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Prior applications of machine learning to population health have relied on conventional model assessment
criteria, limiting the utility of models as decision support tools for public health practitioners. To facilitate
practitioners’ use of machine learning as a decision support tool for area-level intervention, we developed
and applied 4 practice-based predictive model evaluation criteria (implementation capacity, preventive potential,
health equity, and jurisdictional practicalities). We used a case study of overdose prevention in Rhode Island
to illustrate how these criteria could inform public health practice and health equity promotion. We used Rhode
Island overdose mortality records from January 2016–June 2020 (n = 1,408) and neighborhood-level US Census
data. We employed 2 disparate machine learning models, Gaussian process and random forest, to illustrate
the comparative utility of our criteria to guide interventions. Our models predicted 7.5%–36.4% of overdose
deaths during the test period, illustrating the preventive potential of overdose interventions assuming 5%–
20% statewide implementation capacities for neighborhood-level resource deployment. We describe the health
equity implications of use of predictive modeling to guide interventions along the lines of urbanicity, racial/ethnic
composition, and poverty. We then discuss considerations to complement predictive model evaluation criteria and
inform the prevention and mitigation of spatially dynamic public health problems across the breadth of practice.

This article is part of a Special Collection on Mental Health.

epidemiologic methods; machine learning; overdose; public health practice

Abbreviations: ACS, American Community Survey; CBG, Census block group; GP, Gaussian process; RF, random forest; RIDOH,
Rhode Island Department of Health; SUDORS, State Unintentional Drug Overdose Reporting System.

The clinical uses of machine learning algorithms have
proliferated in recent years (1). More recently, epidemio-
logic researchers have engaged machine learning to inform
public health surveillance and practice (2). Unlike clinical
prediction, however, for which the analytical unit is individ-
ual patients, prediction for public health is often conducted
at the population level, aggregating data geographically and
temporally to facilitate population-level intervention and
prevention.

In this paper, we highlight the importance of this dis-
tinction for model evaluation and illustrate the need for
additional evaluation considerations using a case study of
overdose prevention in Rhode Island. For clinical modeling,

high predictive accuracy at the patient level is essential
to inform care and avoid harm. In contrast, prediction for
certain public health problems, particularly those related to
population-level intervention and prevention, demands addi-
tional considerations, such as a health authority’s capacity to
intervene and a jurisdiction’s demographic composition, to
supplement spatiotemporal accuracy and inform practice.

Prior applications of machine learning to population
health have relied primarily on conventional model assess-
ments (e.g., model accuracy and precision) (3). While nec
essary for model-building and -tuning, using these metrics
alone to assess performance may present challenges to
practitioner interpretation and deployment of predictions
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in applied practice. As such, we argue that complementary
evaluation criteria tailored to the intended use of pre-
dictions for public health prevention and policy decision
support are needed to facilitate translation for nonspecialist
practitioners.

TAILORING PREDICTIVE MODEL EVALUATION FOR
PUBLIC HEALTH PRACTICE

An established set of loss and error functions—e.g.,
mean squared error, R2, area under the receiver operating
characteristic curve, or F-score—that describe a given
model’s accuracy, precision, or recall typically are used for
model evaluation (4). While these metrics can and should
inform model-building, optimizing performance using
standard metrics alone may offer insufficient information
for practitioners in the applied interventional context with
respect to area-level disease and injury prevention.

For example, if the spatial distribution of a preventable
injury death within a jurisdiction has most sharply peaked in
several distinct geographic areas, any reasonably accurate
predictive model should identify those areas as high-risk.
However, if cases are concentrated in these areas, the mean
squared error or R2 would primarily evaluate how precisely
a model predicts the event count in these few highest-risk
areas rather than how well it informs intervention deploy-
ment (and specifically, which areas should be prioritized for
intervention) in the context of prevention.

