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Abstract
With an increased focus on incorporating fairness in machine
learning models, it becomes imperative not only to assess and
mitigate bias at each stage of the machine learning pipeline
but also to understand the downstream impacts of bias across
stages. Here we consider a general, but realistic, scenario in
which a predictive model is learned from (potentially biased)
training data, and model predictions are assessed post-hoc
for fairness by some auditing method. We provide a theoret-
ical analysis of how a specific form of data bias, differential
sampling bias, propagates from the data stage to the predic-
tion stage. Unlike prior work, we evaluate the downstream
impacts of data biases quantitatively rather than qualitatively
and prove theoretical guarantees for detection. Under reason-
able assumptions, we quantify how the amount of bias in
the model predictions varies as a function of the amount of
differential sampling bias in the data, and at what point this
bias becomes provably detectable by the auditor. Through ex-
periments on two criminal justice datasets– the well-known
COMPAS dataset and historical data from NYPD’s stop and
frisk policy– we demonstrate that the theoretical results hold
in practice even when our assumptions are relaxed.

Introduction
Machine learning models are being used in numerous applica-
tions such as healthcare (De Fauw et al. 2018), online adver-
tising (Perlich et al. 2014), and finance (Malekipirbazari and
Aksakalli 2015). Due to its increased proliferation, there is a
rising concern in the machine learning community to deploy
fair machine learning models (Barocas, Hardt, and Narayanan
2017; Mehrabi et al. 2021). Since decision-making in ma-
chine learning comprises of various stages such as the data
stage, modeling stage, and prediction stage (Suresh and Gut-
tag 2019), it becomes imperative to look at the fairness prob-
lem across stages, rather than limiting the discussion to a
single stage. For instance, the data stage could be biased
due to members of a subgroup being systematically selected
with a higher or a lower probability than others (Medical-
Dictionary 2016), also known as sample selection bias. Such
biases could propagate to the prediction stage, and the re-
sulting biases in prediction could be compounded by other
sources such as model misspecification (Gajane and Pech-
enizkiy 2017). However, it is unclear precisely how and to
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what extent the data bias would affect the predictions, and
when the resulting prediction biases would be detectable
by some auditing approach. Such biases, once detected and
precisely characterized, could then be corrected, e.g., by re-
sampling to de-bias the data.

In this paper, we analyze the propagation of differential
sampling bias from the data stage to the prediction stage.
Differential sampling bias is a form of sample selection bias
in which some subpopulation S is sampled non-uniformly,
such that the distribution of an outcome variable Y given
predictor variables X in the sampled data for S differs from
the true (population) distribution of Y given X for S. 1

This bias can arise in many different circumstances. For
example, in criminal justice, both the organizational biases
of police departments (e.g., a policy of conducting large num-
bers of pedestrian stops in predominantly minority neighbor-
hoods) and the perceptual biases of individual police officers
(e.g., higher likelihood of stopping and frisking Black indi-
viduals) led to much higher proportions of Black individuals
being arrested for marijuana possession, despite similar rates
of use in the population as a whole (Edwards et al. 2020). In
our analysis of NYPD stop and frisk data, we consider the
race of the stopped individual as our outcome variable, and
observe that Pr(race = “Black”) is significantly increased as
compared to a “less biased” alternative policing strategy.

Differential sampling bias can also result from concept
shift: a model meant for prediction of outcome variable Y
in one setting is learned using data from a different setting
where the relationship between Y and the predictor variables
X differs. For example, if criminal justice data from one ju-
risdiction is used to predict a defendant’s risk of reoffending
in a different jurisdiction, or if historical data is used and
reoffending patterns have changed over time, the training
data will exhibit differential sampling bias: the proportion
of reoffenders for certain demographics may be higher or
lower in the training data as compared to the true probabil-
ities for the jurisdiction and time period of interest. In our
experimental analysis of the COMPAS dataset, we inject sim-
ulated differential sampling bias (assuming concept shift) by
weighted resampling of the training data.

