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Big Picture: To reliably detect patterns of interest in 
massive, complex data (such as events impacting the 
daily activity of a city), we need to do two things right:
• Accurately modeling normal behavior of the system.
• Detecting (possibly subtle) deviations from “normal”.

Case 1: Multiple, correlated spatio-temporal data streams.

Case 2: Unstructured free-text data from hospital EDs

Scalable Gaussian processes Subset scanning+
Contrastive topic models Subset scanning+



2016 Carnegie Mellon University

Today’s talk:
• Subset scanning for event and pattern detection.
• Gaussian processes for modeling correlated data.
• Gaussian Process Subset Scan (GPSS)
• Contrastive topic modeling for identifying 

emerging patterns in free-text.
• Detecting emerging novel disease outbreaks.



Subset scanning
A machine learning* approach for detecting subtle patterns 

in complex data (spatial, graphs, multidimensional, …)

Key idea: A group of data records may be collectively interesting or 
anomalous even if each record is “normal” when considered individually.

Typical anomaly detection methods fail in this scenario.  So do clustering 
methods, if the pattern of interest is small compared to the entire dataset.

* Unsupervised learning = no labeled data, incl. clustering and anomaly detection as well as pattern 
detection. This is distinct from supervised learning, which focuses on classification and regression. 

Very general framework:
1) Define a score function F(S) to evaluate interestingness of a subset.
2) Maximize F(S) over all subsets S which satisfy constraints C.
3) Evaluate statistical significance of detected subsets by randomization.

Challenge 2: Computational efficiency 
given exponentially large search space. 

Challenge 1: Choose F(S) and C for 
high detection power and accuracy.  



Subset scanning

Early outbreak detection Drug overdose surveillance Discovery of novel outbreaks

Prostate cancer detectionRodent prevention Predicting civil unrest

Crime prevention- randomized 
field trial with Pittsburgh police

Improved city services

Ongoing work (examples):
Scaling to massive graphs

Detecting natural experiments
Discovering heterogeneous 

treatment effects
“Auditing” black box classifiers



Gaussian processes

A Gaussian process defines a prior over functions (infinite-dimensional vectors),                                 
parameterized by the mean function m(x) and kernel (covariance) function k(x,x’). 

Any draw of observed data from a GP, i.e., a function f(x) evaluated at a                
finite set of x values, has a multivariate Gaussian prior distribution given by              
the mean vector µ and covariance matrix K, where µi = m(xi) and Kij = k(xi, xj). 

Can then combine this prior distribution with observed data {(xi, yi)},                              
using Bayes Theorem to obtain the posterior mean & covariance. 

Gaussian processes are a machine learning* approach for 
modeling and prediction with non-iid data (e.g., spatial/temporal).

Advantages: Flexibility to accurately model complex       
non-linear functions given sufficient training data.

Can obtain prediction intervals rather than just point 
estimates, and can learn dependence structure from data.

Disadvantages: computationally expensive, O(N3).

* Supervised learning = prediction from labeled data, including both classification and regression.



Typical machine learning assumption: data points are drawn i.i.d. 
(independently, and identically distributed) from some distribution. 

How reasonable is this assumption for urban systems?

Why GPs for modeling urban data?

Congestion may propagate 
from an initial traffic event, 

leading to spatial and 
temporal dependence.

Environmental monitoring: we 
expect similar sensor readings 
if the measurements are close 

together in space and time.

While dependent data can arise in many contexts (such as structured 
prediction or correlated data streams), the most common sources are 
dependence over time (serial autocorrelation) and spatial correlation.



Typical machine learning assumption: data points are drawn i.i.d. 
(independently, and identically distributed) from some distribution. 

How reasonable is this assumption for urban systems?

Why GPs for modeling urban data?

Congestion may propagate 
from an initial traffic event, 

leading to spatial and 
temporal dependence.

Environmental monitoring: we 
expect similar sensor readings 
if the measurements are close 

together in space and time.

