
Technical Appendix
Derivation of Bias Scan Score F (S)
To obtain the score function for a given subgroup S, Bias
Scan computes the generalized log-likelihood ratio F (S) =
maxq̃ P (D | H1(S,q̃))

P (D | H0)
, assuming the following hypotheses:

H0 : odds(yi) =
p̃i

1− p̃i
, ∀si ∈ D.

H1(S, q̃) : odds(yi) =
q̃ p̃i

1− p̃i
, ∀si ∈ DS ,

odds(yi) =
p̃i

1− p̃i
, ∀si ∈ D \DS .

This implies that the probability P (yi) = odds(yi)
1+odds(yi)

=
q̃ p̃i

1−p̃i+q̃ p̃i
for si ∈ DS under H1(S, q̃), and P (yi) = p̃i

otherwise. We denote these probabilities by p1i and p0i respec-
tively, and derive the score F (S):

F (S) = max
q̃

log

∏
si∈DS

(p1i )
yi(1− p1i )

1−yi∏
si∈DS

(p0i )
yi(1− p0i )

1−yi

= max
q̃

( ∑
si∈DS

yi log
p1i
p0i

+
∑

si∈DS

(1− yi) log
1− p1i
1− p0i

)

= max
q̃

( ∑
si∈DS

yi log
q̃

1− p̃i + q̃ p̃i

+
∑

si∈DS

(1− yi) log
1

1− p̃i + q̃ p̃i

)

= max
q̃

( ∑
si∈DS

yi log q̃ −
∑

si∈DS

log(1− p̃i + q̃ p̃i)

)
.

Here we focus on the case where the probabilities p̃i are
over-estimated, i.e., we identify biases where p̃i > P (yi) and
thus 0 < q̃ < 1. Thus we define F (S) as above for q̃MLE =
argmaxq̃

(∑
si∈DS

yi log q̃ −
∑

si∈DS
log(1− p̃i + q̃ p̃i)

)
<

1, and otherwise we have q̃MLE = 1 and thus F (S) = 0.

Bias Scan Algorithm
As described in Zhang and Neill (2016), Bias Scan detects in-
tersectional subgroups for which the classifier’s probabilistic
predictions p̃i are significantly biased as compared to the ob-
served binary outcomes yi, by searching for the rectangular
subgroup S ∈ rect(X) which maximizes the log-likelihood
ratio score F (S) derived above.

To optimize F (S) over rectangular subgroups, Bias Scan
performs a coordinate ascent procedure, optimizing F (S)
over subsets of values for one attribute at a time until con-
vergence. This coordinate ascent procedure is repeated for
multiple iterations, starting from a different, randomly ini-
tialized rectangular subgroup on each iteration. Bias Scan
returns the maximum score F̂ ∗ = maxS F (S) and the corre-
sponding subgroup Ŝ∗ = argmaxS F (S) over all iterations.

The Bias Scan algorithm consists of the following steps:

1. Initialize F̂ ∗ = 0 and Ŝ∗ = ∅.
2. Choose an initial rectangular subgroup S = S1×. . .×SQ

by randomly selecting a subset of values Sj ⊆ Vj , Sj ̸= ∅,
for each attribute Xj . Mark all attributes as “unvisited”.

3. Randomly select an unvisited attribute Xj and find S′
j =

argmaxSj⊆Vj ,Sj ̸=∅ F (S1 × . . . × SQ). Let S′ = S1 ×
. . .× Sj−1 × S′

j × Sj+1 × . . .× SQ.
4. If F (S′) > F (S), then set S = S′ and mark all attributes

as “unvisited”.
5. If F (S) > F̂ ∗, then set F̂ ∗ = F (S) and Ŝ∗ = S.
6. Mark attribute Xj as “visited”.
7. Repeat steps 3-6 until all attributes are marked as “vis-

ited”.
8. Repeat steps 2-7 for a fixed, large number of iterations I .

