Small Area Spatiotemporal Crime Rate Forecasting

William Herlands

Carnegie Mellon University

November 19, 2015

Road map

- Forecasting and prediction of crime rates
- Bayesian modeling framework
- Theft in Chicago
- Experimental results

Crime rates: temporal

Crime in Chicago by month, 2006 to present
Hover to see totals
Molent crmes 1,392 propbriv crimes 5,881 ouality of life crimes 3,740

source: crime.chicagotribune.com

Crime rates: spatial

WHERE SHOOTINGS OCCUR IN CHICAGO SINCE JAN. 1.2014

source: crime.chicagotribune.com/chicago/shootings

Previous Work

- Univariate time series models [Gorr, Olligschlaeger, Thompson 2003]

Previous Work

- Univariate time series models [Gorr, Olligschlaeger, Thompson 2003]
- "Heat maps" [Groff and La Vigne, 2002, many others], "risk terrain modeling" [Caplan and Kennedy, 2011]

Our goals

- Fully probabilistic framework

Our goals

- Fully probabilistic framework
- Spatial and temporal dependencies

Our goals

- Fully probabilistic framework
- Spatial and temporal dependencies
- Long-term and seasonal trends

Our goals

- Fully probabilistic framework
- Spatial and temporal dependencies
- Long-term and seasonal trends
- Model variance, not just mean

Our goals

- Fully probabilistic framework
- Spatial and temporal dependencies
- Long-term and seasonal trends
- Model variance, not just mean
- Prediction

Our goals

- Fully probabilistic framework
- Spatial and temporal dependencies
- Long-term and seasonal trends
- Model variance, not just mean
- Prediction
- Good in-sample performance (MSE)

Our goals

- Fully probabilistic framework
- Spatial and temporal dependencies
- Long-term and seasonal trends
- Model variance, not just mean
- Prediction
- Good in-sample performance (MSE)
- Not a black box

Our goals

- Fully probabilistic framework
- Spatial and temporal dependencies
- Long-term and seasonal trends
- Model variance, not just mean
- Prediction
- Good in-sample performance (MSE)
- Not a black box
- Produce heat maps, interpretable by policy makers

Our goals

- Fully probabilistic framework
- Spatial and temporal dependencies
- Long-term and seasonal trends
- Model variance, not just mean
- Prediction
- Good in-sample performance (MSE)
- Not a black box
- Produce heat maps, interpretable by policy makers
- Forecasting: better out-of-sample performance (MSE) compared to existing methods, with forecast intervals

Modeling framework: Gaussian Processes

Bayesian framework for specifying priors over functions

Modeling framework: Gaussian Processes

Bayesian framework for specifying priors over functions $f(t) \sim \mathcal{G P}\left(0, k\left(t, t^{\prime}\right)\right)$

Modeling framework: Gaussian Processes

Bayesian framework for specifying priors over functions $f(t) \sim \mathcal{G} \mathcal{P}\left(0, k\left(t, t^{\prime}\right)\right)$

Gaussian Processes

- Covariance function specifies smoothness of function:

$$
f(t) \sim \mathcal{G} \mathcal{P}\left(0, k\left(t, t^{\prime}\right)\right), k\left(t, t^{\prime}\right)=\exp \left(-\left|t-t^{\prime}\right|^{2}\right)
$$

Gaussian Processes

- Covariance function specifies smoothness of function:

$$
f(t) \sim \mathcal{G} \mathcal{P}\left(0, k\left(t, t^{\prime}\right)\right), k\left(t, t^{\prime}\right)=\exp \left(-\left|t-t^{\prime}\right|^{2}\right)
$$

Gaussian Processes

- Covariance function specifies smoothness of function:

$$
f(t) \sim \mathcal{G} \mathcal{P}\left(0, k\left(t, t^{\prime}\right)\right), k\left(t, t^{\prime}\right)=\exp \left(-\frac{1}{0.01}\left|t-t^{\prime}\right|^{2}\right)
$$

Gaussian Processes

- Covariance function specifies smoothness of function:

$$
f(t) \sim \mathcal{G} \mathcal{P}\left(0, k\left(t, t^{\prime}\right)\right), k\left(t, t^{\prime}\right)=\exp \left(-\frac{1}{10}\left|t-t^{\prime}\right|^{2}\right)
$$

