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Bayesian modeling framework
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Crime rates: temporal

Crime in Chicago by month, 2006 to present
Hover to see totals
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Crime rates: spatial
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Previous Work

» Univariate time series models [Gorr, Olligschlaeger,
Thompson 2003]



Previous Work

» Univariate time series models [Gorr, Olligschlaeger,
Thompson 2003]

» “Heat maps” [Groff and La Vigne, 2002, many others],
“risk terrain modeling” [Caplan and Kennedy, 2011]
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Our goals

» Fully probabilistic framework

— Spatial and temporal dependencies
— Long-term and seasonal trends
— Model variance, not just mean

» Prediction
— Good in-sample performance (MSE)
— Not a black box
— Produce heat maps, interpretable by policy makers
» Forecasting: better out-of-sample performance (MSE)
compared to existing methods, with forecast intervals
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Gaussian Processes

» Covariance function specifies smoothness of function:

f(t) ~ GP(0, k(t, t"), k(t,t') = exp(—|t — t'|?)
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Gaussian Processes

» Covariance function specifies smoothness of function:
f(t) ~ gP(O, k(t, tl)), k(t’ t/) = exp(_ﬁ“ _ t/|2)
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Gaussian Processes

» Covariance function specifies smoothness of function:
f(t) ~ gP(O, k(t, tl)), k(t, t/) = exp(_%“_- _ t/‘2)
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Gaussian Processes for Count Data
» At space-time location (s, t):

ns¢ ~ Poisson(A(s, t))
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Gaussian Processes for Count Data
» At space-time location (s, t):
ns¢ ~ Poisson(A(s, t))
» Rate A varies in space and time:
A(s, t) = exp(f(s, t))
» Place a GP prior on the log-intensity:

f(s,t) ~GP(0, K)
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» Fully Bayesian framework: uncertainty intervals for all
parameters, predictions, and forecasts
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Recap and Preview: Gaussian Processes

» Fully Bayesian framework: uncertainty intervals for all
parameters, predictions, and forecasts

» Flexible and interpretable models for spatial and temporal
dependencies

» Generalizes spatial approaches (heat maps) and temporal
approaches (autoregressive models, periodic models)



Application: Theft in Chicago

week (t) | neighborhood (s) | # of thefts
1 1 1
1 2 7
2 1 0
2 2 3




Time Component
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> Ksmooth(

t,t') = of exp(—

Time Component
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Time Component

k(t,t') = ksmooth (t: 1) + kperiodic(t’ t')
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Spatial Component

Given locations {s; ..., s,}, specify Matérn covariance:

(5. 5) = o (1 s —Z'Wﬁ) oo (_Hs—;’H\/ﬁ>




Theft in Chicago

Hyperparameters:

l1,...,03,01,...,05 ~ Student-t(v = 4)

Parameters:
kspace(s,s’) = Maternehag(s, s)
1 2
ktime(s’sl) = lrexp(——|ls — s'[1%)
03
kperiodic(57 s') = Periodice_,”ag(s, s")
1 .
kspace—periodic((sv t),(s',t')) = s exp(—a—z \s—s'||2)-Per|od|cLU§(t, t')

Latent Risk Surface:

f(s,t) ~ GP(0, kspace + Ktime + kperiodic + kspace—periodic)

Data:
n57t ~ POiSSOﬂ(eXp(f(57 t)))
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Experiments and Results

>

Fit full spatiotemporal model to week-neighborhood
counts of theft from January 2011 to September 2013

Forecast October - December 2013

Perform posterior predictive checks for predictions,
variances

Calculate mean squared error of predictions (in-sample)
and forecasts (out-of-sample)

Compare to competing methods
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Predictions: January - June 2011

Observed Predicted
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Predictions: July - December 2011

Observed Predicted
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Predictions: January - June 2012

Observed Predicted
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Predictions: July - December 2012

Observed Predicted
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Predictions: January - June 2013

Observed Predicted
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Forecasts: October - December 2013

Observed Predicted
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Results: Time
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Results: Time Decomposition
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Results: Time Decomposition
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Results: Time Decomposition
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Results: Time Decomposition
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Results: Time Decomposition
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Forecasting (Out-of-Sample) MSE

Baseline :
» No change: 52.19
Competitors :
» Kernel intensity estimation (heat maps): 47.70.
» AR(1): 37.98.
» Holt-Winters: 46.99.
Our model: 25.81
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Recap and Conclusions

» Proposed a flexible GP/Poisson framework for
spatiotemporal modeling
— Spatial and temporal dependencies
— Long-term and seasonal trends
» Prediction
— Good in-sample performance (MSE), not a black box,
interpretable output

» Forecasting: better out-of-sample performance (MSE)
compared to existing methods

» And there's more: see Flaxman et al [ICML, 2015] for a
more scalable, finer-grained model fit to 8 years of data
with predictions 2 years into the future.

» Future work: continuous changepoint models, more
extensive comparisons to existing methods, jointly fitting
different types of crimes, more applied work to
understand how well-calibrated forecasts are
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