© ® N o

Appendix
A: Details for COT-GAN
The family of cost functions C* (1, ¢) is given by
J T-1
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where AH_lM(I) = Mt+1(171:t+1) —
is a set of functions depicting causality'

H(p) = {(h, M) : h = (he){5', he € Cy(R™),

M = (My){_y € M(u), My € Co(R™")},
RnXT
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with M () being the set of martingales on w.r.t. the
canonical filtration and the measure p, and Cp(R™*?) the
space of continuous, bounded functions on R™*¢,

Moreover, in the implementation of COT-GAN, the di-
mensionality of the sets of h := (h/)/_; and M :=
(M7) 3]:1 is bounded by a fixed J € N. The discriminator in
COT-GAN is formulated by parameterizing h,, and M,
in the cost function ¢* as two separate neural networks that
respect causality,
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where ¢ := (¢1,p2) and J corresponds to the output di-
mensionality of the two networks. Thus, we update the pa-
rameters based upon the loss given by (??) between the em-
pirical distributions of two mini-batches,

Given a mini-batch of size m from training data
{x¢ 3™, we define the empirical measure for the mini-

batch as
: Zm:
m

As the last piece of the puzzle, ? enforced M to be close to
a martingale by a regularization term to penalize deviations
from being a martingale on the level of mini-batches.
J T-1 s ;
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where Var[M] is the empirical variance of M over time and
batch, and 7 > 0 is a small constant.

B: Training details
We used a smaller size of model with the same network ar-
chitectures as COT-GAN to train all three datasets. The ar-
chitectures for generator and discriminator are given in Ta-
bles 1 and 2.

Hyperparameter settings are as follows: the Sinkhorn reg-
ularizer ¢ = 0.8, Sinkhorn iteration L = 100, the length-
scale = 20 and martingale penalty A = 1.5. We used Adam
optimizer with learning rate 0.0001, 8; = 0.5 and 8> = 0.9.
All models are trained for 60, 000 iterations.

Table 1: Generator architecture.

[ Generator Configuration I
Input z ~N(0,1)
0 LSTM(state size = 64), BN
1 LSTM(state size = 128), BN
2 Dense(8#8%256), BN, LeakyReLU
3 reshape to 4D array of shape (m, 8, 8, 256)
4 DCONV(N256, K5, S1, P=SAME), BN, LeakyReLU
5 DCONV(N128, K5, S2, P=SAME), BN, LeakyReLU
6 DCONV(N64, K5, S2, P=SAME), BN, LeakyReLU
7 DCONV(NT, K3, S2, P=SAME)

Table 2: Discriminator architecture.

[ Discriminator Configuration |
Input
0 CONV(N64, K5, S2, P=SAME), BN, LeakyReLU
1 CONV(N128, K5, S2, P=SAME), BN, LeakyReLU
2 CONV(N256, K5, S2, P=SAME), BN, LeakyReLU
3 reshape to 3D array of shape (m, T, -1)
4 LSTM(state size = 256), BN
5 LSTM(state size = 64)

C: Evaluation metrics

To compute our three metrics, let us first assume that we
have a set of real data samples (P) and synthetic data sam-
ples (S). EMD is defined as:

Jmin > lp = o(p 2)

pGP

wherep: P - Sisa bijection. MMD is defined as:

Jm (P,S) = ka,p

ﬁZk(s,s) — ﬁZk(p,s)

where k denotes a positive-definite kernel (e.g. RBF kernel)
and n is the number of (real or synthetic) samples.

Lastly, to compute the KNN score, we first split our real
and synthetic samples P and S into training and test datasets
Dy, and Dy, so that D = Dy, U Dy.. We train the KNN
classifier f : Xy — [0, 1] using training data. The accuracy
of the trained classifier is then obtained using test samples

Dy, and given as:
1
I Kf(zi) > 2) - z,] 4)

. 1
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where f(z;) estimates the conditional probability distribu-
tion p(I = 1|2;). A classifier accuracy approaching random
chance (50%) indicates better synthetic data. As suggested
by ?, we use a 1-NN classifier to obtain the score.

EMD(P,S)

3)

D: More figures

In this section, we provide more results in larger figures for
visual comparisons.
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Figure 1: Larger version of Figure 2 for the purpose of visual comparison.
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Figure 2: More selected samples for log-Gaussian Cox process (LGCP) dataset.
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Figure 3: More selected samples for extreme weather (EW) dataset.
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Figure 4: More selected samples for turbulent flow (TF) dataset.