To bridge the gap between modeling and practice, this ar-
ticle outlines a framework with which to evaluate population-
level predictive models for public health intervention
(Table 1). Such practice-based evaluation frameworks have
been utilized in other domains, such as law enforcement
(5), but the integration of data science with public health
intervention remains an emerging research area (6). We have
identified 4 considerations for predictive models to become
effective public-health decision support tools:

1) implementation capacity, or the level of intervention
dissemination that is feasible across a jurisdiction;

2) preventive potential, or the possible public health ben-
efits of intervention dissemination;

3) health equity, or the allocation of resources proportion-
ate to need across geography and sociodemographic
characteristics; and

4) jurisdictional practicalities, or site-specific constraints
unique to a public health authority.

These considerations correspond to 4 guiding questions
to which epidemiologic researchers and practitioners can
jointly respond when utilizing predictive analytics for pop-
ulation prevention to concretize predictive modeling for
practitioners and facilitate decision support. We apply our
framework to a case study of overdose prevention in Rhode
Island.

CASE STUDY: PREDICTIVE ANALYTICS FOR
OVERDOSE PREVENTION

Unintentional drug overdose remains a leading cause of
accidental death in the United States (7), with marked recent

increases following the introduction of illicitly manufac-
tured synthetic opioids into US drug markets and disruptions
associated with the coronavirus disease 2019 (COVID-19)
pandemic (8–10). Despite substantial investment in over-
dose response across levels of government (11), adequate
public health responses continue to be constrained by scarce
resources (12). Moreover, decisions about where to allocate
finite prevention resources at the local level typically are
determined using retrospective surveillance data, with distri-
bution based on past overdose burden. Spatial shifts in area-
level overdose risk, however, complicate these decisions and
offer opportunities for forecasting, since retrospective data
may no longer reflect current overdose risk (13).

Building on traditional methods for “hot spot” analysis
(14), advances in small-area prediction using spatiotempo-
ral machine learning have demonstrated the feasibility of
accurate community overdose risk forecasting (15). These
methods offer the potential for practitioners to bolster the
impact of limited resources by reaching both communities
with endemically high overdose death and emerging over-
dose “hot spots” (16). We demonstrate here how our frame-
work can bridge the gap between statistical performance and
practical utility for practitioners.

METHODS

First, we fitted predictive models using conventional met-
rics and available data. Second, we assessed performance
across the 4 domains described above to supplement con-
ventional metrics and situate modeling in the context of
intervention. Study procedures were approved by the Brown
University Institutional Review Board (Providence, Rhode
Island).

Data sources

We used 2 data sources discretized into 6-month intervals
from January 1, 2016, through June 30, 2020: 1) overdose
mortality data and 2) data from the US Census Bureau’s
American Community Survey (ACS) (17). Data were aggre-
gated to the level of a Census block group (CBG), the
smallest geographic unit for which Census data are avail-
able. CBGs were selected because they correspond to areas
with approximately 600–3,000 residents and may act as
valid proxies for neighborhoods (18). We used neighborhood
as our predictive unit to illustrate geographically focused
distribution of overdose prevention interventions. Of the
815 CBGs in Rhode Island, we excluded 6 to which pub-
lic health resources could not be distributed (e.g., military
bases, airports, or marine terminals), for an analytical sample
of 809 CBGs.

Overdose mortality data were obtained from the Rhode
Island Department of Health’s (RIDOH) State Uninten-
tional Drug Overdose Reporting System (SUDORS) (19).
SUDORS data are maintained in collaboration with the
Centers for Disease Control and Prevention to enhance state
capacity for and accuracy of overdose mortality data abstrac-
tion from medical examiners’ files and death certificates, law
enforcement records, and toxicology testing.
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Translating Machine Learning for Public Health 1661

Table 1. Considerations Regarding Evaluation of Predictive Models for Public Health Practice and Application to Overdose Prevention

Consideration Guiding Question Case Application

Practitioner capacity What capacity do authorities have to distribute
prevention resources across a jurisdiction?

Established ceiling for practitioner prioritization
capacity assuming neighborhood-level
distribution of harm reduction interventions

Preventive potential What is the preventive potential of focused
intervention deployment?

Identify proportion of statewide overdose deaths
captured in neighborhoods selected for
intervention prioritization by models

Health equity How will resources be allocated across geographic,
racial/ethnic, and socioeconomic lines?