The optimization over subsets of values Sj ⊆ Vj in Step
3 can be performed efficiently, requiring a number of com-
putations of the score function which is linear rather than
exponential in the arity |Vj | of that attribute, thanks to the
Linear Time Subset Scanning (LTSS) property of the Bias
Scan score function (Neill 2012). The statistical significance
of detected subgroups can be obtained by randomization test-
ing, performing the same search procedure on a large number
of datasets randomly generated under the null hypothesis H0,
and then comparing the score F̂ ∗ for the original data to the
(1 − α) quantile of the distribution of F̂ ∗ for the null data.
Further details are provided by Zhang and Neill (2016).

Proofs of Theorem 1 and Corollary 1
Theorem 1. Assume that a classifier is trained on data D̃
with differential sampling bias ∆ > 1 for subgroup S and
makes predictions p̃i for unbiased test dataD = {(xi, yi)}. If
Bias Scan is used to assess bias in p̃i as compared to yi, then
under assumptions (A1)-(A3), as the number of training data
records |D̃| → ∞, the Bias Scan score F (S) of subgroup S
converges to:

F (S) → Fold(S)−
∑

si∈DS

yi log∆+
∑

si∈DS

log(∆pi+1−pi),

if ∆ > q̂MLE , and F (S) → 0 otherwise, where q̂MLE is the
maximum likelihood estimate of q̃ for Bias Scan assuming no
differential sampling bias (∆ = 1), satisfying∑

si∈DS

yi =
∑

si∈DS

q̂MLE pi
q̂MLE pi + 1− pi

,

and

Fold(S) =
∑

si∈DS

yi log q̂MLE−
∑

si∈DS

log(1−pi+q̂MLEpi)

is the Bias Scan score of subgroup S assuming no differential
sampling bias (∆ = 1).

Proof. As |D̃| → ∞ without differential sampling bias, the
number of training data records tends to infinity for each
x ∈ support(f̃X). The classification model is consistent
by assumption (A1), and thus the estimated probability p̂i



converges to P(Y = 1|X = x) = pi for all x ∈ S for the
training data. By assumption (A2), p̂i → P(Y = 1|X =
x) = pi for all x ∈ S for the test data, and the corresponding
set of test data records DS is non-empty.

Similarly, as |D̃| → ∞ with differential sampling bias ∆
for subgroup S, the number of training data records tends
to infinity for each x ∈ support(f̃X). The classification
model is consistent by assumption (A1), and thus the es-
timated probability p̃i converges to P̃(Y = 1|X = x) =

∆P(Y=1|X=x)
∆P(Y=1|X=x)+P(Y=0|X=x) = ∆pi

∆pi+1−pi
for all x ∈ S for

the training data. By assumption (A2), p̃i → P̃(Y = 1|X =

x) = ∆pi

∆pi+1−pi
for all x ∈ S for the test data, and DS is

non-empty.
Next, we derive the relationship between the maximum

likelihood estimate of the q̃ parameter for Bias Scan, with
and without differential sampling bias. We define:

q̃MLE = argmax
q̃

( ∑
si∈DS

yi log q̃ −
∑

si∈DS

log(1− p̃i + q̃ p̃i)

)
,

q̂MLE = argmax
q̂

( ∑
si∈DS

yi log q̂ −
∑

si∈DS

log(1− p̂i + q̂ p̂i)

)
.

By setting dF (S)
dq̃ = 0 and dF (S)

dq̂ = 0 for the cases with and
without differential sampling bias respectively, we obtain:∑

si∈DS

yi
q̃MLE

=
∑

si∈DS

p̃i
1− p̃i + q̃MLE p̃i

,

∑
si∈DS

yi
q̂MLE

=
∑

si∈DS

p̂i
1− p̂i + q̂MLE p̂i

,

and thus,∑
si∈DS

q̃MLE p̃i
1− p̃i + q̃MLE p̃i

=
∑

si∈DS

q̂MLE p̂i
1− p̂i + q̂MLE p̂i

.

