

1 Appendix

2 A: Details for COT-GAN

3 The family of cost functions $\mathcal{C}^{\mathcal{K}}(\mu, c)$ is given by

$$4 \mathcal{C}^{\mathcal{K}}(\mu, c) := \left\{ c(x, y) + \sum_{j=1}^J \sum_{t=1}^{T-1} h_t^j(y) \Delta_{t+1} M^j(x) : \right. \\ 5 \left. J \in \mathbb{N}, (h^j, M^j) \in \mathcal{H}(\mu) \right\},$$

6 where $\Delta_{t+1} M(x) := M_{t+1}(x_{1:t+1}) - M_t(x_{1:t})$ and $\mathcal{H}(\mu)$ is a set of functions depicting causality:

$$7 \mathcal{H}(\mu) := \{(h, M) : h = (h_t)_{t=1}^{T-1}, h_t \in \mathcal{C}_b(\mathbb{R}^{n \times t}), \\ 8 M = (M_t)_{t=1}^T \in \mathcal{M}(\mu), M_t \in \mathcal{C}_b(\mathbb{R}^{n \times t})\},$$

9 with $\mathcal{M}(\mu)$ being the set of martingales on $\mathbb{R}^{n \times T}$ w.r.t. the
10 canonical filtration and the measure μ , and $\mathcal{C}_b(\mathbb{R}^{n \times t})$ the
11 space of continuous, bounded functions on $\mathbb{R}^{n \times t}$.

12 Moreover, in the implementation of COT-GAN, the dimensionality of the sets of $\mathbf{h} := (h^j)_{j=1}^J$ and $\mathbf{M} := (M^j)_{j=1}^J$ is bounded by a fixed $J \in \mathbb{N}$. The discriminator in
13 COT-GAN is formulated by parameterizing \mathbf{h}_{φ_1} and \mathbf{M}_{φ_2} in the cost function $c^{\mathcal{K}}$ as two separate neural networks that
14 respect causality,

$$15 c_{\varphi}^{\mathcal{K}}(x, y) = c(x, y) + \sum_{j=1}^J \sum_{t=1}^{T-1} h_{\varphi_1, t}^j(y) \Delta_{t+1} M_{\varphi_2}^j(x), \quad (1)$$

16 where $\varphi := (\varphi_1, \varphi_2)$ and J corresponds to the output dimensionality of the two networks. Thus, we update the
17 parameters based upon the loss given by (??) between the empirical
18 distributions of two mini-batches,

19 Given a mini-batch of size m from training data
20 $\{x_{1:T}^d\}_{d=1}^m$ we define the empirical measure for the mini-
21 batch as

$$22 \hat{\mu} := \frac{1}{m} \sum_{d=1}^m \delta_{x_{1:T}^d}.$$

23 As the last piece of the puzzle, ? enforced \mathbf{M} to be close to a
24 martingale by a regularization term to penalize deviations
25 from being a martingale on the level of mini-batches.

$$26 p_{\mathbf{M}}(\hat{\mu}) := \frac{1}{mT} \sum_{j=1}^J \sum_{t=1}^{T-1} \left| \sum_{d=1}^m \frac{M_{t+1}^j(x_{1:t+1}^d) - M_t^j(x_{1:t}^d)}{\sqrt{\text{Var}[M^j]} + \eta} \right|,$$

27 where $\text{Var}[M]$ is the empirical variance of M over time and
28 batch, and $\eta > 0$ is a small constant.

29 B: Training details

30 We used a smaller size of model with the same network architectures as COT-GAN to train all three datasets. The architectures for generator and discriminator are given in Tables 1 and 2.

31 Hyperparameter settings are as follows: the Sinkhorn regularizer $\epsilon = 0.8$, Sinkhorn iteration $L = 100$, the length-scale $l = 20$ and martingale penalty $\lambda = 1.5$. We used Adam optimizer with learning rate 0.0001, $\beta_1 = 0.5$ and $\beta_2 = 0.9$. All models are trained for 60,000 iterations.

Table 1: Generator architecture.

Generator	Configuration
Input	$z \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
0	LSTM(state size = 64), BN
1	LSTM(state size = 128), BN
2	Dense(8*8*256), BN, LeakyReLU
3	reshape to 4D array of shape (m, 8, 8, 256)
4	DCONV(N256, K5, S1, P=SAME), BN, LeakyReLU
5	DCONV(N128, K5, S2, P=SAME), BN, LeakyReLU
6	DCONV(N64, K5, S2, P=SAME), BN, LeakyReLU
7	DCONV(N1, K5, S2, P=SAME)

Table 2: Discriminator architecture.

Discriminator	Configuration
Input	
0	CONV(N64, K5, S2, P=SAME), BN, LeakyReLU
1	CONV(N128, K5, S2, P=SAME), BN, LeakyReLU
2	CONV(N256, K5, S2, P=SAME), BN, LeakyReLU
3	reshape to 3D array of shape (m, T, -1)
4	LSTM(state size = 256), BN
5	LSTM(state size = 64)

C: Evaluation metrics

To compute our three metrics, let us first assume that we have a set of real data samples (\mathcal{P}) and synthetic data samples (\mathcal{S}). EMD is defined as:

$$25 EMD(\mathcal{P}, \mathcal{S}) = \min_{\phi: \mathcal{P} \rightarrow \mathcal{S}} \sum_{p \in \mathcal{P}} \|p - \phi(p)\| \quad (2)$$

26 where $\phi : \mathcal{P} \rightarrow \mathcal{S}$ is a bijection. MMD is defined as:

$$27 \widehat{MMD}^2(\mathcal{P}, \mathcal{S}) = \frac{1}{n(n-1)} \sum k(p, p) + \\ 28 \frac{1}{n(n-1)} \sum k(s, s) - \frac{2}{n^2} \sum k(p, s) \quad (3)$$

29 where k denotes a positive-definite kernel (e.g. RBF kernel) and n is the number of (real or synthetic) samples.

30 Lastly, to compute the KNN score, we first split our real
31 and synthetic samples \mathcal{P} and \mathcal{S} into training and test datasets
32 \mathcal{D}_{tr} and \mathcal{D}_{te} so that $\mathcal{D} = \mathcal{D}_{tr} \cup \mathcal{D}_{te}$. We train the KNN
33 classifier $f : \mathcal{X}_{tr} \rightarrow [0, 1]$ using training data. The accuracy
34 of the trained classifier is then obtained using test samples
35 \mathcal{D}_{te} and given as:

$$36 \hat{t} = \frac{1}{n_{te}} \sum_{(z_i, l_i) \in \mathcal{D}_{te}} \mathbb{I} \left[\left(f(z_i) > \frac{1}{2} \right) = l_i \right] \quad (4)$$

37 where $f(z_i)$ estimates the conditional probability distribution $p(l = 1 | z_i)$. A classifier accuracy approaching random
38 chance (50%) indicates better synthetic data. As suggested
39 by ?, we use a 1-NN classifier to obtain the score.

D: More figures

40 In this section, we provide more results in larger figures for
41 visual comparisons.

Figure 1: Larger version of Figure 2 for the purpose of visual comparison.

Figure 2: More selected samples for log-Gaussian Cox process (LGCP) dataset.

Figure 3: More selected samples for extreme weather (EW) dataset.

Figure 4: More selected samples for turbulent flow (TF) dataset.