
Appendix1

A: Details for COT-GAN2

The family of cost functions CK(µ, c) is given by

CK(µ, c) :=

{
c(x, y) +

J∑
j=1

T−1∑
t=1

hjt (y)∆t+1M
j(x) :

J ∈ N, (hj ,M j) ∈ H(µ)

}
,

where ∆t+1M(x) := Mt+1(x1:t+1) −Mt(x1:t) and H(µ)
is a set of functions depicting causality:

H(µ) := {(h,M) : h = (ht)
T−1
t=1 , ht ∈ Cb(Rn×t),

M = (Mt)
T
t=1 ∈M(µ),Mt ∈ Cb(Rn×t)},

withM(µ) being the set of martingales on Rn×T w.r.t. the3

canonical filtration and the measure µ, and Cb(Rn×t) the4

space of continuous, bounded functions on Rn×t.5

Moreover, in the implementation of COT-GAN, the di-
mensionality of the sets of h := (hj)Jj=1 and M :=

(M j)Jj=1 is bounded by a fixed J ∈ N. The discriminator in
COT-GAN is formulated by parameterizing hϕ1

and Mϕ2

in the cost function cK as two separate neural networks that
respect causality,

cKϕ (x, y) = c(x, y) +

J∑
j=1

T−1∑
t=1

hjϕ1,t(y)∆t+1M
j
ϕ2

(x), (1)

where ϕ := (ϕ1, ϕ2) and J corresponds to the output di-6

mensionality of the two networks. Thus, we update the pa-7

rameters based upon the loss given by (??) between the em-8

pirical distributions of two mini-batches,9

Given a mini-batch of size m from training data
{xd1:T }mi=1 we define the empirical measure for the mini-
batch as

µ̂ :=
1

m

m∑
d=1

δxd
1:T
.

As the last piece of the puzzle, ? enforced M to be close to10

a martingale by a regularization term to penalize deviations11

from being a martingale on the level of mini-batches.12

pM(µ̂) :=
1

mT

J∑
j=1

T−1∑
t=1

∣∣∣∣∣
m∑
d=1

M j
t+1(xd1:t+1)−M j

t (xd1:t)√
Var[M j ] + η

∣∣∣∣∣,
where Var[M ] is the empirical variance of M over time and13

batch, and η > 0 is a small constant.14

B: Training details15

We used a smaller size of model with the same network ar-16

chitectures as COT-GAN to train all three datasets. The ar-17

chitectures for generator and discriminator are given in Ta-18

bles 1 and 2.19

Hyperparameter settings are as follows: the Sinkhorn reg-20

ularizer ε = 0.8, Sinkhorn iteration L = 100, the length-21

scale l = 20 and martingale penalty λ = 1.5. We used Adam22

optimizer with learning rate 0.0001, β1 = 0.5 and β2 = 0.9.23

All models are trained for 60, 000 iterations.24

Table 1: Generator architecture.

Generator Configuration
Input z ∼ N (0, I)

0 LSTM(state size = 64), BN
1 LSTM(state size = 128), BN
2 Dense(8*8*256), BN, LeakyReLU
3 reshape to 4D array of shape (m, 8, 8, 256)
4 DCONV(N256, K5, S1, P=SAME), BN, LeakyReLU
5 DCONV(N128, K5, S2, P=SAME), BN, LeakyReLU
6 DCONV(N64, K5, S2, P=SAME), BN, LeakyReLU
7 DCONV(N1, K5, S2, P=SAME)

Table 2: Discriminator architecture.

Discriminator Configuration
Input

0 CONV(N64, K5, S2, P=SAME), BN, LeakyReLU
1 CONV(N128, K5, S2, P=SAME), BN, LeakyReLU
2 CONV(N256, K5, S2, P=SAME), BN, LeakyReLU
3 reshape to 3D array of shape (m, T, -1)
4 LSTM(state size = 256), BN
5 LSTM(state size = 64)

C: Evaluation metrics 25

To compute our three metrics, let us first assume that we 26

have a set of real data samples (P) and synthetic data sam- 27

ples (S). EMD is defined as: 28

EMD(P,S) = min
φ:P→S

∑
p∈P
‖p− φ(p)‖ (2)

where φ : P → S is a bijection. MMD is defined as: 29

M̂MD
2
(P,S) =

1

n(n− 1)

∑
k(p, p)+

1

n(n− 1)

∑
k(s, s)− 2

n2

∑
k(p, s)

(3)

where k denotes a positive-definite kernel (e.g. RBF kernel) 30

and n is the number of (real or synthetic) samples. 31

Lastly, to compute the KNN score, we first split our real 32

and synthetic samples P and S into training and test datasets 33

Dtr and Dte so that D = Dtr ∪ Dte. We train the KNN 34

classifier f : Xtr → [0, 1] using training data. The accuracy 35

of the trained classifier is then obtained using test samples 36

Dte and given as: 37

t̂ =
1

nte

∑
(zi,li)∈Dte

I
[(
f(zi) >

1

2

)
= li

]
(4)

where f(zi) estimates the conditional probability distribu- 38

tion p(l = 1|zi). A classifier accuracy approaching random 39

chance (50%) indicates better synthetic data. As suggested 40

by ?, we use a 1-NN classifier to obtain the score. 41

D: More figures 42

In this section, we provide more results in larger figures for 43

visual comparisons. 44



Figure 1: Larger version of Figure 2 for the purpose of visual comparison.



Figure 2: More selected samples for log-Gaussian Cox process (LGCP) dataset.



Figure 3: More selected samples for extreme weather (EW) dataset.



Figure 4: More selected samples for turbulent flow (TF) dataset.