1Note that differential sampling bias would not be present if
subpopulation S was under- or over-sampled but the distribution
of Y given X for S remained unchanged. We do not address other
forms of sample selection bias here.
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Figure 1: Problem setup. Step 1: Differential sampling bias ∆
is induced into subgroup ST . Step 2: A classification model
is trained on the biased data to predict the probability of
belonging to class Y = 1. Step 3: Predicted probabilities of
belonging to Y = 1, given by {p̃i}, are made on the test data.
Step 4: Bias Scan finds the most biased subgroup S∗ and its
log-likelihood ratio score F ∗ based on the predictions.

Here we introduce the first formal analysis of how differ-
ential sampling bias induced in the data stage (i.e., biased
training data) propagates through the modeling and predic-
tion stages, leading to significant biases in prediction. These
propagated biases can then be detected by an auditor that
compares the model predictions with the observed outcomes.

Our problem setup is shown in Figure 1: first, in the data
stage, we assume initially unbiased training and test data
records drawn i.i.d. from some joint probability distribution
fX,Y (x, y) of the predictor variables X and binary outcome
variable Y . Then differential sampling bias ∆ is injected
into the “true” subgroup ST for the training data only. With-
out loss of generality, we define Y such that the differential
sampling bias increases the probability P̃(Y = 1|X), thus
over-sampling records with Y = 1 in subgroup ST . We pa-
rameterize the multiplicative increase in the odds of Y = 1 by
∆ > 1. Second, in the modeling stage, a classification model
is trained using the biased data. Third, in the prediction stage,
the classifier makes predictions p̃i (the estimated probability
that Y = 1 for each data record) for the test data. Fourth,
Bias Scan (Zhang and Neill 2016) is used to assess whether
the predictions p̃i are systematically biased as compared to
the test outcomes yi for any intersectional subgroup.

Given this problem setup, we present theoretical and em-
pirical results showing (a) the amount of bias that propagates
from the data stage to the prediction stage, as measured by
the log-likelihood ratio (LLR) score found by Bias Scan; and
(b) when the bias will exceed a threshold for significance,
assuming a fixed false positive rate α, thus enabling detection
by Bias Scan. Our specific contributions are as follows:

1. We define and quantify the differential sampling bias ∆
induced into subgroup ST in the binary outcome Y .

2. We derive a new closed-form expression for the LLR score
of Bias Scan, used to audit a consistent classifier trained
on large data with differential sampling bias.

3. We present a new asymptotic result for the null distribu-
tion of the Bias Scan score, which leads to a threshold
score h(α) for detection at a fixed false positive rate α.

4. We demonstrate detection with full asymptotic power,
PH1

(Reject H0) → 1, as the data size becomes large.
5. Using the threshold h(α), we find the minimum amount

of bias ∆ that needs to be induced in subgroup ST for it
to be provably detectable in the finite sample case.

6. We evaluate our theoretical results empirically on two
different criminal justice datasets. On the well-known

COMPAS dataset, we compare the empirical and theoreti-
cal relationships between the Bias Scan score F ∗ and the
amount of injected bias ∆, across two different classifica-
tion models and two types of bias injection (marginal and
intersectional). We also analyze historical data from the
NYPD’s “stop-question-frisk” (SQF) policy, estimating
the amount of differential sampling bias ∆ in the data as
compared to a “less biased” alternative policing strategy.

7. For both datasets, we observe that the empirical relation-
ship between the propagated bias in predictions (as mea-
sured by the Bias Scan score F ∗) and the differential sam-
pling bias in data (as measured by ∆) corresponds well to
the theoretical values. We also confirm that, if enough bias
is present in the data stage, then the affected subgroup is
detectable by the auditor in the prediction stage with high
accuracy. These two conclusions demonstrate the valid-
ity of the theoretical assumptions and provide reasoning
when theoretical and empirical results differ.