Assessed neighborhoods selected by the model
using geographic, racial/ethnic, and
socioeconomic metrics for practitioner
consideration

Jurisdictional practicalities How will resources be deployed within
subjurisdictions?

Presented “unconstrained,” “lightly constrained,” and
“fully constrained” scenariosa for practitioner
consideration

Abbreviation: CBG, Census block group.
a “Fully constrained” denotes a fixed proportion of CBGs selected across municipalities; “lightly constrained” denotes at minimum 1 CBG

selected per municipality, with the remainder unfixed; and “unconstrained” denotes no fixed selection by municipality.

For this study, SUDORS captured all unintentional over-
dose deaths occurring in Rhode Island between January
1, 2016, and June 30, 2020 (n = 1,484). We defined the
location of overdose as the street address nearest to where
the overdose occurred and assigned each death to a CBG
using a Census geocoder. When the location of the overdose
was missing, invalid, or out of state (n = 161), we used the
decedent’s residence for geocoding and CBG assignment
when available (n = 93). Seven cases were excluded because
of a missing death date, and 1 case was identified as dupli-
cated, producing a final sample of 1,408 deaths.

ACS estimates for calendar years 2016–2019 were ex-
tracted from the US Census (17). We utilized all available
CBG-level indicators—206 variables capturing demograph-
ic, social, and economic characteristics (see Web Table 1,
available at https://doi.org/10.1093/aje/kwad119). For con-
tinuous variables, we took the mean of the available years
due to limited change in neighborhood demographic char-
acteristics over time.

Statistical analysis

Our primary objective was to demonstrate the use of
novel evaluation criteria to optimize the neighborhood-level
allocation of overdose prevention resources across Rhode
Island. Hence, we do not present the optimal model for over-
dose prediction but rather present a case study to illustrate
how our practice-oriented evaluation criteria may inform
practitioner decisions. Nonetheless, our model outcome was
overdose fatality counts by CBG. As such, our predictive
problem was one of regression rather than classification.

We used 2 regression models: Gaussian process (GP)
and random forest (RF). We selected these methods as case
illustrations for 3 reasons. First, prior studies have used them
to predict overdose, and, as such, they are established meth-
ods in our case study’s substantive area (15, 20). Second,

both are straightforward methods that can be implemented
with limited data sources (here, only ACS and SUDORS
data). Third, the GP and RF methods operate differently,
focusing on the spatial distribution of overdoses and CBG
demographic features, respectively. Hence, they illustrate
the flexibility of our evaluation criteria across modeling
approaches. We intend for our evaluation considerations
to be broadly applicable irrespective of machine learning
approach, rather than specific to the models used here.

Prior work has demonstrated the utility of GP models
for spatiotemporal prediction of overdose deaths in com-
parison with other anomaly detection methods in a dense
metropolitan area (15). Our study builds on this work by
applying GP models to overdose prediction in a low-density
statewide context. Likewise, prior work has utilized RFs to
identify ACS predictors of opioid overdose deaths at the
neighborhood level (21). Our study builds on this work by
offering an evaluation framework to facilitate the use of
predictions for public health practice. All analyses were
performed using Python 3.0 (Python Software Foundation,
Wilmington, Delaware).

First, we used GP regression, a nonparametric, Bayesian
modeling technique that learns a covariance structure from
given data to capture spatial and temporal dependencies and
identify anomalous patterns (22). GPs are well suited to
complex problems and have been applied in public health
and public safety to overcome issues of small samples,
sparse or 1-dimensional data, and autoregressive data struc-
tures (23). Our GP models used CBG overdose counts from
SUDORS and CBG centroid coordinates.

The properties of a given GP are determined by the mean
and covariance of a real process using a kernel function
specified a priori to define the given GP covariance function
(24). For this study, we utilized a radial basis function kernel
to model spatial correlation, in conjunction with a white
kernel to model additive Gaussian noise. Given that our unit
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of prediction was CBGs in Rhode Island, which vary in size
across rural and urban geographies, we optimized the radial
basis function kernel across a range of distances between
100 m and 100,000 m using training log marginal likelihood
and GP score, a GP evaluation metric similar to R2 (22).

