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Road map

I Forecasting and prediction of crime rates
I Bayesian modeling framework
I Theft in Chicago
I Experimental results

⇒
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Crime rates: temporal

source: crime.chicagotribune.com
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Crime rates: spatial

source: crime.chicagotribune.com/chicago/shootings
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Previous Work

I Univariate time series models [Gorr, Olligschlaeger,
Thompson 2003]

I “Heat maps” [Groff and La Vigne, 2002, many others],
“risk terrain modeling” [Caplan and Kennedy, 2011]
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Our goals

I Fully probabilistic framework

– Spatial and temporal dependencies
– Long-term and seasonal trends
– Model variance, not just mean

I Prediction

– Good in-sample performance (MSE)
– Not a black box
– Produce heat maps, interpretable by policy makers

I Forecasting: better out-of-sample performance (MSE)
compared to existing methods, with forecast intervals
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Modeling framework: Gaussian Processes

Bayesian framework for specifying priors over functions

f (t) ∼ GP(0, k(t, t ′))
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Gaussian Processes

I Covariance function specifies smoothness of function:
f (t) ∼ GP(0, k(t, t ′)), k(t, t ′) = exp(−|t − t ′|2)
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Gaussian Processes

I Covariance function specifies smoothness of function:
f (t) ∼ GP(0, k(t, t ′)), k(t, t ′) = exp(− 1

0.01
|t − t ′|2)
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Gaussian Processes for Count Data

I At space-time location (s, t):

ns,t ∼ Poisson(λ(s, t))

I Rate λ varies in space and time:

λ(s, t) = exp(f (s, t))

I Place a GP prior on the log-intensity:

f (s, t) ∼ GP(0,K )
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Recap and Preview: Gaussian Processes

I Fully Bayesian framework: uncertainty intervals for all
parameters, predictions, and forecasts

I Flexible and interpretable models for spatial and temporal
dependencies

I Generalizes spatial approaches (heat maps) and temporal
approaches (autoregressive models, periodic models)
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Application: Theft in Chicago
week (t) neighborhood (s) # of thefts
1 1 1
1 2 7
2 1 0
2 2 3
...
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Time Component

I ksmooth(t, t ′) = σ2
1 exp(− 1

`21
(t − t ′)2)
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Time Component

k(t, t ′) = ksmooth(t, t ′) + kperiodic(t, t ′)
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Spatial Component

Given locations {s1 . . . , sn}, specify Matérn covariance:

k(s, s ′) = σ2

(
1 +
‖s − s ′‖

√
3

`

)
exp

(
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Theft in Chicago
Hyperparameters:

`1, . . . , `3, σ1, . . . , σ5 ∼ Student-t(ν = 4)

Parameters:
kspace(s, s

′) = Matern`1,σ2
1
(s, s ′)

ktime(s, s
′) = `2 exp(−

1

σ22
‖s − s ′‖2)

kperiodic(s, s
′) = Periodic`3,σ2

3
(s, s ′)

kspace-periodic((s, t), (s
′, t ′)) = `4 exp(−

1

σ24
‖s−s ′‖2)·Periodic1,σ2

5
(t, t ′)

Latent Risk Surface:

f (s, t) ∼ GP(0, kspace + ktime + kperiodic + kspace-periodic)

Data:
ns,t ∼ Poisson(exp(f (s, t)))
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Experiments and Results

I Fit full spatiotemporal model to week-neighborhood
counts of theft from January 2011 to September 2013

I Forecast October - December 2013

I Perform posterior predictive checks for predictions,
variances

I Calculate mean squared error of predictions (in-sample)
and forecasts (out-of-sample)

I Compare to competing methods
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Results
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Predictions: January - June 2011
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Predictions: July - December 2011
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Predictions: January - June 2012
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Predictions: July - December 2012
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Predictions: January - June 2013
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Forecasts: October - December 2013
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Results: Time
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Results: Time Decomposition
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Results: Time Decomposition
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Results: Time Decomposition

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−1.5

−1.0

−0.5

0.0

0.5

January 2011 July 2011 January 2012 July 2012 January 2013 July 2013 January 2014

lo
g−

re
la

tiv
e 

ris
k

●

●

●

●

Periodic

Space

Time

               .

27



Results: Time Decomposition
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Results: Time Decomposition
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Forecasting (Out-of-Sample) MSE

Baseline :

I No change: 52.19

Competitors :

I Kernel intensity estimation (heat maps): 47.70.

I AR(1): 37.98.

I Holt-Winters: 46.99.

Our model: 25.81
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Recap and Conclusions

I Proposed a flexible GP/Poisson framework for
spatiotemporal modeling

– Spatial and temporal dependencies
– Long-term and seasonal trends

I Prediction

– Good in-sample performance (MSE), not a black box,
interpretable output

I Forecasting: better out-of-sample performance (MSE)
compared to existing methods

I And there’s more: see Flaxman et al [ICML, 2015] for a
more scalable, finer-grained model fit to 8 years of data
with predictions 2 years into the future.

I Future work: continuous changepoint models, more
extensive comparisons to existing methods, jointly fitting
different types of crimes, more applied work to
understand how well-calibrated forecasts are
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