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Spatial event detection

Spatial time series data from 

spatial locations si (e.g. zip codes)

Time series of counts 

ci,m
t for each location si

for each data stream Dm.

Goals of detection task: detect any emerging disease outbreaks, 

pinpoint the affected spatial area, and characterize the type of event.

D1 = respiratory ED

D2 = constitutional ED

D3 = OTC cough/cold

D4 = OTC anti-fever

Outbreak detection

(etc.)

Informally, we want to know:

Is there anything happening?

If so, what and where?

Formally, we distinguish between:

Null hypothesis H0 (no events)

Set of alternative hypotheses H1(S, Ek)

= event of type Ek in spatial region S.

(Spatial region = set of “nearby” 

locations, often constrain shape/size)
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The spatial scan statistic

Rather than monitoring 

individual locations, we 

examine groups of locations.

Imagine moving a spatial 

window around the monitored 

area, allowing the size and 

shape of the window to vary.

(Kulldorff, 1997)
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Is there any position of the 

window such that the points 

inside form a significant cluster? 

I have a population 

of 6000, of whom 90 

(1.5%) are sick.

Everywhere else has a 

population of 2.2 

million, of whom 

20,000 (0.9%) are sick.

The spatial scan statistic

Rather than monitoring 

individual locations, we 

examine groups of locations.

Imagine moving a spatial 

window around the monitored 

area, allowing the size and 

shape of the window to vary.

We compute a score for each spatial region, and then 

test whether the highest scoring regions are significant.

(Kulldorff, 1997)
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Kulldorff’s model

ci ~ Poisson(qbi)

H0: q = qall everywhere

H1(S): q = qin inside S,   

q = qout outside,

qin > qout.

Finding the most 

significant regions

• Define models:
• of the null hypothesis 

H0: no events. 

• of the alternative 

hypotheses H1(S): 

event in region S.

ci = count for location si (e.g. number of disease cases)

bi = baseline for location si (e.g. population at-risk, or 

expected count computed from historical data)

q = risk (expected ratio of count to baseline)
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Finding the most 

significant regions

Kulldorff’s model

ci ~ Poisson(qbi)

H0: q = qall everywhere

H1(S): q = qin inside S,   

q = qout outside,

qin > qout.

• Define models:
• of the null hypothesis 

H0: no events. 

• of the alternative 

hypotheses H1(S): 

event in region S.
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Finding the most 
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Kulldorff’s model

ci ~ Poisson(qbi)

H0: q = qall everywhere

H1(S): q = qin inside S,   

q = qout outside,

qin > qout.

• Define models:
• of the null hypothesis 

H0: no events. 

• of the alternative 

hypotheses H1(S): 

event in region S.

• Derive a score function:

• Likelihood ratio:
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Kulldorff’s model

ci ~ Poisson(qbi)

H0: q = qall everywhere

H1(S): q = qin inside S,   

q = qout outside,

qin > qout.

• Define models:
• of the null hypothesis 

H0: no events. 

• of the alternative 

hypotheses H1(S): 

event in region S.

• Derive a score function:

• Likelihood ratio:

Score = 1.3
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• Define models:
• of the null hypothesis 

H0: no events. 

• of the alternative 

hypotheses H1(S): 

event in region S.

• Derive a score function:

• Likelihood ratio:

• To find the most 
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Which regions are 

significant?

• Randomly generate counts for 
R = 999 replica datasets under 
H0 (i.e. assuming no events).

• Find maximum region score 
F*= maxS F(S) of each replica.

• p-value of region S = (RB+1) / 
(R+1), where RB =  # of replicas 
with F* ≥ F(S).

• All regions with p-values < 
are significant at level .  

Maximum region 

score = 9.8

2nd highest 

score = 8.4

…

G1 G2 G999

F* = 2.4 F* = 9.1 F* = 7.0

This region is significant at = .05; 

no other regions are significant.

RB = 12, p = .013

RB = 97, p = .098



So what’s missing?
• Typical spatial scan approaches may not be sufficiently 

flexible for our Data Fusion project.

• Need to integrate information from multiple, disparate 

streams of data.

• Searching over circles or rectangles is not sufficient: 

• In spatial settings, need to detect irregular shapes.

• May have connectivity constraints instead.  For monitoring 

nosocomial infections, consider flow of patients between hospitals 

or between rooms within a hospital.

• May have non-spatial data.  For example, we may wish to detect 

anomalous groups of “similar” patient records.