Second, we used RF regression, a tree-based model that
utilizes an a priori–defined number of nonparametric regres-
sion trees to generate predictions (25). As an ensemble of
decision trees, RFs force each decision tree split to consider
a random subset of predictors to produce less correlated trees
and then combine those subtrees to produce a final predic-
tion. By aggregating a host of decision trees, RFs reduce
the potential for overfitting bias to which decision trees are
susceptible (26). That is, an individual decision tree may
produce highly accurate predictions for the data on which
it was trained but will generalize poorly to unseen test data,
while the ensemble can produce more accurate predictions
out of sample. RFs also facilitate the computation of variable
importance, which may inform public health practice and
open future research questions (27). Our RF model used
CBG overdose counts from SUDORS and CBG-level ACS
features.

To train our RF model, we tuned hyperparameters using
5-fold cross-validation, identifying optimal values for tree
depth, number of features, and number of samples per leaf.
The selected set of hyperparameters was used to fit the
predictive model and evaluate out-of-sample performance.

Model training and testing

We used 6-month prediction windows, established in col-
laboration with RIDOH as a realistic period for a nimble
public health authority to adjust statewide resource deploy-
ment. Our training periods spanned January 1, 2016, through
December 31, 2019. Our test period spanned January 1,
2020, through June 30, 2020.

Model evaluation for public health practice

To identify priority CBGs for overdose prevention
resources, we did not need to predict with high accuracy
the exact number of future overdose deaths in each neigh-
borhood. Rather, we sought to predict the neighborhoods
across Rhode Island that, if prioritized, could prevent the
greatest proportion of overdose deaths statewide. As such,
our primary performance metric was the proportion of all
overdose deaths statewide (in the 6-month test period) that
occurred in the CBGs selected by the model.

Implementation capacity. To facilitate intervention strat-
egy in light of resource limitations and local stakeholder
priorities, we assessed performance across a range of pri-
oritization capacities, since different interventions scale dif-
ferently. Because RIDOH oversees public health activities
in Rhode Island, we worked with practitioners to consider a
ceiling for statewide, neighborhood-level resource distribu-
tion. Discussions between the research team and practition-
ers resulted in a ceiling of 20% of CBGs statewide that could
be prioritized by overdose prevention organizations each
year, given existing resources. For comparative purposes, we

selected a range of 5%–20% of CBGs. Interventions could
include, for example, community-based naloxone distribu-
tion, scalable to a higher proportion of CBGs, and mobile
buprenorphine induction programs, scalable to a smaller
proportion of CBGs.

Preventive potential. To assess the potential impact of
neighborhood-level interventions on overdose mortality, we
identified the proportion of statewide overdose deaths that
occurred in CBGs selected by the model. This was guided by
the theory that, in a geographically diverse, statewide context
like Rhode Island, public health authorities might maximize
the impact of existing interventions by focusing those efforts
on a selection of the highest-risk neighborhoods, rather
than diluting resources across a larger geographic area that
includes low-risk neighborhoods. This was our primary
model performance metric, informed by discussions about
intervention impact with public health stakeholders.

Health equity. To ensure that models guided equitable re-
source distribution along lines of geography, race, and socio-
economic status, we calculated the proportion of prioritized
CBGs meeting the geographic, racial, and socioeconomic
classifications detailed below. As with our primary metric,
we assessed performance assuming selection of 5%–20%
of CBGs.

To measure the balance between urban and nonurban
selected CBGs, we used data from the Rhode Island Division
of Statewide Planning (28). The Rhode Island Division of
Statewide Planning classifies municipalities with a popu-
lation density of at least 2,500 persons per square mile
and at least 50% of land developed as urban. CBGs within
municipalities not meeting these criteria were classified as
nonurban. Of the 809 CBGs in our sample, 343 (42.4%) were
nonurban and 466 (57.6%) were urban.

