15

Appendix A: Details for COT-GAN

The family of cost functions $C^{\mathcal{K}}(\mu, c)$ is given by

$$\mathcal{C}^{\mathcal{K}}(\mu,c) := \left\{ c(x,y) + \sum_{j=1}^{J} \sum_{t=1}^{T-1} h_t^j(y) \Delta_{t+1} M^j(x) : J \in \mathbb{N}, (h^j, M^j) \in \mathcal{H}(\mu) \right\},$$

where $\Delta_{t+1}M(x) := M_{t+1}(x_{1:t+1}) - M_t(x_{1:t})$ and $\mathcal{H}(\mu)$ is a set of functions depicting causality:

$$\mathcal{H}(\mu) := \{(h, M) : h = (h_t)_{t=1}^{T-1}, h_t \in \mathcal{C}_b(\mathbb{R}^{n \times t}), M = (M_t)_{t=1}^T \in \mathcal{M}(\mu), M_t \in \mathcal{C}_b(\mathbb{R}^{n \times t})\},$$

with $\mathcal{M}(\mu)$ being the set of martingales on $\mathbb{R}^{n \times T}$ w.r.t. the 3 canonical filtration and the measure μ , and $C_b(\mathbb{R}^{n \times t})$ the 4 space of continuous, bounded functions on $\mathbb{R}^{n \times t}$. 5

Moreover, in the implementation of COT-GAN, the dimensionality of the sets of $\mathbf{h} := (h^j)_{j=1}^J$ and $\mathbf{M} :=$ $(M^j)_{j=1}^J$ is bounded by a fixed $J \in \mathbb{N}$. The discriminator in COT-GAN is formulated by parameterizing h_{φ_1} and M_{φ_2} in the cost function $c^{\mathcal{K}}$ as two separate neural networks that respect causality,

$$c_{\varphi}^{\mathcal{K}}(x,y) = c(x,y) + \sum_{j=1}^{J} \sum_{t=1}^{T-1} h_{\varphi_1,t}^j(y) \Delta_{t+1} M_{\varphi_2}^j(x), \quad (1)$$

where $\varphi := (\varphi_1, \varphi_2)$ and J corresponds to the output di-6 mensionality of the two networks. Thus, we update the pa-7 rameters based upon the loss given by (??) between the em-8

pirical distributions of two mini-batches, 9

Given a mini-batch of size m from training data $\{x_{1:T}^d\}_{i=1}^m$ we define the empirical measure for the minibatch as

$$\hat{\mu} := \frac{1}{m} \sum_{d=1}^m \delta_{x_{1:T}^d}$$

As the last piece of the puzzle, ? enforced M to be close to 10 a martingale by a regularization term to penalize deviations 11 from being a martingale on the level of mini-batches. 12

$$p_{\mathbf{M}}(\widehat{\mu}) := \frac{1}{mT} \sum_{j=1}^{J} \sum_{t=1}^{T-1} \left| \sum_{d=1}^{m} \frac{M_{t+1}^{j}(x_{1:t+1}^{d}) - M_{t}^{j}(x_{1:t}^{d})}{\sqrt{\operatorname{Var}[M^{j}]} + \eta} \right|,$$

where Var[M] is the empirical variance of M over time and 13 batch, and $\eta > 0$ is a small constant. 14

B: Training details

We used a smaller size of model with the same network ar-16 chitectures as COT-GAN to train all three datasets. The ar-17 chitectures for generator and discriminator are given in Ta-18 bles 1 and 2. 19

Hyperparameter settings are as follows: the Sinkhorn reg-20 ularizer $\epsilon = 0.8$, Sinkhorn iteration L = 100, the length-21 scale l = 20 and martingale penalty $\lambda = 1.5$. We used Adam 22

optimizer with learning rate 0.0001, $\beta_1 = 0.5$ and $\beta_2 = 0.9$. 23

All models are trained for 60,000 iterations. 24

Table 1: Generator architecture.

Generator	Configuration
Input	$z \sim \mathcal{N}(0, \mathbf{I})$
0	LSTM(state size = 64), BN
1	LSTM(state size = 128), BN
2	Dense(8*8*256), BN, LeakyReLU
3	reshape to 4D array of shape (m, 8, 8, 256)
4	DCONV(N256, K5, S1, P=SAME), BN, LeakyReLU
5	DCONV(N128, K5, S2, P=SAME), BN, LeakyReLU
6	DCONV(N64, K5, S2, P=SAME), BN, LeakyReLU
7	DCONV(N1, K5, S2, P=SAME)

Table 2: Discriminator architecture.

Discriminator	Configuration
Input	
0	CONV(N64, K5, S2, P=SAME), BN, LeakyReLU
1	CONV(N128, K5, S2, P=SAME), BN, LeakyReLU
2	CONV(N256, K5, S2, P=SAME), BN, LeakyReLU
3	reshape to 3D array of shape (m, T, -1)
4	LSTM(state size = 256), BN
5	LSTM(state size = 64)

C: Evaluation metrics

To compute our three metrics, let us first assume that we have a set of real data samples (\mathcal{P}) and synthetic data samples (S). EMD is defined as:

$$EMD(\mathcal{P}, \mathcal{S}) = \min_{\phi: \mathcal{P} \to \mathcal{S}} \sum_{p \in \mathcal{P}} \|p - \phi(p)\|$$
(2)

where $\phi : \mathcal{P} \to \mathcal{S}$ is a bijection. MMD is defined as:

$$\widehat{MMD}^{2}(\mathcal{P},\mathcal{S}) = \frac{1}{n(n-1)} \sum k(p,p) + \frac{1}{n(n-1)} \sum k(s,s) - \frac{2}{n^2} \sum k(p,s)$$
(3)

where k denotes a positive-definite kernel (e.g. RBF kernel) and n is the number of (real or synthetic) samples. 31

Lastly, to compute the KNN score, we first split our real 32 and synthetic samples \mathcal{P} and \mathcal{S} into training and test datasets 33 \mathcal{D}_{tr} and \mathcal{D}_{te} so that $\mathcal{D} = \mathcal{D}_{tr} \cup \mathcal{D}_{te}$. We train the KNN 34 classifier $f: \mathcal{X}_{tr} \to [0,1]$ using training data. The accuracy 35 of the trained classifier is then obtained using test samples 36 \mathcal{D}_{te} and given as: 37

$$\hat{t} = \frac{1}{n_{te}} \sum_{(z_i, l_i) \in \mathcal{D}_{te}} \mathbb{I}\left[\left(f(z_i) > \frac{1}{2}\right) = l_i\right]$$
(4)

where $f(z_i)$ estimates the conditional probability distribution $p(l = 1|z_i)$. A classifier accuracy approaching random 39 chance (50%) indicates better synthetic data. As suggested 40 by ?, we use a 1-NN classifier to obtain the score. 41

D: More figures

In this section, we provide more results in larger figures for 43 visual comparisons. 44

26 27

25

28

29

30

38

42

Figure 1: Larger version of Figure 2 for the purpose of visual comparison.

Figure 2: More selected samples for log-Gaussian Cox process (LGCP) dataset.

Figure 3: More selected samples for extreme weather (EW) dataset.

Figure 4: More selected samples for turbulent flow (TF) dataset.