Plugging in the values of p̂i = pi and p̃i = ∆pi

∆pi+1−pi
from

above, and simplifying, we obtain:∑
si∈DS

q̃MLE ∆pi
1− pi + q̃MLE ∆pi

=
∑

si∈DS

q̂MLE pi
1− pi + q̂MLE pi

,

and thus,

q̃MLE =
q̂MLE

∆
.

We can now derive the Bias Scan score without differential
sampling bias as:

Fold(S) =
∑

si∈DS

yi log q̂MLE −
∑

si∈DS

log(1− p̂i + q̂MLE p̂i)

=
∑

si∈DS

yi log q̂MLE −
∑

si∈DS

log(1− pi + q̂MLE pi).

Note that Fold is defined without enforcing the constraint
q̃ < 1. Finally, we derive the Bias Scan score with differential
sampling bias (for detecting over-estimated probabilities) as:

F (S) =
∑

si∈DS

yi log q̃MLE −
∑

si∈DS

log(1− p̃i + q̃MLE p̃i)

=
∑

si∈DS

yi log
q̂MLE

∆
−
∑

si∈DS

log

(
1 +

(
q̂MLE

∆
− 1

)
p̃i

)
=
∑

si∈DS

yi log
q̂MLE

∆
−
∑

si∈DS

log

(
1 +

(q̂MLE −∆)pi
∆pi + 1− pi

)
=
∑

si∈DS

yi log
q̂MLE

∆
−
∑

si∈DS

log

(
1− pi + q̂MLEpi
∆pi + 1− pi

)
,

= Fold(S)−
∑

si∈DS

yi log∆ +
∑

si∈DS

log(∆pi + 1− pi)

if ∆ > q̂MLE (and thus q̃MLE = q̂MLE/∆ < 1), and
otherwise we have q̃MLE = 1 and thus F (S) = 0.

Corollary 1. Under the conditions of Theorem 1, as the
number of test data records |D| → ∞, the normalized Bias
Scan score F (S)/|D| of subgroup S converges to:

F (S)

|D|
→ P(x ∈ S)Esi∈DS

[log(∆pi + 1− pi)− pi log∆],

an increasing function of ∆.

Proof. From Theorem 1, we have

F (S) → Fold(S)−
∑

si∈DS

yi log∆+
∑

si∈DS

log(∆pi+1−pi),

if ∆ > q̂MLE . As |D| → ∞, q̂MLE → 1, and thus we have
both w.h.p. ∆ > q̂MLE and Fold(S) → 0:

F (S) →
∑

si∈DS

(log(∆pi + 1− pi)− yi log∆),

and
F (S)

|D|
→ |DS |

|D|
Esi∈DS

[log(∆pi + 1− pi)− yi log∆].

As |D| → ∞, |DS |/|D| → P(x ∈ S), and E[yi] =
E[E[yi | xi]] = E[pi] for si ∈ DS . Plugging in these values,
we obtain the given expression. To see that the expression
increases with ∆, assumption (A2) implies P(x ∈ S) > 0,
and the first derivative
d(log(∆pi + 1− pi)− pi log∆)

d∆
=

pi
∆pi + 1− pi

− pi
∆

is positive for ∆ > 1, given 0 < pi < 1 by assumption
(A3).

Proof of Theorem 2 (and associated Lemmas)
In this section, we derive a critical value h(α) of the Bias
scan score F ∗, for a given Type-I error rate α, when no
differential sampling bias is present. Our approach is to upper
bound F ∗ = maxS∈rect(X) F (S) by the Bias Scan score
maximized over all subgroups, F ∗

u = F (S∗
u), where S∗

u =
argmaxS⊆V F (S). Additionally, as the number of training
data records |D̃| → ∞, with no differential sampling bias, the
classifier’s predictions p̂i converge to pi for all test records
si, under assumptions (A1) and (A2), as in Theorem 1. Thus
we derive the distribution of F ∗

u under the null hypothesis,
H0 : P(yi = 1) = pi for all si ∈ D.