Related Work
Stage-specific notions of fairness and bias: The machine
learning community has typically centered the fairness prob-
lem in either the data stage or the prediction stage (Barocas,
Hardt, and Narayanan 2017). In the data stage, various at-
tempts have been made to detect and mitigate data biases. For
example, Zemel et al. (2013), Madras et al. (2018), and Song
et al. (2019) attempt to de-bias data by learning fair represen-
tations. Silvia et al. (2020), Oneto and Chiappa (2020), and
Ravishankar, Malviya, and Ravindran (2021) discuss causal
notions of fairness such as path-specific fairness, and use
them to detect and mitigate unfairness in the data genera-
tion process. Similarly, many approaches have been proposed
to address biases in the prediction stage: Berk et al. (2021)
state multiple fairness definitions such as demographic parity
and calibration based on model predictions; Corbett-Davies
and Goel (2018) discuss the limitations of these fairness
definitions; Kleinberg, Mullainathan, and Raghavan (2016)
and Chouldechova (2017) prove that, except in special cases,
these definitions are incompatible; Zadrozny (2004) proposes
a framework to correct bias in model predictions; and Pe-
dreschi, Ruggieri, and Turini (2009) propose novel measures
of discrimination to correct discriminatory patterns. None
of the aforementioned works have analyzed how bias propa-
gates downstream, across different stages of the pipeline.

Bias propagation pipelines: Suresh and Guttag (2019)
discuss the bias problem holistically, rather than centering
it to a particular stage, by laying out a framework compris-
ing of biases originating at different stages of the pipeline.
Similarly, an opinion article by Hooker (2021) proposes that
bias should be viewed and analyzed as an aggregation of
the biases arising in different stages. However, neither of
these works provide any formal, quantitative analysis of how
bias propagates between stages. Rambachan and Roth (2019)
quantitatively analyze how selection bias propagates from
the data stage to the prediction stage. However, the study
makes a strong assumption about the form of the selection
process, and does not discuss whether the propagated bias is
detectable or how it can be detected in the prediction stage.
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Frameworks for detection of intersectional biases: Sev-
eral recent approaches have been proposed to detect biases
affecting a subpopulation defined along multiple data dimen-
sions (Zhang and Neill 2016; Kearns et al. 2018). Here we
apply Bias Scan (Zhang and Neill 2016) to assess models
learned from biased data, detecting intersectional subgroups
where the model predictions p̃i most significantly overesti-
mate P(Y = 1 | X = xi). Bias Scan builds on previous
univariate and multivariate subset scan approaches (Neill
2012; Neill, McFowland III, and Zheng 2013). Additionally,
McFowland III, Somanchi, and Neill (2018) use a similar
multidimensional scan framework to discover the subgroups
that are most significantly affected by a treatment in a ran-
domized experiment, and provide statistical guarantees on
detection. However, all of these approaches focus on a single
pipeline stage (predictions or outcomes), while our work ex-
amines the propagation of data biases into model predictions.

Preliminaries
Notations
Assume test data D = {(xi, yi)} drawn i.i.d. from joint
probability distribution fX,Y (x, y) = fX(x)fY |X(y|x) and
training data D̃ = {(x̃i, ỹi)} drawn i.i.d. from joint probabil-
ity distribution f̃X,Y (x, y) = f̃X(x)f̃Y |X(y|x). Here Y is a
binary outcome variable, and thus we can write fY |X(y|x)
and f̃Y |X(y|x) as the probabilities P(Y = y |X = x) and
P̃(Y = y | X = x), y ∈ {0, 1}, for test and training data
respectively. Let pi = P(Y = 1 |X = xi) be the true proba-
bility that Y = 1 for test record si = (xi, yi), and let p̃i and
p̂i be the estimated probabilities that Y = 1 for test record
si from classification models learned from training data with
and without differential sampling bias. Note that p̃i = p̂i
when ∆ = 1 (under the null hypothesis of no bias).

We assume that X consists of a set of discrete-valued2

predictor variables {X1, . . . , XQ} and that each variable Xi

takes on a set of values Vi. An intersectional subgroup S is
defined as a subset of the Cartesian product V = V1 × . . .×
VQ. A rectangular subgroup is one that can be represented
as the Cartesian product of subsets of attribute values, S =
S1 × . . . × SQ, for Si ⊆ Vi. For example, if X1 = Gender,
V1 = {Male, Female}, X2 = Race, and V2 = {Black, White,
Other}, then {Male, Female} × {Black, White} = {(Male,
Black), (Female, Black), (Male, White), (Female, White)}
is a rectangular subgroup, while {(Male, Black), (Female,
White)} is non-rectangular. Let rect(X) denote the set of all
rectangular subgroups of X . Finally, for test dataset D, we
associate with any given subgroup S the subset of matching
data records DS = {(xi, yi)} ⊆ D : xi ∈ S.