First law of geography: “Everything is related to everything else, 
but nearby things are more related than more distant things.”



Typical machine learning assumption: data points are drawn i.i.d. 
(independently, and identically distributed) from some distribution. 

How reasonable is this assumption for urban systems?

Why GPs for modeling urban data?

Congestion may propagate 
from an initial traffic event, 

leading to spatial and 
temporal dependence.

Environmental monitoring: we 
expect similar sensor readings 
if the measurements are close 

together in space and time.

To accurately detect emerging events or discover anomalous                   
patterns, we need a very accurate model of what is “normal”.  

Otherwise, rather than detecting events of interest, we simply pick up where 
the model has failed to adequately capture normal behavior of the system.  



Gaussian Process Regression
Given a set of M training examples, (X,Y) = {(xi, yi)} for i=1..M,                                                      
and a set of M* test examples, (X*,Y*) = {(xi

*,yi
*)} for i=1..M*.

Assume 𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝑥𝑥𝑖𝑖) + 𝜀𝜀𝑖𝑖, where εi are independent noise variables drawn from  
N(0, σ2), and 𝑓𝑓(·) ~ 𝒢𝒢𝒢𝒢 0, 𝑘𝑘 ·,· , where 𝑘𝑘 ·,· is the kernel (e.g., RBF).

We can now compute the conditional distribution of the unobserved                                 
outputs Y* given the observed outputs Y and all inputs (X and X*).  

This can be computed in closed form by specifying the joint distribution: 
[𝑌𝑌 𝑌𝑌∗] | 𝑋𝑋,𝑋𝑋∗~ 𝑁𝑁(0,𝐾𝐾 + 𝜎𝜎2𝐼𝐼), where 𝐾𝐾 can be decomposed as:

𝐾𝐾 = 𝐾𝐾(𝑋𝑋,𝑋𝑋) 𝐾𝐾(𝑋𝑋,𝑋𝑋∗)
𝐾𝐾(𝑋𝑋∗,𝑋𝑋) 𝐾𝐾(𝑋𝑋∗,𝑋𝑋∗) .

Using properties of multivariate Gaussians, we can compute                                                       
the conditional distribution 𝑌𝑌∗| 𝑌𝑌,𝑋𝑋,𝑋𝑋∗~ 𝑁𝑁 �̅�𝜇, �𝐾𝐾 , where:

�̅�𝜇 = 𝐾𝐾 𝑋𝑋∗,𝑋𝑋 𝐾𝐾 𝑋𝑋,𝑋𝑋 + 𝜎𝜎2𝐼𝐼 −1𝑌𝑌

�𝐾𝐾 = 𝐾𝐾 𝑋𝑋∗,𝑋𝑋∗ − 𝐾𝐾 𝑋𝑋∗,𝑋𝑋 𝐾𝐾 𝑋𝑋,𝑋𝑋 + 𝜎𝜎2𝐼𝐼 −1𝐾𝐾(𝑋𝑋,𝑋𝑋∗)

Acknowledgement: this slide was adapted from lecture notes by Chuong B. Do and Honglak Lee, and from 
Flaxman et al., Gaussian processes for independence tests with non-iid data in causal inference, ACM TIST, 2015. 



Gaussian Process Regression

(figure by Seth Flaxman)

Here’s an example of fitting the 
true function f(x) with the mean 

function �̅�𝜇 estimated from the GP.  

With lots of data, GPs can very 
accurately estimate a complex, 

non-linear function of x.  

Computation is exact but expensive: O(N3) training, O(N2) test.  
But various approximations can be used to speed things up.

(figure by Zoubin Ghahramani)

We can also sample from the 
posterior predictive distribution 
𝑁𝑁 �̅�𝜇, �𝐾𝐾 , and use the samples to 

compute a 95% confidence 
interval for prediction. 