For any covariate profile x, we define the associated set
of test data records Dx = {(xi, yi)} ⊆ D : xi = x, and
the aggregate quantities y(x) =

∑
si∈Dx

yi and n(x) =∑
si∈Dx

1. We assume that the predicted probabilities pi
are identical for all si ∈ Dx, since these data records have
the same values for all predictor variables, and denote this
probability by p(x). We can then write the Bias Scan score
of a subgroup F (S) as

F (S) = max
0<q̃<1

∑
x∈S

γx(q̃),

where

γx(q̃) = y(x) log (q̃)− n(x) log(q̃p(x) + 1− p(x))

is the total contribution of data records with covariate profile
x to the score of subgroup S for a given value of q̃. Then the
maximum score over all subgroups can be written as

F ∗
u = max

S⊆V
max
0<q̃<1

∑
x∈S

γx(q̃)

= max
0<q̃<1

max
S⊆V

∑
x∈S

γx(q̃)

= max
0<q̃<1

∑
x∈V

γx(q̃)1{γx(q̃) > 0},

thus including all and only those covariate profiles which
make a positive contribution to the score for the given value
of q̃∗mle. Given these definitions, we now consider the proba-
bility that a given covariate profile x will have γx(q̃∗mle) > 0,
and thus be included in S∗

u:

Lemma 1. Under the null hypothesis H0, as n(x) →
∞, the probability that covariate profile x is included
in the highest scoring subgroup S∗

u converges to 1 −
Φ
(

Z
2

√
p(x)(1− p(x))

)
, where q̃∗mle = 1 − Z√

n(x)
, and

Φ is the Gaussian cdf.

Proof. Covariate profile x is included in S∗
u if and only

if γx(q̃∗mle) = y(x) log (q̃∗mle) − n(x) log(q̃∗mlep(x) + 1 −
p(x)) > 0. Given 0 < q̃∗mle < 1, we have:

P(γx(q̃∗mle) > 0)

= P
(
y(x)

n(x)
<

log(q̃∗mlep(x) + 1− p(x))

log q̃∗mle

)
→ P

(
y(x)

n(x)
< p(x)− (1− q̃∗mle)p(x)(1− p(x))

2

)
= P

(
ψ(x) < −Z

2

√
p(x)(1− p(x))

)
,

where ψ(x) =
√

n(x)
p(x)(1−p(x))

(
y(x)
n(x) − p(x)

)
. Here we

have used a second order Taylor expansion for q̃∗mle, since
q̃∗mle converges to 1 as n(x) → ∞. Next, since y(x) ∼
Binomial(n(x), p(x)) under H0, ψ(x) → Gaussian(0, 1)
as n(x) → ∞, and P(γx(q̃∗mle) > 0) converges to 1 −
Φ
(

Z
2

√
p(x)(1− p(x))

)
, where Φ is the Gaussian cdf.

Lemma 2. Under the null hypothesis H0, as n(x) → ∞,
the expectation and variance of γx(q̃∗mle)1{γx(q̃∗mle) > 0}
are upper bounded by constants k1 ≈ 0.202 and k22 ≈ 0.274
respectively.