• Need to scale up to large numbers of records and streams.

• May want to distinguish between multiple, “known” event 

types as well as detecting previously unknown patterns.
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Solution: subset scanning
• Rather than searching over spatial regions, search over all subsets of 

the data satisfying constraints on proximity, similarity, or connectivity.

• For example, we can consider all subsets of the “local neighborhood” of 

each record, and all subsets of the monitored streams.  We find a group 

of related records with anomalous values for some subset of streams.

• Big problem: N records, M streams  2N x 2M subsets to search!

• Our group has recently developed two fast and scalable approaches:
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Fast subset scan: find the best subset of 

locations and data streams, subject to spatial 

proximity or graph connectivity constraints.

Fast subset sums: compute and visualize 

the posterior probability distribution over 

multiple locations and multiple event types.
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Fast subset scan
• In certain cases, we can optimize F(S) over the 

exponentially many subsets of locations, while 
evaluating only O(N) rather than O(2N) subsets.

• Many commonly used scan statistics have the 
property of linear-time subset scanning (LTSS):
• Just sort the locations from highest to lowest priority 

according to some function…

• … then search over groups consisting of the top-k 
highest priority locations, for k = 1..N.

The highest scoring subset is 

guaranteed to be one of these!

Sample result: we can find the most anomalous subset 

of Allegheny County zip codes in 0.03 sec vs. 1024 years.
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Fast multivariate scans
Q: How can we efficiently search over all subsets of data 

streams and over all proximity-constrained subsets of locations?  

A: We perform a separate, efficient search over the local 

neighborhood (e.g. k-nearest neighbors) of each data record.

Option 1 (fast/naïve, or FN): for each of the 2M

subsets of streams, aggregate the counts and apply 

LTSS to efficiently search over subsets of locations.

For a fixed number of streams, 

FN fast localized scan scales 

linearly (not exponentially)                         

with neighborhood size.

8 streams: <1 sec/day of data.

647 days of data, 

8 data streams
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Fast multivariate scans
What if we have a large set of search regions and many data streams?  

Option 2 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

Data streams d1..dM

S
p

a
ti
a

l 
lo

c
a

ti
o

n
s
  
s

1
..
s

N



2011 Carnegie Mellon University 21

Fast multivariate scans
What if we have a large set of search regions and many data streams?  

Option 2 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams.

(Score = 7.5)
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Fast multivariate scans
What if we have a large set of search regions and many data streams?  

Option 2 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams.

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations.

(Score = 8.1)
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Fast multivariate scans
What if we have a large set of search regions and many data streams?  

Option 2 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams.

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations.

4. Iterate steps 2-3                             

until convergence. (Score = 9.0)
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Fast multivariate scans
What if we have a large set of search regions and many data streams?  

Option 2 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams.

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations.

4. Iterate steps 2-3                             

until convergence. (Score = 9.3)
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Fast multivariate scans
What if we have a large set of search regions and many data streams?  

Option 2 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams.

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations.

4. Iterate steps 2-3                             

until convergence.

5. Repeat steps 1-4 for                             

50 random restarts.

(Score = 11.0)
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Fast multivariate scans
What if we have a large set of search regions and many data streams?  

Option 2 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams.

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations.

4. Iterate steps 2-3                             

until convergence.

5. Repeat steps 1-4 for                             

50 random restarts.

GOOD NEWS:            

Run time is linear in 

number of locations & 

number of streams.

BAD NEWS:                                       

Not guaranteed to find 

global maximum of the 

score function.

MORE GOOD NEWS:            

200x faster than FN for 

16 streams, and >98% 

approximation ratio.
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Fast multivariate scans
What if we have a large set of search regions and many data streams?  

Option 2 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams.

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations.

4. Iterate steps 2-3                             

until convergence.

5. Repeat steps 1-4 for                             

50 random restarts.

GOOD NEWS:            

Run time is linear in 

number of locations & 

number of streams.

BAD NEWS:                                       

Not guaranteed to find 

global maximum of the 

score function.

MORE GOOD NEWS:            

200x faster than FN for 

16 streams, and >98% 

approximation ratio.

What if, instead of finding the 

best subset, we want to obtain 

the posterior probability that 

each location has been 

affected, or to distinguish 

between multiple event types?

In this case, we should use 

“Fast Subset Sums” instead…
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We must provide the prior probability Pr(H1(S, Ek)) of each event type Ek

in each region S, as well as the prior probability of no event, Pr(H0). 