Gaussian Processes for Count Data

- At space-time location (s, t) :

$$
n_{s, t} \sim \operatorname{Poisson}(\lambda(s, t))
$$

Gaussian Processes for Count Data

- At space-time location (s, t) :

$$
n_{s, t} \sim \operatorname{Poisson}(\lambda(s, t))
$$

- Rate λ varies in space and time:

$$
\lambda(s, t)=\exp (f(s, t))
$$

Gaussian Processes for Count Data

- At space-time location (s, t) :

$$
n_{s, t} \sim \operatorname{Poisson}(\lambda(s, t))
$$

- Rate λ varies in space and time:

$$
\lambda(s, t)=\exp (f(s, t))
$$

- Place a GP prior on the log-intensity:

$$
f(s, t) \sim \mathcal{G P}(0, K)
$$

Recap and Preview: Gaussian Processes

- Fully Bayesian framework: uncertainty intervals for all parameters, predictions, and forecasts

Recap and Preview: Gaussian Processes

- Fully Bayesian framework: uncertainty intervals for all parameters, predictions, and forecasts
- Flexible and interpretable models for spatial and temporal dependencies

Recap and Preview: Gaussian Processes

- Fully Bayesian framework: uncertainty intervals for all parameters, predictions, and forecasts
- Flexible and interpretable models for spatial and temporal dependencies
- Generalizes spatial approaches (heat maps) and temporal approaches (autoregressive models, periodic models)

Application: Theft in Chicago

week (t)	neighborhood (s)	\# of thefts
1	1	1
1	2	7
2	1	0
2	2	3
\vdots	\vdots	\vdots

Time Component

- $k_{\text {smooth }}\left(t, t^{\prime}\right)=\sigma_{1}^{2} \exp \left(-\frac{1}{l_{1}^{2}}\left(t-t^{\prime}\right)^{2}\right)$

Time Component

- $k_{\text {smooth }}\left(t, t^{\prime}\right)=\sigma_{1}^{2} \exp \left(-\frac{1}{l_{1}^{2}}\left(t-t^{\prime}\right)^{2}\right)$

- $k_{\text {periodic }}\left(t, t^{\prime}\right)=\sigma_{2}^{2} \exp \left(-\frac{1}{\ell_{2}^{2}} \sin ^{2}\left(\frac{\left(t-t^{\prime}\right) \pi}{52}\right)\right)$

Time Component

$$
k\left(t, t^{\prime}\right)=k_{\text {smooth }}\left(t, t^{\prime}\right)+k_{\text {periodic }}\left(t, t^{\prime}\right)
$$

Spatial Component

Given locations $\left\{s_{1} \ldots, s_{n}\right\}$, specify Matérn covariance:

$$
k\left(s, s^{\prime}\right)=\sigma^{2}\left(1+\frac{\left\|s-s^{\prime}\right\| \sqrt{3}}{\ell}\right) \exp \left(-\frac{\left\|s-s^{\prime}\right\| \sqrt{3}}{\ell}\right)
$$

Theft in Chicago

Hyperparameters:

$$
\ell_{1}, \ldots, \ell_{3}, \sigma_{1}, \ldots, \sigma_{5} \sim \operatorname{Student-t}(\nu=4)
$$

Parameters:

$$
\begin{gathered}
k_{\text {space }}\left(s, s^{\prime}\right)=\text { Matern }_{\ell_{1}, \sigma_{1}^{2}}\left(s, s^{\prime}\right) \\
k_{\text {time }}\left(s, s^{\prime}\right)=\ell_{2} \exp \left(-\frac{1}{\sigma_{2}^{2}}\left\|s-s^{\prime}\right\|^{2}\right) \\
k_{\text {periodic }}\left(s, s^{\prime}\right)=\text { Periodic }_{\ell_{3}, \sigma_{3}^{2}}\left(s, s^{\prime}\right)
\end{gathered}
$$

$k_{\text {space-periodic }}\left((s, t),\left(s^{\prime}, t^{\prime}\right)\right)=\ell_{4} \exp \left(-\frac{1}{\sigma_{4}^{2}}\left\|s-s^{\prime}\right\|^{2}\right) \cdot$ Periodic $_{1, \sigma_{5}^{2}}\left(t, t^{\prime}\right)$ Latent Risk Surface:

$$
f(s, t) \sim \mathcal{G} \mathcal{P}\left(0, k_{\text {space }}+k_{\text {time }}+k_{\text {periodic }}+k_{\text {space-periodic }}\right)
$$

Data:

$$
n_{s, t} \sim \operatorname{Poisson}(\exp (f(s, t)))
$$

Experiments and Results

- Fit full spatiotemporal model to week-neighborhood counts of theft from January 2011 to September 2013

Experiments and Results

- Fit full spatiotemporal model to week-neighborhood counts of theft from January 2011 to September 2013
- Forecast October - December 2013

