
Technical Appendix
In this section, we provide theoretical and empirical justifica-
tion for reducing the edge density of the graph, and specifi-
cally, for our proposed approach of using the αmax parameter
of NPHGS as a threshold for edge removal. For example, if
αmax = 0.15, we would include a directed edge from a pre-
scriber node p to a dispenser node d if at least 15% of p’s pre-
scriptions were filled by d, while the reverse edge from d to
p would be included if at least 15% of the prescriptions filled
by d were prescribed by p. Removing directed edges that
correspond to a low proportion of a provider’s prescription
volume has several intuitive advantages: first, it avoids includ-
ing edges that correspond to rare or chance occurrences, thus
including only those edges that represent a real and sustained
connection between prescriber and dispenser. Second, such
low-volume edges are unlikely to correspond to illicit collu-
sion between prescriber and dispenser. Third, and perhaps
most importantly, we argue that removing low-volume edges
increases the power and accuracy of the NPHGS method
for detecting true patterns of high-risk and potentially illicit
prescribing, avoiding false positives that could result from
overfitting in cases when no signal is present.

Recent work by Wang, Neill, and Chen (2022) demon-
strates that the nonparametric scan statistic is often poorly
calibrated, picking out large, high-scoring subsets of graph
nodes even under the null hypothesis H0 that all nodes’ em-
pirical p-values are uniformly distributed on [0,1]. Under H0,
for a sufficiently large value of the significance threshold α,
and a sufficiently connected graph structure, the scan is likely
to find a large, high-scoring connected subgraph that includes
almost all of the significant nodes in the graph. This reduces
the detection power of the scan (since this false positive sub-
graph might outscore a true, smaller pattern of interest, and
thus be detected instead of that pattern) as well as its pre-
cision (since the detected subgraph might include the true
pattern but also many other nodes that are significant at level
α just by chance). Wang, Neill, and Chen (2022) propose a
new approach using a randomization test to re-calibrate the
nonparametric scan statistic, but their approach is computa-
tionally expensive and thus infeasible for massive graphs like
the ones we consider here.

As an alternative, we propose the much simpler approach
of reducing the graph’s edge density sufficiently so that,
with high probability, a large, high-scoring false positive
subgraph will no longer be detected. Our approach, and the
specific choice of αmax as a threshold, builds on recent re-
sults in percolation theory (Krivelevich 2016). We note that
NPHGS, unlike the more complex scan approach consid-
ered by Wang, Neill, and Chen (2022), performs a greedy
subgraph expansion search, starting from each of a chosen
set of seed nodes {s(i)} (here, the five nodes of each type
with individually most significant p-values), for a range of α
values between 0 and αmax. With only a single p-value per
node, which can either be significant or not significant at level
α, this greedy search corresponds to finding the connected
components containing each seed node s(i) in the induced
graph Gα, where Gα consists of all and only those nodes
with p-values less than α. The largest connected component
found through this procedure will be the highest-scoring sub-
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the overall maximum subgraph score returned by NPHGS is
F ∗ = max0<α≤αmax
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∗
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We can now use percolation theory to estimate the size |S∗
α|

as a function of the number of graph nodes n, the significance
threshold α, and the connectivity of the graph.

In particular, by requiring at least proportion αmax of a
provider’s prescriptions as a threshold to include a directed
edge of the graph, we guarantee that every graph node will
have degree no larger than

⌊
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αmax

⌋
. We assume that this quan-

tity is strictly less than 1
αmax

, since it is unlikely in practice
that a provider will have exactly αmax proportion of their
prescriptions correspond to each of 1

αmax
neighbors. We can

then apply Theorem 1 of Krivelevich (2016), which states:
Theorem 1. Let ϵ > 0. Let G = (V,E) be a graph of maxi-
mum degree at most d on n vertices. Form a random subset
R ⊆ V by including each vertex v ∈ V in R independently
and with probability p. If p = 1−ϵ

d , then w.h.p., all connected
components of the induced subgraph G[R] are of size less
than 4

ϵ2 log n.

In our case, d =
⌊

1
αmax

⌋
, and under the null hypothesis

H0, the induced subgraph G[R] = Gα is formed by including
each vertex independently with probability p = α, for α ≤
αmax. Then Theorem 1 implies that, w.h.p., |S∗

α| < 4
ϵ2 log n,

where ϵ = 1 − α
⌊

1
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⌋
> 0, and thus the corresponding

score Fα(S
∗
α) is O(log n) under H0.

If, on the other hand, we did not restrict the edge density of
the graph, or used a less restrictive threshold, then it is likely
that the score Fα(S

∗
α) under H0 would be much larger. Kriv-

elevich (2016), Theorem 3, implies that if the node degrees d
are greater than 1

α , under mild pseudorandomness conditions
on the spectral ratio of the graph, then w.h.p., there exists a
connected component of Gα of size Θ(n). Since it is very
likely that at least one of the seed nodes is part of this giant
component, we expect that the score Fα(S

∗
α) will be large,

Θ(n), in this case.
To support this reasoning, we perform experiments with

a semi-synthetic dataset based on our first quarter of PDMP
data, but with all p-values generated under the null hypothesis
(i.e., uniform on [0,1]). We consider fixed α values of 0.01,
0.02, . . . , 0.25 for graphs with thresholds of 1%, 1.5%, 2%,
5%, 10%, and 15% of prescriptions for an edge to be included,
along with the original graph without edge restriction (i.e.,
there is an bidirectional edge between a prescriber and a
dispenser if they have at least one prescription in common).
We then compute the maximum subgraph score Fα(S

∗
α) for

each combination of graph and α, and average these scores
over ten runs, with different sets of randomly generated p-
values for each run.

As shown in Figure 3, the score Fα(S
∗
α) remains small

and relatively constant for α values below the edge threshold,
but increases rapidly for α values that are sufficiently large
compared to the threshold. We note that our edge threshold
is conservative in practice: as shown in Table 6, the average
node out-degree for the prescriber-dispenser graph, using



Figure 3: Score Fα(S
∗
α) as a function of α, for various edge

thresholds and the original graph without edge restriction.

Edge Average Maximum Theoretical
threshold out-degree out-degree upper bound

1% 3.0 86 100
1.5% 2.6 52 66
2% 2.3 39 50
5% 1.6 19 20

10% 1.3 10 10
15% 1.1 6 6

Table 6: Comparison of average and maximum node out-
degrees with the theoretical upper bound on maximum out-
degree, for various edge thresholds. In total, the unrestricted
graph has 71,048 nodes and 522,756 directed edges.

αmax as the edge threshold, is much smaller than the theoret-
ical upper bound on maximum node out-degree,

⌊
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⌋
. As

a result, for higher edge thresholds and the resulting sparse
graphs, the score remains small even for α values exceeding
the edge threshold by a substantial margin.

Since the NPHGS score is optimized over α ≤ αmax,
these results demonstrate both theoretically and empirically
that the score will remain small under the null hypothesis
for our choice of αmax as the edge threshold. Our evaluation
experiments and case studies in the main paper confirm that
this methodological contribution enables anomalous clusters
of high-risk and potentially illicit prescribing behavior to be
found in practice, thus providing state law enforcement and
regulatory agencies with a new tool in their fight against the
serious public health threats of opioid misuse and overdose.