Bias Scan
Bias Scan (Zhang and Neill 2016) is a multi-dimensional
subset scanning algorithm used to detect intersectional sub-
groups for which a classifier’s probabilistic predictions p̃i of a

2Sensitive covariates (e.g. race, ethnicity, and gender) are usually
discrete. Continuous covariates can be discretized as a preprocessing
step, using the observed covariate distribution or domain knowledge.

binary outcome yi are significantly biased as compared to the
observed outcomes yi. More precisely, Bias Scan searches for
the rectangular subgroup S∗ which maximizes a Bernoulli
log-likelihood ratio (LLR) scan statistic,3

S∗ = argmax
S∈rect(X)

F (S),

with corresponding LLR score F ∗ = F (S∗).
To obtain the score function for a given subgroup S, Bias

Scan computes the generalized log-likelihood ratio F (S) =

max
q̃

log P (D | H1(S,q̃))
P (D | H0)

, assuming the following hypotheses:

H0 : odds(yi) =
p̃i

1− p̃i
, ∀si ∈ D.

H1(S, q̃) : odds(yi) =
q̃ p̃i

1− p̃i
, ∀si ∈ DS ,

odds(yi) =
p̃i

1− p̃i
, ∀si ∈ D \DS .

Here we detect biases where the probabilities p̃i are over-
estimated, and thus 0 < q̃ < 1. As derived in the Technical
Appendix, the resulting log-likelihood ratio score F (S) is

F (S) = max
0<q<1

( ∑
si∈DS

yi log q −
∑

si∈DS

log(1− pi + q pi)

)
(1)

The Bias Scan algorithm for optimizing F (S) over rectan-
gular subgroups is provided in the Technical Appendix.

Differential Sampling Bias
In this section, we quantify differential sampling bias for a
subgroup S, as follows:
Definition 1. A subgroup S exhibits differential sampling
bias ∆ > 1 towards the outcome Y = 1 if, for all x ∈ S,

P̃(Y = 1|X = x) =
∆P(Y=1|X=x)

∆P(Y=1|X=x)+P(Y=0|X=x)
(2)

For example, differential sampling bias could be injected
into unbiased training data by re-drawing data elements
{(x̃i, ỹi)}, for x̃i ∈ S, with replacement, with sampling
weights wi = ∆ for ỹi = 1 and wi = 1 for ỹi = 0. We use
this approach to inject bias into the COMPAS dataset in our
experiments below.

Theoretical Results
In this section, we derive theoretical results to understand
the propagated effects of differential sampling bias and to
provide statistical guarantees for detectability.

More precisely, we prove four main theorems. Given the
problem setup described above and the assumptions listed
below, Theorem 1 provides an asymptotic closed-form
formulation of the Bias Scan log-likelihood ratio (LLR)

3We assume that the bias is injected into a rectangular subgroup,
a common formulation (e.g., used in decision trees), as it is repre-
sentative of a cohesive and interpretable subpopulation.
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score F (ST ) of the injected subgroup ST as a function of the
amount of differential sampling bias ∆. If ST is a rectangular
subgroup, ST ∈ rect(X), this score is a lower bound on
the overall Bias Scan score F ∗ = maxS∈rect(X) F (S).
Theorem 2 provides an upper bound for the null distribution
of F ∗ (i.e., assuming no bias is present), enabling us to
compute a threshold score for detection. Finally, Theorems 3
and 4 combine these results to show asymptotic detection
with full power for any ∆ > 1 as the sizes of the training
and test data go to infinity, as well as computing the mini-
mum amount of bias ∆ needed for detection in finite test data.