Since Rhode Island largely is segregated by race between
urban and nonurban municipalities—with urban municipali-
ties being more racially diverse and nonurban municipalities
more racially homogenous (28)—we assessed racial and
socioeconomic equity separately by urbanicity. We classi-
fied urban CBGs with respect to their percentage of non-
White residents and their multigroup entropy index (i.e.,
Theil’s H) (29). This index ranges from 0, meaning only 1
racial group is present, to 1.39 (equivalent to the natural log
of 4, selected because we considered segregation across 4
groups: White, Black, Hispanic/Latino, and other). Majority
White neighborhoods were those with entropy indices below
0.695 (50th percentile) for which the percent White was the
largest percentage of residents. Majority non-White neigh-
borhoods were those with entropy indices below 0.695 for
which the percent White was the lowest. CBGs not meeting
these criteria were classified as integrated. Of the 466 urban
CBGs, 202 (43.4%) were majority White, 102 (21.9%) were
majority non-White, and 162 (34.7%) were integrated.

For nonurban CBGs, we assessed socioeconomic status
according to the proportion of the population with household
income below the federal poverty line. We classified CBGs
with 20% or more of the population below the federal
poverty line as “poverty areas” (30). CBGs with less than
20% of the population below the federal poverty line were
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Translating Machine Learning for Public Health 1663

considered “nonpoverty areas.” Of the 343 nonurban CBGs,
36 (10.5%) were poverty areas and 307 (89.5%) were non-
poverty areas.

Jurisdictional practicalities. Across Rhode Island, the den-
sity of CBGs varied between municipalities, with urban
municipalities holding a higher density of geographically
smaller CBGs and nonurban municipalities primarily con-
sisting of geographically larger CBGs. To consider the
practical dimensions of statewide public health intervention
in the context of geographic diversity—through which past
burden must balance with future risk and existing resources—
we assessed models across 3 constraint scenarios.

The first, “fully constrained” scenario fixed the proportion
of selected CBGs across municipalities. That is, each munic-
ipality in Rhode Island would receive prioritized resources
to an equal proportion of its highest-risk CBGs. The second,
“lightly constrained” scenario fixed the highest-risk CBG
per municipality for priority and assigned the remaining
CBGs irrespective of municipality. This ensured that the
model selected at least 1 neighborhood per municipality,
but lower-risk CBGs were not selected over higher-risk
CBGs across municipalities. The constraint here is that no
municipalities go without any prioritized CBGs. The third,
“unconstrained” scenario selected the highest-risk CBGs
irrespective of municipality. Given that the majority of over-
dose deaths in Rhode Island historically have occurred in the
state’s urban cores, this scenario necessarily would prioritize
urban CBGs. We produced comparisons of the 3 scenarios
for both models across the evaluation criteria.

RESULTS

Overdose mortality

Between January 1, 2016, and June 30, 2020, 1,408 unin-
tentional overdose deaths occurred in Rhode Island. During
this period, the median number of overdose deaths per CBG
was 1 (range, 0–21). The rate of overdose death was higher
in urban CBGs than in nonurban CBGs (Figure 1).

Preventive potential

Table 2 presents the preventive potential, our primary
metric, for both models across a 5%–20% range of imple-
mentation capacities for each of the jurisdictional practi-
cality scenarios. Assuming 20% implementation capacity,
the proportion of statewide overdose deaths captured in the
20% of CBGs prioritized by the GP model over the 6-
month forecasting period ranged from 30.0% in the fully
constrained scenario to 33.2% in the unconstrained sce-
nario. At the lowest assessed implementation capacities, the
unconstrained scenario predicted the larger proportion of
statewide overdose deaths, while at higher capacities, the
lightly constrained scenario was superior.

For the RF model, performance over the 6-month fore-
casting period ranged from 33.2% of statewide overdose
deaths (fully constrained) to 36.4% (lightly constrained).
At the lowest assessed implementation capacity, the uncon-
strained scenario was superior. At the midrange implemen-

tation capacities, the unconstrained and lightly constrained
scenarios performed comparably.