Proof. From Lemma 1, as n(x) → ∞, ψ(x) =√
n(x)

p(x)(1−p(x))

(
y(x)
n(x) − p(x)

)
→ Gaussian(0, 1). Moreover,

conditional on γx(q̃∗mle) > 0, ψ(x) has its right tail truncated
at β = −Z

2

√
p(x)(1− p(x)), giving E[ψ(x) | γx(q̃∗mle) >

0] = −h(−β), and Var[ψ(x) | γx(q̃∗mle) > 0] =

1 − βh(−β) − h(−β)2, where h(x) = ϕ(x)
1−Φ(x) is the

Gaussian hazard function. Since y(x) = n(x)p(x) +

ψ(x)
√
n(x)p(x)(1− p(x)), this implies:

E

[
y(x)− n(x)p(x)√

n(x)
| γx(q̃∗mle) > 0

]
= −h(−β)

√
p(x)(1− p(x));

Var

[
y(x)− n(x)p(x)√

n(x)
| γx(q̃∗mle) > 0

]
= (1− βh(−β)− h(−β)2)p(x)(1− p(x)).

Next, as in Lemma 1, we can use a second-order Taylor
expansion to write:

γx(q̃
∗
mle)

= y(x) log q̃∗mle − n(x) log(q̃∗mlep(x) + 1− p(x))

= y(x) log q̃∗mle − n(x) log q̃∗mle

log(q̃∗mlep(x) + 1− p(x))

log q̃∗mle

→ (y(x)− n(x)p(x)) log q̃∗mle

+
(1− q̃∗mle)(log q̃

∗
mle)n(x)p(x)(1− p(x))

2

→ (y(x)− n(x)p(x))

(
− Z√

n(x)

)

+
1

2

(
Z√
n(x)

)(
− Z√

n(x)

)
n(x)p(x)(1− p(x))

= −Z

(
y(x)− n(x)p(x)√

n(x)

)
− Z2

2
p(x)(1− p(x)),

where we have used log q̃∗mle → −(1− q̃∗mle) = − Z√
n(x)

as

n(x) → ∞.
Then for the expectation we have:

E[γx(q̃∗mle) | γx(q̃∗mle) > 0]

→ −ZE

[
y(x)− n(x)p(x)√

n(x)

]
− Z2

2
p(x)(1− p(x))

= Zh(−β)
√
p(x)(1− p(x))− Z2

2
p(x)(1− p(x))

= −2βh(−β)− 2β2.



Then, since P(γx(q̃∗mle) > 0) = 1− Φ(−β) from Lemma 1,
we know:

E[γx(q̃∗mle)1{γx(q̃∗mle) > 0}]
→ (1− Φ(−β))(−2βh(−β)− 2β2)

= −2βϕ(−β)− 2β2(1− Φ(−β))
≤ k1,

since this expression attains a maximum value of k1 ≈
0.202456 at β ≈ −0.61.
For the variance, we have:

Var[γx(q̃∗mle) | γx(q̃∗mle) > 0]

→ Z2Var

[
y(x)− n(x)p(x)√

n(x)

]
= Z2(1− βh(−β)− h(−β)2)p(x)(1− p(x))

= 4β2(1− βh(−β)− h(−β)2).

Then, we know:

Var[γx(q̃∗mle)1{γx(q̃∗mle) > 0}]
= Var[γx(q̃∗mle) | γx(q̃∗mle) > 0]P(γx(q̃∗mle) > 0) +

E[γx(q̃∗mle) | γx(q̃∗mle) > 0]2P(γx(q̃∗mle) > 0)

(1− P(γx(q̃∗mle) > 0))

→ 4β2(1− βh(−β)− h(−β)2)(1− Φ(−β)) +
(−2βh(−β)− 2β2)2(1− Φ(−β))Φ(−β)

= 4β2(1− Φ(−β))(1− βh(−β)− h(−β)2+
(β + h(−β))2Φ(−β))

≤ k22,

since this expression attains a maximum value of k22 ≈
0.273709 at β ≈ −0.98.

Theorem 2. Assume that a classifier is trained on unbiased
training data D̃ and makes predictions p̂i for unbiased test
data D = {(xi, yi)}, and Bias Scan is used to assess bias in
p̂i as compared to yi. Let F ∗ = maxS∈rect(X) F (S) be the
Bias Scan score, maximized over all rectangular subgroups S.
Then under assumptions (A1)-(A4), as the number of training
data records |D̃| → ∞ and the number of test data records
|D| → ∞, for a given Type-I error rate α > 0, there exists
a critical value h(α) and constants k1 ≈ 0.202, k2 ≈ 0.523
such that

P(F ∗ > h(α)) ≤ α,

where

h(α) = k1M + k2Φ
−1(1− α)

√
M, (3)

and Φ is the Gaussian cdf.