Scaling up Gaussian processes
(Flaxman et al., ICML 2015)

Application: long-term, local-area crime forecasting in Chicago.  We applied a 
new, scalable GP model to 10 years of geocoded, date-stamped crime reports. 

n = 233,088 reported incidents of assault. 

After discretization (½ mile x ½ mile x week): 
1.6 million observations in total, much too 

large for standard GP formulations.

Very accurate, small-area crime forecasts 
up to 12 months in advance: scalability and 

accuracy higher than previous state of the art.

New methods for very fast 
inference and learning with 
non-Gaussian likelihoods 

(count data) and interpretable 
(spectral mixture) kernels.

Approximations 
plus exploiting grid 
structure for fast 

matrix operations.



Learning an interpretable kernel 
tells us a lot about the correlation 

structure in space and time.
Component 1 picks up long-term 

trend of decreasing crime.
Component 3 picks up yearly 

periodic (seasonal) trend.
Components 2 and 4 represent 
correlation on short time-scales 

(no effect on long-term forecasts).
Component 5 picks up another, 

more subtle periodic trend.

Application: long-term, local-area crime forecasting in Chicago.  We applied a 
new, scalable GP model to 10 years of geocoded, date-stamped crime reports. 

Scaling up Gaussian processes
(Flaxman et al., ICML 2015)



Application to causal inference
(Flaxman et al., ACM TIST, 2015)

Causal inference in non-iid data, using pre-whitening with GPs to remove 
non-causal relationships resulting from spatial and temporal dependencies.

Causal inference on 
Boston housing data. 

Left: result of PC algorithm.
Right: PC after using our 

GP inference method.
Note many fewer edges 
than the previous graph.

Causes of median house value (medv): 
Percent of lower SES in the population (lstat),

number of rooms (rm), whether located on 
the Charles River (chas), and pollution as 

measured by nitric oxide concentration (nox).

Also note the edge from 
industrial activity (indus) 
to pollution (nox), while 
the previous graph had 

this edge reversed.



GPs for change point detection
(Herlands et al., AISTATS 2016)

We developed new, scalable GP methods to detect multidimensional, gradual, 
and heterogeneous changes in the data distribution (“change surface detection”).

We used our approach to model state-level, monthly measles incidence 
data from 1935 to 2003 (~33K data points in 3 dimensions: long, lat, time).

As expected, we identified a significant change from the introduction of 
the measles vaccine in 1963.  But the impacts of the vaccine were 

shown to be gradual and heterogeneous: different states had different 
change points and rates of change from pre-vaccine to post-vaccine.

Change points: mid-1961 to early 1967.
Rate of change by state varied by 
2x (Maine fastest, Arizona slowest).



Gaussian Process Subset Scan

Goals:
a) Model “normal” behavior of urban systems (correlated  learn GP)
b) Identify localized deviations from normal, enabling targeted response.

General approach:
1) Learn GP parameters from the entire dataset 𝐷𝐷.
2) Scan over neighborhoods:

• For each neighborhood 𝑆𝑆, perform GP inference given the 
data in 𝐷𝐷 ∖ S to estimate the mean vector µ and covariance 
matrix Σ for locations 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆.

3) Maximize a likelihood ratio statistic over neighborhoods (GP 
Neighborhood Scan) or over subsets of locations within a 
neighborhood (GP Subset Scan) to find most anomalous areas.

(Herlands et al., AISTATS 2018)



Null model: no anomalies               
for all locations in (x, y)

Alternative model: anomaly for 
locations with wi = 1 in (x, y)

Covariates
e.g. space & time

Outputs Subset

LLR comparison



Null model

Alternative model

Parameters learned 
from all data

LLR comparison



LLR comparison
• Log-likelihood ratio of alternative to null model

• Maximization of 𝐿𝐿𝐿𝐿𝐿𝐿(𝑤𝑤) provides most 
anomalous subset of the data

• Integer Quadratic Program: optimizing 𝐿𝐿𝐿𝐿𝐿𝐿(𝑤𝑤)
over subsets requires O(2n) comparisons.