These Theorems rely on three key assumptions:
(A1) Consistency of the classifier used in the prediction stage,
for learning the conditional distribution f̃Y |X .
(A2) Full support of the biased training data: support(f̃X) ⊇
support(fX), and support(fX) ∩ S ̸= ∅.
(A3) Positivity: 0 < P(Y = 1 |X = x) < 1, ∀x.
Given these assumptions, we first derive the relationship
between the amount of differential sampling bias ∆ injected
into subgroup S, and the Bias Scan score F (S) as follows,

Theorem 1. Assume that a classifier is trained on data D̃
with differential sampling bias ∆ > 1 for subgroup S and
makes predictions p̃i for unbiased test data D = {(xi, yi)}. If
Bias Scan is used to assess bias in p̃i as compared to yi, then
under assumptions (A1)-(A3), as the number of training data
records |D̃| → ∞, the Bias Scan score F (S) of subgroup S
converges to:

F (S) → Fold(S)−
∑

si∈DS

yi log∆+
∑

si∈DS

log(∆pi+1−pi),

if ∆ > q̂MLE , and F (S) → 0 otherwise, where q̂MLE is the
maximum likelihood estimate of q̃ for Bias Scan assuming no
differential sampling bias (∆ = 1), satisfying∑

si∈DS

yi =
∑

si∈DS

q̂MLE pi
q̂MLE pi + 1− pi

, and

Fold(S) =
∑

si∈DS

yi log q̂MLE−
∑

si∈DS

log(1−pi+q̂MLEpi)

is the Bias Scan score of subgroup S assuming no differential
sampling bias (∆ = 1).

The proof of Theorem 1 is provided in the Technical Ap-
pendix. Critically, under assumptions (A1)-(A3), as |D̃| →
∞, we have p̃i → P̃(Y = 1 |X = xi) =

∆pi

∆pi+1−pi
for all

si ∈ DS , and the corresponding predicted probabilities with
no differential sampling bias, p̂i → P(Y = 1 |X = xi) = pi.
We then show that the maximum likelihood estimate (MLE)
of q̃ for Bias Scan is q̂MLE/∆, where q̂MLE is the corre-
sponding MLE with no differential sampling bias. Finally,
we plug in the expressions for p̃i, p̂i, and q̃MLE , and simplify.
Corollary 1. Under the conditions of Theorem 1, as the
number of test data records |D| → ∞, the normalized Bias
Scan score F (S)/|D| of subgroup S converges to:
F (S)

|D|
→ P(x ∈ S)Esi∈DS

[log(∆pi + 1− pi)− pi log∆],

an increasing function of ∆.

Next, we provide statistical guarantees for the detection of
bias. To do so, we first consider the distribution of the Bias
Scan score F ∗ = maxS∈rect(X) F (S) under the null hypoth-
esis of no bias, H0. For a given false positive rate α, we find
a score threshold h(α) such that PH0

(F ∗ > h(α)) ≤ α.

To do so, we make the additional assumption:
(A4) The number of unique covariate profiles in the test data,
M , is large enough so that Gaussian approximations hold
(e.g., M > 30) but finite (i.e., M remains constant as the
number of test data records |D| → ∞).

Then we can show the following:

Theorem 2. Assume that a classifier is trained on unbiased
training data D̃ and makes predictions p̂i for unbiased test
data D = {(xi, yi)}, and Bias Scan is used to assess bias in
p̂i as compared to yi. Let F ∗ = maxS∈rect(X) F (S) be the
Bias Scan score, maximized over all rectangular subgroups S.
Then under assumptions (A1)-(A4), as the number of training
data records |D̃| → ∞ and the number of test data records
|D| → ∞, for a given Type-I error rate α > 0, there exists
a critical value h(α) and constants k1 ≈ 0.202, k2 ≈ 0.523
such that

P(F ∗ > h(α)) ≤ α, where

h(α) = k1M + k2Φ
−1(1− α)

√
M, (3)

and Φ is the Gaussian cdf.

Critically, h(α) does not depend on the number of test
data records |D|, but only on the number of unique covariate
profiles in the test data M . Now, we prove that under the
presence of bias ∆, h(α) serves as a threshold for rejecting
the null hypothesis of no bias with full asymptotic power.

Theorem 3. Assume that a classifier is trained on data D̃
with differential sampling bias ∆ > 1 for rectangular sub-
group ST and makes predictions p̃i for unbiased test data
D = {(xi, yi)}, and Bias Scan is used to assess bias in p̃i as
compared to yi. Let F ∗ = maxS∈rect(X) F (S) be the Bias
Scan score, and let h(α) be the score threshold for detection
at a fixed Type-I error rate of α, as given in Equation (3).
Then for any α > 0 and ∆ > 1, under assumptions (A1)-(A4),
as the number of training data records |D̃| → ∞ and the
number of test data records |D| → ∞, P(F ∗ > h(α)) → 1.