Proof. As |D̃| → ∞ without differential sampling bias, the
number of training data records tends to infinity for each
x ∈ support(f̃X). The classification model is consistent by

assumption (A1), and thus the estimated probability p̂i con-
verges to P(Y = 1|X = x) = pi for all x ∈ S for the train-
ing data. By assumption (A2), p̂i → P(Y = 1|X = x) = pi
for all x ∈ S for the test data, and the corresponding set
of test data records DS is non-empty. As shown above,
F ∗ ≤ F ∗

u =
∑

x∈V γx(q̃
∗
mle)1{γx(q̃∗mle) > 0}, where

q̃∗mle = argmax0<q̃<1

∑
x∈V γx(q̃)1{γx(q̃) > 0} and

γx(q̃) = y(x) log q̃ − n(x) log(q̃p(x) + 1 − p(x)). From
Lemma 2, for each of the M unique covariate profiles x
in the test data, we know that γx(q̃∗mle)1{γx(q̃∗mle) > 0}
is drawn from a censored Gaussian distribution, with mean
µx ≤ k1 and variance σ2

x ≤ k22 , where k1 ≈ 0.202 and k2 ≈√
0.274 ≈ 0.523. Moreover, since a censored Gaussian with

bounded variance has bounded fourth moment, we know that
the Lyapunov condition holds. Thus, from the Lyapunov CLT,
we know that for large M , F∗

u−
∑

x∈V µx√∑
x∈V σ2

x

→ Gaussian(0, 1),

and by assumption (4) we know that M is large enough for
F ∗
u to be approximately Gaussian. Then since F ∗ ≤ F ∗

u ,
µx ≤ k1 ∀x, and σ2

x ≤ k22 ∀x, we have:
P(F ∗ > h(α))

= P(F ∗ > k1M + k2Φ
−1(1− α)

√
M)

≤ P(F ∗
u > k1M + k2Φ

−1(1− α)
√
M)

= P

F ∗
u >

(∑
x∈V

k1

)
+Φ−1(1− α)

√∑
x∈V

k22


≤ P

F ∗
u >

(∑
x∈V

µx

)
+Φ−1(1− α)

√∑
x∈V

σ2
x


= 1− Φ(Φ−1(1− α))

= α.

Proofs of Theorems 3 and 4
Theorem 3. Assume that a classifier is trained on data D̃
with differential sampling bias ∆ > 1 for rectangular sub-
group ST and makes predictions p̃i for unbiased test data
D = {(xi, yi)}, and Bias Scan is used to assess bias in p̃i as
compared to yi. Let F ∗ = maxS∈rect(X) F (S) be the Bias
Scan score, and let h(α) be the score threshold for detection
at a fixed Type-I error rate of α, as given in Equation (3).
Then for any α > 0 and ∆ > 1, under assumptions (A1)-(A4),
as the number of training data records |D̃| → ∞ and the
number of test data records |D| → ∞, P(F ∗ > h(α)) → 1.

Proof. By Corollary 1, as |D| → ∞, F (ST )/|D| converges
to P(x ∈ ST )Esi∈DST

[log(∆pi + 1 − pi) − pi log∆],
which is greater than zero because P(x ∈ ST ) > 0 by
assumption (A2), 0 < pi < 1 by assumption (A3), and
log(∆pi+1−pi)−pi log∆ > 0 when ∆ > 1 and 0 < pi <
1. By Theorem 2, as |D| → ∞, for any α > 0, h(α) con-
verges to a constant independent of |D|. Thus h(α)/|D| → 0
and P(F (ST ) > h(α)) → 1. Finally, since subgroup ST

is rectangular, F ∗ = maxS∈rect(X) F (S) ≥ F (ST ), and
P(F ∗ > h(α)) → 1.