Gaussian Process 
Neighborhood Scan (GPNS)

• Consider the k-neighborhood consisting of a point 
and its (k – 1)-nearest neighbors, for each center 
point and each k = {1, 2, …, kmax}.

• Compute LLR for each neighborhood.
• Highest LLR = most anomalous neighborhood

Pros
- Substantially reduced 

computation, O(nkmax).
- Considers collective 

anomalies consisting of 
multiple nearby points.

Cons
- Constraining 

assumptions about 
anomaly shape!

- Reduces precision and 
detection power.



Gaussian Process 
Subset Scan (GPSS)

• Fix neighborhood size, k.
• Conduct an unconstrained search within 

each neighborhood of size k.
• Naively requires O(n2k) evaluations.
• Reduce to O(nk) evaluations, using one of 

several new (approximate) optimization 
methods compared in the paper.

Technical details can 
be found in Herlands

et al. (AISTATS 2018).



Randomization testing
1) Create multiple simulated datasets 

assuming that the null hypothesis is true. 

2) Scan over             
Find max LLR for each simulated dataset.

3) After R trials, determine α-level significance 
using the null max-LLR values.



Multiple Streams
• Searching for patterns over multiple data 

sets or data streams
• E.g. reports of downed trees and sewer flooding

General approach
1) Learn GP parameters θs for each stream independently
2) Scan over neighborhoods jointly

- Compute posteriors (μs, Σs) independently
- Combine them with block diagonal matrix



Synthetic Experiments
• Compared methods w.r.t. accuracy and detection 

power, on synthetic data with known anomalies.
• Main conclusions:

1) GP+SS  >  individual anomaly detection (SVM, GP)
 Nearby points matter for subtle anomalies

2) GP+SS  >  SS alone
 Covariance structure matters for non-iid data

3) GPSS    > GPNS
 Flexible detection matters for complex patterns



Real-world experiments
• Using NYC data: opioid overdoses and 311 calls.
• Challenging to get ground truth

• Even with known anomaly – precisely where and when 
is unknown.

• Manual validation of anomalies.



Evaluation: 311 calls for service
• 1/22/2016: Washington Heights residents 

concerned due to brown tap water. 
• Data: 311 calls 

• Aggregate all 311 types
(call type for evaluation only).
• Daily for January 2016
• Spatial grid of ~ 0.08 mi2



Evaluation: 311 calls for service
• No ground truth for evaluation!
• Consider the “signal-to-noise ratio” within 

the detected region.
• Signal = 311 water-related complaints
• Noise = all other 311 complaints

GP and SS 
methods

Anomaly 
detection 
methods



Evaluation: opioid overdoses
• US opioid epidemic has affected NYC area
• Data: opioid overdose deaths

• Monthly counts, 1999-2015
• Counties: Man, Qns, Bky, Bnx, Suffolk, Nassau



Evaluation: opioid overdoses
• Two statistically significant anomalies.

End of 2015. 
Recent surge due 
to fentanyl.

Mid 2006. Just 
before naloxone 
programs.



Opioid overdose deaths
• SVM provides no coherent anomalies



Multi-stream: trees and sewers
• Consider 311 reports of damaged tree and 

sewer issues.
• Fit each stream independently
• Scanned for anomalies jointly

• Aggregated at weekly level for Brooklyn
• Analysis for 2016 and 2010



Multi-stream: trees and sewers 2016

• Anomalies during July summer storm

Sewers:

Trees:



• Urban tornado in Brooklyn!

Multi-stream: trees and sewers 2010

Tornado path

Sewers:

Trees:



Incorporating unstructured data
Free-text ED chief complaint data from 
hospitals in NYC and North Carolina.