We now find the minimum bias that needs to be induced
into subgroup S to be detectable for a given Type-I error rate.

Theorem 4. Assume that a classifier is trained on data D̃
with differential sampling bias ∆ > 1 for rectangular sub-
group ST and makes predictions p̃i for unbiased test data
D = {(xi, yi)}, and Bias Scan is used to assess bias in
p̃i as compared to yi. Let F ∗ = maxS∈rect(X) F (S) be
the Bias Scan score, and let h(α) be the score threshold
for detection at a fixed Type-I error rate of α, as given in
Equation (3). Further, assume DST is fixed, with finite size
|DST | and

(∑
si∈DST

yi

)
< |DST |. Then for any α > 0,

under assumptions (A1)-(A4), as the number of training data
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records |D̃| → ∞, there exists ∆thresh ≥ 1 such that, if
∆ > ∆thresh, then P(F ∗ > h(α)) → 1, where

∆thresh = max(1, Q−1(h(α)− Fold(S
T ))),

Q(∆) =
∑

si∈DST

(log(∆pi + 1− pi)− yi log∆),

and Fold(S
T ) is the Bias Scan score of subgroup ST assum-

ing no differential sampling bias (∆ = 1).

Proofs of Theorems 1-4 are provided in the Appendix.

Experiments
We perform experiments on two criminal justice datasets to
validate our theoretical results: semi-synthetic predictions
of recidivism risk derived from the well-known COMPAS
dataset, and real-world “stop, question and frisk” (SQF) data
from the New York Police Department (NYPD).

Experiments on COMPAS/ProPublica Data
COMPAS is a commercial decision-support algorithm which
has been applied in many jurisdictions to estimate a defen-
dant’s probability of reoffending, with impacts on criminal
justice outcomes such as bail, sentencing, and parole. COM-
PAS gained notoriety when investigative journalists from
ProPublica published a study arguing that COMPAS was
racially biased against Black defendants (Angwin et al. 2016).
The public dataset compiled by ProPublica4, including COM-
PAS risk predictions for 7,214 defendants in Broward County,
Florida, from 2013-2014, and a two-year follow-up to record
which defendants were rearrested, has been studied by nu-
merous algorithmic bias researchers (Barenstein 2019).

While most of these analyses focus on assessing biases in
the COMPAS risk predictions (Chouldechova 2017; Klein-
berg et al. 2018), we instead utilize this dataset to learn pre-
dictive models for the binary outcome (rearrest within two
years) as a function of five categorical predictor variables5,
and use these models to study how differential sampling bias
in the data propagates to the model predictions.

To do so, we consider differential sampling biases ∆ ∈
{1, 1.25, 1.5, . . . , 10} injected into one of two rectangu-
lar subgroups. Letting X1 = Gender, X2 = Race, and Vj

= the set of all possible values for attribute Xj , we con-
sider the subgroups ST = {Female} × V2 × . . . × V5 and
ST = {Female} × {Caucasian} × V3 × . . . × V5. The first
subgroup represents a marginal bias against females (since
we are oversampling females who reoffended, as compared
to females who did not reoffend, by a factor of ∆ in the train-
ing data, thus leading to an overestimate of their reoffending
risk), while the second subgroup represents an intersectional
bias against white females. We also consider two different
classifiers, random forest and logistic regression, and aver-
age results over 100 trials for each combination of classifier,
injected subgroup ST , and amount of bias ∆.

4https://github.com/propublica/compas-analysis/compas-
scores-two-years.csv

5Predictors include gender, race, charge degree, age < 25, and
number of prior offenses (“none”, “1 to 5”, or “more than 5”).

