 500 clusters found by the semantic scan and a 

keyword-based scan on the NC DOH data in a blinded evaluation, with 
public health officials labeling each cluster as “relevant” or “not relevant”.

Semantic scan: for 10 true clusters, had to report 12; 
for 30 true clusters, had to report 54.

Keyword scan: for 10 true clusters, had to report 21;
for 30 true clusters, had to report 83.



Today’s talk:
• Public health surveillance

• Early outbreak detection (fast subset scan)
• Accidental drug overdose surveillance 

(multidimensional scan)
• “Novel” outbreak detection (semantic scan)

• CrimeScan and CityScan
• Crime prediction and prevention
• Improving city services by predicting emerging 

patterns of citizen needs.



Case study: Crime prediction in Chicago

From the Chicago Sun-Times, February 22, 2011:
“It was a bit like “Minority Report,” the 2002 movie that featured
genetically altered humans with special powers to predict crime. The
CPD’s new crime-forecasting unit was analyzing 911 calls and produced
an intelligence report predicting a shooting would happen soon on a
particular block on the South Side. Three minutes later, it did…”

Since 2009, we have been working with the 
Chicago Police Department (CPD) to predict 

and prevent emerging clusters of violent crime.

Our new crime prediction methods have 
been incorporated into our CrimeScan

software, run twice a day by CPD and used 
operationally for deployment of patrols.



Case study: Crime prediction in Chicago

“CrimeScan was set up to run daily, completely autonomously.  Predictions 
were sent to police analysts, and messages were compiled into detailed 
intelligence reports disseminated through the chain of command.  Based 
upon deployment suggestions indicated in the reports, important arrests 

were affected, weapons were seized, and crimes were prevented.”

Since 2009, we have been working with the 
Chicago Police Department (CPD) to predict 

and prevent emerging clusters of violent crime.

Our new crime prediction methods have 
been incorporated into our CrimeScan

software, run twice a day by CPD and used 
operationally for deployment of patrols.



CrimeScan
The key insight of our method is to use detection for prediction:

We can detect emerging clusters of various leading indicators 
(minor crimes, 911 calls, etc.) and use these to predict that a 

cluster of violent crime is likely to occur nearby.

Some advantages of the CrimeScan approach:
• Advance prediction (up to 1 week) with high accuracy.
• High spatial and temporal resolution (block x day). 
• Predicting emerging hot spots of violence, as opposed 
to just identifying bad neighborhoods.

How to detect leading indicator clusters?
How to use these for prediction?
Which leading indicators to use? 



CrimeScan

How to detect leading indicator clusters?
How to use these for prediction?
Which leading indicators to use? 

The fast subset scanning approaches described above 
enable early and accurate detection of emerging clusters.

The key insight of our method is to use detection for prediction:

We can detect emerging clusters of various leading indicators 
(minor crimes, 911 calls, etc.) and use these to predict that a 

cluster of violent crime is likely to occur nearby.



CrimeScan

How to detect leading indicator clusters?
How to use these for prediction?
Which leading indicators to use? 

The fast subset scanning approaches described above 
enable early and accurate detection of emerging clusters.

Proximity to detected clusters  features in a predictive model.
We use scalable Gaussian process regression to model                           

spatial correlation and improve prediction accuracy.

The key insight of our method is to use detection for prediction:

We can detect emerging clusters of various leading indicators 
(minor crimes, 911 calls, etc.) and use these to predict that a 

cluster of violent crime is likely to occur nearby.



CrimeScan

How to detect leading indicator clusters?
How to use these for prediction?
Which leading indicators to use?

The key insight of our method is to use detection for prediction:

We can detect emerging clusters of various leading indicators 
(minor crimes, 911 calls, etc.) and use these to predict that a 

cluster of violent crime is likely to occur nearby.

“Kitchen sink” penalized regression does not work so well.
Correlation-based LI selection is confounded by                           
purely spatial and purely temporal correlations.

Our solution is a new bivariate “kernel space-time 
independence” test that identifies space-time interactions 

between LI types while controlling for space and time.



From CrimeScan to CityScan…
We have been working with city leaders in Chicago, 
Pittsburgh, and Baltimore to predict emerging spatial 

patterns of 311 calls (non-emergency service requests).
By providing support for precisely targeted interventions, 

we will enable cities to respond proactively and 
effectively to emerging challenges and citizen needs. 

Indicators of 
neighborhood decay 
(graffiti, abandoned 

buildings, etc.)

Health and sanitation 
issues, particularly 
focusing on rodent 

prevention.



We are currently performing a controlled 
experiment with Chicago’s Dept. of Streets 
and Sanitation, with the goal of predicting 

and preventing rodent infestations.
- Measured by “rodent complaint” 311 calls.
- Other 311 call types as leading indicators.

“Treatment” garbage districts:
We predict rodent complaints using 
CityScan and use predictions to direct 
the city’s preventative rat baiting crews. 

“Control” garbage districts:
Preventative baiting performed as usual.

Featured in Chicago Business Journal and Baltimore Sun-Times: 
“Carnegie Mellon smells a rat, and Chicago is grateful”

CityScan: Preventing rat infestations



Crime Prevention in Pittsburgh

Integrating geographic crime 
prediction with subgroup and 
individual-level predictions.

Integrating precisely targeted 
policing with non-punitive 

interventions by city and county 
(e.g., targeted clean-up efforts).

Incorporating many data 
sources: 911 and 311 calls, 

incident reports, criminal 
justice, human services…

Analyzing social media to 
identify causal mechanisms 

leading to outbreaks of violence.

Our goal is to make the city’s crime prevention efforts both more 
effective and less intrusive (“data-driven community policing”).



Conclusions
Urban systems present unique data analysis challenges        
that cannot be solved by off-the-shelf methods, requiring 

new innovations in machine learning methodology.

Our work in event and pattern detection, applied to domains 
like disease outbreak detection and crime prevention, 

can effectively address many of these challenges.

We continue to work closely with public health departments, 
police, and city leaders to develop, deploy, and evaluate 

approaches that address critical urban problems.

Safer
Cities

Cleaner
Cities

Healthier
Cities
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Thanks for listening!

More details on our web site: 
http://epdlab.heinz.cmu.edu

Or e-mail me at:
neill@cs.cmu.edu
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