MBSS uses Bayes’ Theorem to combine the data likelihood given each hypothesis 

with the prior probability of that hypothesis: Pr(H | D) = Pr(D | H) Pr(H) / Pr(D).

Given a set of event types Ek, a set of space-time regions S, and the multivariate 

dataset D, MBSS outputs the posterior probability Pr(H1(S, Ek) | D) of each type    

of event in each region, as well as the probability of no event, Pr(H0 | D).

Priors

An extension of MBSS…

Dataset

Multivariate 

Bayesian 

Scan 

StatisticModels

Outputs
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The Bayesian hierarchical model
Type of event

Effects on each 

data stream

Space-time 

region affected

Observed counts

Expected counts

Relative risks

Effects of 

event
Parameter priors

qi,m
t ~ Gamma(xm m, m) inside S, 

qi,m
t ~ Gamma( m, m) elsewhere

ci,m
t ~ Poisson(qi,m

tbi,m
t)

xm = 1 + θ (xkm,avg – 1)
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Interpretation and visualization

Posterior probability map

Total posterior probability of a 

respiratory outbreak in each 

Allegheny County zip code. 

Darker shading = higher probability.

MBSS gives the total posterior probability of 

each event type Ek, and the distribution of 

this probability over space-time regions S.

Visualization: Pr(H1(si, Ek)) = ∑ Pr(H1(S, Ek)) 

for all regions S containing location si.
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MBSS: advantages and limitations
MBSS can model and 

differentiate between multiple 

potential causes of an event.

MBSS can detect faster and 

more accurately by integrating 

multiple data streams.

How can we extend 

MBSS to efficiently

detect irregular clusters? 

MBSS assumes a uniform prior for circular regions and zero prior for non-

circular regions, resulting in low power for elongated or irregular clusters.

There are too many subsets 

of the data (2N) to compute 

likelihoods for all of them!
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The Fast Subset Sums method

This prior has hierarchical structure: 

We define a non-uniform prior Pr(H1(S, Ek)) over all 2N subsets of the data. 
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The Fast Subset Sums method

This prior has hierarchical structure: 

1. Choose center location sc from 

{s1…sN}, given multinomial Pr(si).

2. Choose neighborhood size n from 

{1…nmax}, given multinomial Pr(n).  

We define a non-uniform prior Pr(H1(S, Ek)) over all 2N subsets of the data. 
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The Fast Subset Sums method

This prior has hierarchical structure: 

1. Choose center location sc from 

{s1…sN}, given multinomial Pr(si).

2. Choose neighborhood size n from 

{1…nmax}, given multinomial Pr(n).  

3. For each si ∈ Scn, include si in S with 

probability p, for a fixed 0 < p ≤ 1.

This prior distribution has non-zero prior probabilities for any 

given subset  S, but more compact clusters have larger priors.

We define a non-uniform prior Pr(H1(S, Ek)) over all 2N subsets of the data. 

Parameter p controls the sparsity of detected clusters.                                   

Large p = compact clusters.  Small p = dispersed clusters.
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The Fast Subset Sums method

More precisely, the average likelihood ratio of the 2n subsets for a 

given center sc and neighborhood size n can be found by multiplying 

the quantities (p x LR(si | Ek, θ) + (1-p)) for all locations si in Scn.

Naïve computation of posterior probabilities using this prior requires 

summing over an exponential number of regions, which is infeasible.

However, the total posterior probability of an outbreak, Pr(H1(Ek) | D), 

and the posterior probability map, Pr(H1(si, Ek) | D), can be calculated 

efficiently without computing the probability of each region S.

The main computational trick of FSS is just a bit of algebra:                                                   

we can write the sum of 2n products as a product of n sums.

FSS can compute the posterior probability map for ~100 locations in 

nine seconds, only a little slower than the original MBSS approach 

(searching over circles), and substantially improves detection power.
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Conclusions

The resulting methods solve optimization problems in seconds that 

would have previously required hundreds of millions of years, resulting 

in timely, accurate event detection in massive, multivariate data.

Our recent methods extend spatial scan to search over all subsets of 

the data, enabling more timely, flexible, and accurate event detection. 

These methods enable us to integrate information from many data 

streams, scale to very large datasets, and incorporate relevant 

constraints on spatial proximity, graph connectivity, or similarity.

We address the computational challenge of searching over a huge 

number of subsets, efficiently finding either the best subset (“fast 

subset scan”) or the posterior probability map (“fast subset sums”).