Health equity

Table 3 shows the performance of both models along
our health equity metrics at 20% implementation capacity
for the 3 jurisdictional practicality scenarios, measuring the
proportion of each type of CBG prioritized for interven-
tion. For both models, the unconstrained scenario prioritized
urban CBGs and the fully constrained scenario prioritized
nonurban CBGs. Within urban CBGs, both models pri-
oritized majority non-White and integrated CBGs regard-
less of constraint scenario. This pattern was maximized
for the GP model, which prioritized a maximum of 75.5%
of the majority non-White CBGs and 29.0% of the inte-
grated CBGs within urban jurisdictions. Within nonurban
CBGs, the RF model prioritized poverty areas for all con-
straint scenarios, up to a maximum of 48.6% of nonurban,
poverty-area CBGs for the fully constrained scenario. For
the GP model, the split between nonpoverty- and poverty-
area CBGs was narrower and nearly equal for the lightly con-
strained and unconstrained scenarios. Equity metrics across
the range of implementation capacities are presented in Web
Tables 2–4.

DISCUSSION

In this paper, we have proposed a framework with which
to translate predictive analytics for public-health practitioner
decision support. Key considerations included capacity for
implementation, the preventive potential of an interven-
tion, geographic and sociodemographic equity in resource
allocation, and jurisdiction-specific practical or operational
constraints. These model evaluation considerations are
applicable to other emerging and localized public health
problems.

As the uses of machine learning in public health expand, it
is crucial that investigators bridge the gap between research
and practice. Researchers have applied predictive analytics
to public health problems across infectious disease out-
breaks (31), occupational health (32), and injury prevention
(33). Prior applications, however, have relied on traditional
metrics to assess performance, making it difficult for practi-
tioners to utilize algorithms for policy decision supports. Our
criteria can supplement traditional metrics to help integrate
models into practice.

We start by asking, “What capacity do authorities have
to distribute prevention resources?”. Capacity assessment
is integral to public health intervention (34). To facilitate
capacity assessment, we assessed performance across a
range of prioritized neighborhoods, from 5% to 20%.
This ceiling (20%, or 162 CBGs) was determined through
discussions with practitioners at RIDOH. When transporting
this metric to other jurisdictions and public health problems,
allocation thresholds and geographic units necessarily
would differ. For example, a municipal health authority may
use zip codes as an analytical unit and have capacity to scale
to a smaller percentage of the total area. Ultimately, these
decisions must be made collaboratively with stakeholders.
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1664 Allen et al.

Figure 1. Numbers of overdose deaths in Rhode Island by US Census block group, January 1, 2016–June 30, 2020.

Likewise, our case study demonstrates that resource allo-
cation based on predictive models may offer a value added
to preventive resource allocation by other means. Both pre-
dictive models used in our demonstration achieved approxi-
mately 35% overdose preventive potential at 20% targeting
capacity. This represents as much as 1.75 times more over-
dose deaths prevented than what could be captured assuming
naive uniform resource allocation across Rhode Island. A

currently ongoing randomized trial aims to determine the
efficacy and real-world impact of predictive modeling on
population-level overdose mortality in this study setting
(35). Nevertheless, our case example illustrates the feasibil-
ity of predictive models to inform public health practice.

Because health equity promotion is foundational to con-
temporary public health practice (36), our proposed cri-
teria facilitate the explicit consideration of equity across
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Translating Machine Learning for Public Health 1665

Table 2. Assessment of the Preventive Potential (Percentage of Statewide Overdose Deaths Captured) of 2 Machine
Learning Models, Rhode Island, January 1–June 30, 2020a

Machine Learning Model

Gaussian Process Random ForestConstraint
Scenario

5% of
CBGs

10% of
CBGs

15% of
CBGs

20% of
CBGs

5% of
CBGs

10% of
CBGs

15% of
CBGs

20% of
CBGs

Fully constrainedb 7.5 17.7 26.2 30.0 10.2 19.3 25.1 33.2

Lightly constrainedc 7.5 18.7 26.7 34.2 10.2 19.3 28.9 36.4

Unconstrainedd 10.2 18.7 24.1 33.2 11.8 19.3 28.9 35.8

Abbreviation: CBG, Census block group.
a Proportion of overdoses captured in CBGs that were selected for prioritization, for each model, scenario, and

implementation capacity.
b “Fully constrained” denotes a fixed proportion of CBGs selected across municipalities.
c “Lightly constrained” denotes, at minimum, 1 CBG selected per municipality, with the remainder unfixed.
d “Unconstrained” denotes no fixed selection by municipality.