Theorem 4. Assume that a classifier is trained on data D̃
with differential sampling bias ∆ > 1 for rectangular sub-
group ST and makes predictions p̃i for unbiased test data
D = {(xi, yi)}, and Bias Scan is used to assess bias in
p̃i as compared to yi. Let F ∗ = maxS∈rect(X) F (S) be
the Bias Scan score, and let h(α) be the score threshold
for detection at a fixed Type-I error rate of α, as given in
Equation (3). Further, assume DST is fixed, with finite size
|DST | and

(∑
si∈DST

yi

)
< |DST |. Then for any α > 0,

under assumptions (A1)-(A4), as the number of training data
records |D̃| → ∞, there exists ∆thresh ≥ 1 such that, if
∆ > ∆thresh, then P(F ∗ > h(α)) → 1, where

∆thresh = max(1, Q−1(h(α)− Fold(S
T ))),

Q(∆) =
∑

si∈DST

(log(∆pi + 1− pi)− yi log∆),

and Fold(S
T ) is the Bias Scan score of subgroup ST assum-

ing no differential sampling bias (∆ = 1).

Proof. From Theorem 1, for finite |DST |, we haveF (ST ) →
Fold(S

T )+Q(∆) for ∆ > q̂MLE and |D̃| → ∞. We derive:

dQ

d∆
=

∑
si∈DST

(
pi

∆pi + 1− pi
− yi

∆

)

=
1

∆

∑
si∈DST

(p̃i − yi).

Since 0 < pi < 1 by assumption (A3), all p̃i are increasing
with ∆. Moreover, since

∑
si∈DST

(p̃i − yi) = 0 for ∆ =

q̂MLE ,
∑

si∈DST
(p̃i − yi) > 0 for all ∆ > q̂MLE . This

implies that Q(∆) is increasing, and therefore invertible, on
the interval ∆ ≥ q̂MLE .

Next we show Q(∆) → ∞ as ∆ → ∞. For some small
positive ϵ ≈ 0, let ∆ϵ denote the minimum value of ∆ >
q̂MLE such that

∑
si∈DST

(p̃i − yi) ≥ ϵ. Then for any ∆′ >

∆ϵ, we have:

Q(∆′) = Q(∆ϵ) +

∫ ∆′

∆ϵ

dQ

d∆
d∆

≥ Q(∆ϵ) +

∫ ∆′

∆ϵ

ϵ

∆
d∆

= Q(∆ϵ) + ϵ(log∆′ − log∆ϵ)

= C1 log∆
′ + C0

for constants C1 and C0, and thus Q(∆) increases as
o(log∆) for ∆ ≥ q̂MLE .

Now, since Fold(S
T ) is independent of ∆, we know

that Fold(S
T ) + Q(∆) is continuous and increasing for

∆ ≥ q̂MLE , and lim∆→∞ Fold(S
T ) + Q(∆) = ∞. Since

Fold(S
T ) + Q(∆) = 0 at ∆ = q̂MLE , there must ex-

ist a single intermediate value of ∆ > q̂MLE such that
Fold(S

T )+Q(∆) = h(α), i.e., ∆ = Q−1(h(α)−Fold(S
T )).

Then we set ∆thresh = max(1, Q−1(h(α) − Fold(S
T ))).

This implies that F (ST ) → Fold(S
T ) + Q(∆) > h(α),

and P(F (ST ) > h(α)) → 1, for ∆ > ∆thresh. Fi-
nally, assuming that subgroup ST is rectangular, F ∗ =
maxS∈rect(X) F (S) ≥ F (ST ), and P(F ∗ > h(α)) → 1
for ∆ > ∆thresh.