Key challenge: public health agencies must 
be able to identify relevant clusters of disease 

cases that may not correspond to known 
syndromes (e.g., rare or novel outbreaks)

Date/time Hosp. Age Complaint
Jan 1 08:00 A 19-24 runny nose
Jan 1 08:15 B 10-14 fever, chills
Jan 1 08:16 A 0-1 broken arm
Jan 2 08:20 C 65+ vomited 3x
Jan 2 08:22 A 45-64 high temp



From structured to unstructured…
nose caught in door nausea 

vomiting

rabies shot

food 
poisoning

tired weak

n v d

diarrhea

a fib

fever

Each ED case does not just contain 
structured information, but also free 
text: the patient’s chief complaint.  

Q: How can we use this unstructured
data to enhance detection?

Possible approach: map ED cases to 
broad syndrome categories 

(“prodromes”) and do a 
multidimensional scan.



Where do existing methods fail?
The typical syndromic 

surveillance approach can 
effectively detect emerging 
outbreaks with commonly 
seen, general patterns of 

symptoms (e.g. ILI).

Mapping specific chief complaints 
to a broader symptom category 
can dilute the outbreak signal, 

delaying or preventing detection.

What happens when something 
new and scary comes along?
- More specific symptoms 

(“coughing up blood”)
- Previously unseen 

symptoms (“nose falls off”)

If we were monitoring these 
particular symptoms, it would only 
take a few such cases to realize 

that an outbreak is occurring!



The typical syndromic 
surveillance approach can 
effectively detect emerging 
outbreaks with commonly 
seen, general patterns of 

symptoms (e.g. ILI).

Where do existing methods fail?

Mapping specific chief complaints 
to a broader symptom category 
can dilute the outbreak signal, 

delaying or preventing detection.

What happens when something 
new and scary comes along?
- More specific symptoms 

(“coughing up blood”)
- Previously unseen 

symptoms (“nose falls off”)

If we were monitoring these 
particular symptoms, it would only 
take a few such cases to realize 

that an outbreak is occurring!

Our solution is to combine text-
based (topic modeling) and event 
detection (multidimensional scan) 
approaches, to detect emerging 

patterns of keywords.



Time series of hourly counts for 
each combination of hospital and 

age group, for each topic φj.

Classify cases to topics φ1: vomiting, nausea, diarrhea, …
φ2: dizzy, lightheaded, weak, … 

φ3: cough, throat, sore, … 

β

α

Φ1 … ΦKTopics

Topic 
prior

Case 
prior

θ1 … θN
Distribution 
over topics 
per case

wij Observed 
words

Bayesian inference 
using LDA model

The semantic scan statistic
Date/time Hosp. Age Complaint

Jan 1 08:00 A 19-24 runny nose
Jan 1 08:15 B 10-14 fever, chills
Jan 1 08:16 A 0-1 broken arm
Jan 2 08:20 C 65+ vomited 3x
Jan 2 08:22 A 45-64 high temp

Now we can do a 
multidimensional scan, using 
the learned topics instead of 

pre-specified syndromes!



Multidimensional scanning
For each hour of data:
For each combination S of:

• Hospital
• Time duration 
• Age range
• Topic

Count: C(S) = # of cases in that time interval matching on 
hospital, age range, topic.
Baseline: B(S) = expected count (28-day moving average).
Score: F(S) = C log (C/B) + B – C, if C > B, and 0 otherwise
(using the expectation-based Poisson likelihood ratio statistic)

We return cases corresponding to each top-scoring subset S.



Detecting emerging topics
Our contrastive topic model is a novel extension of the LDA 

approach, designed to identify newly emerging topics.

1) Learning a set of “background” 
topics from historical data.

2) Learning a set of “foreground” 
topics from recent data.

3) Combined LDA inference, 
holding the background topics 
constant, leads to discovery of 
foreground topics that are 
maximally different.



Detecting emerging topics
Using a “leave one out” approach in which we hold out one 

International Classification of Diseases (ICD) code and inject cases 
as if from a novel outbreak, we observe huge improvements in 

detection power and accuracy vs. competing methods, including 
Online LDA, Topics Over Time, and Labeled LDA.