places and persons. The potential threats to equity posed
by machine learning are well documented (37), heightening
the need for scrutiny when applied to population health.
In Rhode Island, the distinction between urban and nonur-
ban areas is relevant, so we defined equity along these
sociodemographic lines. Our demonstration models selected

approximately the same proportions of urban and nonurban
CBGs, with a slight preference for urban areas by the GP
model. Other health authorities may find urbanicity less
salient, and other equity domains may need to be considered,
depending on the problem at hand (e.g., sex/gender equity or
equity by historical or present disease burden) (38).

Table 3. Distribution of Overdose Prevention Resources Across Census Block Groups (%) in 2 Machine Learning Models (Health Equity
Assessment at 20% Implementation Capacity), Rhode Island, January 1–June 30, 2020a

Machine Learning Model

Gaussian Process Random ForestDemographic
Classification

No. of
CBGs

Fully
Constrainedb

Lightly
Constrainedc Unconstrainedd Fully

Constrained
Lightly

Constrained
Unconstrained

Urban CBGse 466 18.0 24.7 29.1 18.0 25.2 27.6

Racially integrated areasf 162 25.0 25.3 29.0 18.8 26.5 28.7

Majority non-White areasg 102 24.0 61.3 75.5 29.9 63.2 68.1

Majority White areash 202 9.4 5.7 5.5 11.4 5.0 6.2

Nonurban CBGsi 343 22.7 13.7 7.7 22.7 13.0 9.8

Nonpoverty areasj 307 21.5 14.0 7.8 19.7 10.4 7.3

Poverty areask 36 33.3 11.1 6.9 48.6 34.7 30.6

Abbreviation: CBG, Census block group.
a Proportion of CBGs of each type that were selected for prioritization, for each model and scenario, at 20% implementation capacity.
b “Fully constrained” denotes a fixed proportion of CBGs selected across municipalities.
c “Lightly constrained” denotes, at minimum, 1 CBG selected per municipality, with the remainder unfixed.
d “Unconstrained” denotes no fixed selection by municipality.
e CBGs with a population density of at least 2,500 persons per square mile and a minimum of 50% of land developed.
f An entropy index score not meeting the 2 criteria in footnote "g" or "h".
g An entropy index score below 0.695 for which the percentage of White residents was smallest.
h An entropy index score below 0.695 for which the percentage of White residents was largest.
i CBGs with a population density of fewer than 2,500 persons per square mile and less than 50% of land developed.
j CBGs in which less than 20% of the population has a household income below the federal poverty line.
k CBGs in which at least 20% of the population has a household income below the federal poverty line.
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We assessed the racial/ethnic distribution of predictions
among urban CBGs and the socioeconomic distribution
among nonurban CBGs, due to Rhode Island’s patterns
of sociodemographic segregation (28). While these are not
the only demographic indicators of health equity, we used
these for purposes of illustration and relevance to Rhode
Island’s unique demographic composition. For our case, the
GP model prioritized majority non-White and integrated
CBGs as compared with the RF model, while the RF model
prioritized higher-poverty areas as compared with the GP
model, highlighting for practitioners the relative tradeoffs
in equity that different modeling strategies could produce.
Regardless of the machine learning approach employed and
the demographic makeup of a jurisdiction, our framework
allows practitioners to assess resource distribution as a tool
for fostering health equity.

Collectively, the demonstration models we presented per-
formed well in terms of prioritizing racial/ethnic minority
and economically disadvantaged CBGs. However, there is
no guarantee that a given model will prioritize resources
equitably. This is especially true for subjective outcome
measures (e.g., in clinical care and policing) where race/eth-
nicity and socioeconomic factors may interact with the prob-
ability of an event’s being recorded (39). As such, the
equity measures we proposed are vital for practitioners to
assess whether predictive models may unfairly disadvantage
certain communities.