Experiments and Results

- Fit full spatiotemporal model to week-neighborhood counts of theft from January 2011 to September 2013
- Forecast October - December 2013
- Perform posterior predictive checks for predictions, variances

Experiments and Results

- Fit full spatiotemporal model to week-neighborhood counts of theft from January 2011 to September 2013
- Forecast October - December 2013
- Perform posterior predictive checks for predictions, variances
- Calculate mean squared error of predictions (in-sample) and forecasts (out-of-sample)

Experiments and Results

- Fit full spatiotemporal model to week-neighborhood counts of theft from January 2011 to September 2013
- Forecast October - December 2013
- Perform posterior predictive checks for predictions, variances
- Calculate mean squared error of predictions (in-sample) and forecasts (out-of-sample)
- Compare to competing methods

Results

Predictions: January - June 2011

Observed

Predicted

Predictions: July - December 2011

Observed

Predicted

Predictions: January - June 2012

Observed

Predicted

Predictions: July - December 2012

Observed

Predicted

Predictions: January - June 2013

Observed

Predicted

Forecasts: October - December 2013

Observed

Predicted

Results: Time

Results: Time Decomposition

Forecasting (Out-of-Sample) MSE

Baseline :

Forecasting (Out-of-Sample) MSE

Baseline :

- No change: 52.19

Forecasting (Out-of-Sample) MSE

Baseline:

- No change: 52.19

Competitors :

Forecasting (Out-of-Sample) MSE

Baseline:

- No change: 52.19

Competitors :

- Kernel intensity estimation (heat maps): 47.70.

Forecasting (Out-of-Sample) MSE

Baseline:

- No change: 52.19

Competitors :

- Kernel intensity estimation (heat maps): 47.70.
- $\operatorname{AR}(1): 37.98$.

Forecasting (Out-of-Sample) MSE

Baseline:

- No change: 52.19

Competitors :

- Kernel intensity estimation (heat maps): 47.70.
- $\mathrm{AR}(1): 37.98$.
- Holt-Winters: 46.99.

Forecasting (Out-of-Sample) MSE

Baseline:

- No change: 52.19

Competitors :

- Kernel intensity estimation (heat maps): 47.70.
- $\mathrm{AR}(1): 37.98$.
- Holt-Winters: 46.99.

Our model: 25.81

Recap and Conclusions

- Proposed a flexible GP/Poisson framework for spatiotemporal modeling

Recap and Conclusions

- Proposed a flexible GP/Poisson framework for spatiotemporal modeling
- Spatial and temporal dependencies

Recap and Conclusions

- Proposed a flexible GP/Poisson framework for spatiotemporal modeling
- Spatial and temporal dependencies
- Long-term and seasonal trends

Recap and Conclusions

- Proposed a flexible GP/Poisson framework for spatiotemporal modeling
- Spatial and temporal dependencies
- Long-term and seasonal trends
- Prediction

Recap and Conclusions

- Proposed a flexible GP/Poisson framework for spatiotemporal modeling
- Spatial and temporal dependencies
- Long-term and seasonal trends
- Prediction
- Good in-sample performance (MSE), not a black box, interpretable output

Recap and Conclusions

- Proposed a flexible GP/Poisson framework for spatiotemporal modeling
- Spatial and temporal dependencies
- Long-term and seasonal trends
- Prediction
- Good in-sample performance (MSE), not a black box, interpretable output
- Forecasting: better out-of-sample performance (MSE) compared to existing methods

Recap and Conclusions

- Proposed a flexible GP/Poisson framework for spatiotemporal modeling
- Spatial and temporal dependencies
- Long-term and seasonal trends
- Prediction
- Good in-sample performance (MSE), not a black box, interpretable output
- Forecasting: better out-of-sample performance (MSE) compared to existing methods
- And there's more: see Flaxman et al [ICML, 2015] for a more scalable, finer-grained model fit to 8 years of data with predictions 2 years into the future.

Recap and Conclusions

- Proposed a flexible GP/Poisson framework for spatiotemporal modeling
- Spatial and temporal dependencies
- Long-term and seasonal trends
- Prediction
- Good in-sample performance (MSE), not a black box, interpretable output
- Forecasting: better out-of-sample performance (MSE) compared to existing methods
- And there's more: see Flaxman et al [ICML, 2015] for a more scalable, finer-grained model fit to 8 years of data with predictions 2 years into the future.
- Future work: continuous changepoint models, more extensive comparisons to existing methods, jointly fitting different types of crimes, more applied work to understand how well-calibrated forecasts are

Thanks!