NC DOH evaluation results
We compared the top 500 clusters found by semantic scan and a 

keyword-based scan on data provided by the NC DOH in a blinded 
evaluation, with DOH labeling each cluster as “relevant” or “not relevant”.

Semantic scan: for 10 true clusters, had to report 12; 
for 30 true clusters, had to report 54.

Keyword scan: for 10 true clusters, had to report 21;
for 30 true clusters, had to report 83.



NYC DOHMH dataset
• New York City’s Department of Health and Mental Hygiene 

provided us with 5 years of data (2010-2014) consisting of 
~20M chief complaint cases from 50 hospitals in NYC.

• For each case, we have data on the patient’s chief 
complaint (free text), date and time of arrival, age group, 
gender, and discharge ICD-9 code. 

• Substantial pre-processing of the chief complaint field was 
necessary because of size and messiness of data (typos, 
abbreviations, etc.).
• Standardized using the Emergency Medical Text Processor (EMTP) 

developed by Debbie Travers and colleagues at UNC.
• Spell checker for typo correction.
• If ICD-9 code in chief complaint field, convert to corresponding text.



Example of a detected cluster
Arrival
Date

Arrival 
Time

Hospital ID Chief Complaint Patient 
Sex

Patient
Age

11/28/2014 7:52:00 HOSP5
EVAUATION, DRANK COFFEE 
WITH CRUS M 45-49

11/28/2014 7:53:00 HOSP5 DRANK TAINTED COFFEE M 65-69
11/28/2014 7:57:00 HOSP5 DRANK TAINTED COFFEE F 20-24
11/28/2014 7:59:00 HOSP5 INGESTED TAINTED COFFEE M 35-39
11/28/2014 8:01:00 HOSP5 DRANK TAINTED COFFEE M 45-49
11/28/2014 8:03:00 HOSP5 DRANK TAINTED COFFEE M 40-44
11/28/2014 8:04:00 HOSP5 DRANK TAINTED COFFEE M 30-34
11/28/2014 8:06:00 HOSP5 DRANK TAINTED COFFEE M 35-39
11/28/2014 8:09:00 HOSP5 INGESTED TAINTED COFFEE M 25-29

This detected cluster represents 9 patients complaining 
of ingesting tainted coffee, and demonstrates Semantic 

Scan’s ability to detect rare and novel events. 



Events identified by semantic scan

Motor vehicle
Ferry

School bus
Elevator

Meningitis
Scabies

Ringworm

Drug overdoses
Smoke inhalation
Carbon monoxide 

poisoning
Crime related, e.g., 

pepper spray attacks

Accidents Contagious 
Diseases

Other

Acute cases:
falls, SOB, leg Injuries

Mental health 
disturbances:

depression, anxiety

Burden on medical 
infrastructure:

methadone, dialysis

The progression of detected clusters after Hurricane Sandy 
impacted NYC highlights the variety of strains placed on 

hospital emergency departments following a natural disaster: 

Many other events of public health interest were identified:



Conclusions
Detecting emerging events in complex data requires us to accurately 

model “normal” behavior and to detect subtle deviations from “normal”.

Challenges include non-iid data, subtle signals, and unstructured text.

Three building blocks for modeling and detection:

Scalable Gaussian processes can model complex                          
correlations across space, time, and multiple data streams.

(Multidimensional) subset scanning can accurately detect subsets      
of data elements that deviate subtly from the expected distribution.

Contrastive topic modeling can detect newly emerging patterns of 
keywords; semantic scan identifies affected areas & subpopulations.

Together, these tools allow us to detect emerging patterns of interest, 
integrating a wide variety of structured and unstructured urban data 

sources to detect emerging outbreaks and other relevant events.
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Thanks for listening!

More details on our lab web site: 
http://epdlab.heinz.cmu.edu

Or e-mail me at:
daniel.neill@nyu.edu

http://epdlab.heinz.cmu.edu/
mailto:daniel.neill@nyu.edu
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