Finally, our use of 3 constraint scenarios attends to the
practical considerations of public health. Public health prac-
tice is inextricable from jurisdictional political concerns, as
budgetary and resource priorities are determined in large
part by political processes (40). These concerns also are
closely related to equity inasmuch as how public health
authorities choose to define equity and to what extent they
prioritize promotion of that equity are in many respects
linked to larger political processes (41). Some jurisdictions
may find an unconstrained scenario most palatable, prior-
itizing the highest-risk geographies regardless of location
or sociodemographic composition. Other jurisdictions may
prefer the fully constrained scenario, prioritizing parity in
resource allocation across geographic units regardless of
sociodemographic composition.

In our case, public health authority in Rhode Island is
centralized, with a single agency disseminating resources
across municipalities statewide. In contrast, public health
authority in many states (e.g., Texas) is decentralized, with
local governments controlling policy and programming (42).
Regardless of governance structure, however, the metrics we
have presented offer practitioners an array of information to
guide decision-making and interpret predictive analytics in
the context of intervention and prevention.

Limitations

This study had several limitations. First, our criteria
assumed that predictions would be used to prioritize over-
dose prevention resources at the neighborhood level across
Rhode Island. Should this evaluation metric be transported
to another jurisdiction, the metric itself would generalize,

but our assumption of consistent use of predictions by prac-
titioners might not hold.

Second, our predictions and concomitant evaluations were
limited by the data used. Any biases associated with our data
would translate to our predictions and evaluations. However,
we have confidence in the validity of SUDORS, which is
maintained in Rhode Island by RIDOH and validated by the
Centers for Disease Control and Prevention (43). While prior
work identified variation in the quality of ACS estimates
across the United States, particularly the rural South (44),
the fact that our study was restricted to Rhode Island, a
small and relatively homogeneous state in New England, and
utilized data over several years imbues confidence in our use
of the ACS.

Third, our criteria only provide information for practi-
tioners to evaluate predictions and compare models. Our
approach does not select the appropriate set of models to
compare or the optimal loss function, which modelers would
need to determine a priori in concert with practitioners.
However, our evaluation criteria do apply irrespective of
the modeling approach used, as long as predictive model
outputs can be used to rank study units for prioritization. For
example, we predicted the overdose death counts by CBG;
if we instead modeled the predicted probability of overdose
deaths by CBG or directly predicted the rankings of CBGs,
our evaluative criteria would still hold.

Fourth, our approach is particularly useful for spatially
targeted and rapidly deployed interventions such as
community-based naloxone distribution and mobile street
outreach, which can be allocated and changed with relative
ease, using real-time surveillance data, when available.
However, our considerations may offer less information for
spatially diffuse interventions or temporally static interven-
tions over a longer time horizon. For such interventions, our
criteria could be adapted to consider long-run prevention
potential across broader areas; different modes of equity,
such as equity in disease burden and intervention receipt,
may also be considered alongside our criteria. However,
given how many public health problems can be addressed
through short-run, targeted interventions, our criteria can
still contribute concretely to injury, chronic disease, and
infectious disease epidemiology.

Fifth, our criteria allow practitioners to assess the poten-
tial impact of a given intervention, but they do not account
for intervention “dose,” instead assuming that practitioners
will allocate responses uniformly across prioritized areas.
For interventions that are not easily “dosed,” extensions of
the criteria presented here may prioritize geographic areas
along a gradient (e.g., high, medium, and low priority). To
assess interventions for which dosing is integral, supplemen-
tary evaluative criteria should be developed.

Conclusions

In this article, we have discussed several considerations
regarding prediction for public health intervention to com-
plement machine-learning model performance assessments
and have demonstrated the application of these considera-
tions to a case study of overdose prevention. As a decision
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support tool, our criteria have the potential to inform the
prevention and mitigation of spatially dynamic public health
problems across the breadth of practice, from injury preven-
tion to infectious and chronic disease and occupational and
environmental health.
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