For each trial, we randomly partition the data into 80%
training and 20% testing data. If ∆ > 1, then differential
sampling bias ∆ is injected into subset ST for the training
data D̃, resampling data records (x̃i, ỹi) ∈ D̃ST with re-
placement (where records with ỹi = 1 have weight ∆ and
records with ỹi = 0 have weight 1), and leaving the test data
D and the rest of the training data unchanged. The classi-
fier is trained on the biased training data, and used to make
predictions p̃i on the unbiased test data. Then Bias Scan is
used to assess whether these predictions are biased, reporting
the highest scoring subgroup S∗ = argmaxS∈rect(X) F (S)
and its score F ∗ = F (S∗). We then compare the values
of the Bias Scan score F ∗, the score of the injected sub-
group F (ST ) (calculated by equation (1)), and the theoreti-
cal score of ST , which we denote as Ftheo(S

T ). The value
of Ftheo(S

T ) is computed using only the unbiased train-
ing and test data, as defined in Theorem 1: Ftheo(S

T ) =
Fold(S

T )−
∑

si∈DST
yi log∆+

∑
si∈DST

log(∆pi+1−pi),
if ∆ > q̂MLE , and Ftheo(S

T ) = 0 otherwise. We also com-
pute the overlap (Jaccard coefficient) between the injected
subset of test data records DST and the detected subset DS∗ :

overlap =
|DST

∩DS∗ |
|DST

∪DS∗ |
.

Finally, we use Theorems 2 and 4 to estimate the critical value
h(α) and the corresponding threshold value ∆thresh, for
which we expect P(F ∗ > h(α)) → 1 when ∆ > ∆thresh.

Given these values for each amount of bias ∆ (averaged
over the 100 trials, for a given classifier and a given in-
jected subgroup ST ), we form two plots: one comparing F ∗,
F (ST ), and Ftheo(S

T ) as a function of ∆, and one show-
ing overlap between DST and DS∗ as a function of ∆, as
compared to ∆thresh.

If assumptions (A1)-(A4) hold, as the size of the training
data grows to infinity, we expect perfect overlap between the
curves for Ftheo(S

T ) and F (ST ) by Thm. 1. As ∆ becomes
large compared to ∆thresh, we expect S∗ ≈ ST , and thus
F ∗ ≈ F (ST ) and overlap ≈ 1, while for small ∆, we expect
F ∗ > F (ST ) and overlap ≪ 1. We now examine whether
these expectations are met for the finite, real-world COMPAS
dataset, for each classifier and each injected subgroup ST .

Experimental results For the logistic regression classifier
learned from training data injected with marginal differential
sampling bias (Figure 2), we observe near-perfect overlap
between the observed score F (ST ) and theoretical score
Ftheo(S

T ) for the injected subgroup ST , suggesting the va-
lidity of our theoretical results above. As expected, the Bias
Scan score F ∗ ≈ F (ST ) and overlap ≈ 1 for ∆ > ∆thresh,
while F ∗ > F (ST ) and overlap ≪ 1 for small ∆. For
the random forest classifier learned from training data in-
jected with marginal differential sampling bias (Figure 3),
we see similar results, but with F (ST ) slightly greater than
Ftheo(S

T ) for large ∆. This is likely due to data sparsity: the
combination of finite training data and high bias may lead to
few or no training data records with ỹi = 0 for some covari-
ate profiles in the injected subgroup, leading to inaccurate
estimation of P̃(Y = 1 |X). This pattern is repeated for the
random forest classifier learned from training data injected
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Figure 2: Logistic regression classifier with marginal bias. (a)
Scores F ∗ (green), F (ST ) (orange), and Ftheo(S

T ) (blue)
vs. ∆. (b) Overlap vs. ∆, as compared to ∆thresh.

a) b)

Figure 3: Random forest classifier with marginal bias. (a)
Scores F ∗ (green), F (ST ) (orange), and Ftheo(S

T ) (blue)
vs. ∆. (b) Overlap vs. ∆, as compared to ∆thresh.

with intersectional differential sampling bias (Figure 4), with
a larger gap between F (ST ) and Ftheo(S

T ), most likely due
to the smaller amount of training data in ST . Similarly, the
smaller amount of test data in ST leads to some noise in the
detected subgroup, resulting in overlap ≈ 0.9 rather than 1,
and thus F ∗ = maxS∈rect(X) F (S) > F (ST ). Nevertheless,
these results suggest that the theoretical values of Ftheo(S

T )
and ∆thresh are good approximations even for finite data.

For the logistic regression classifier learned from train-
ing data injected with intersectional differential sampling
bias (Figure 5), however, we see a very different picture: as
∆ increases, the Bias Scan score F ∗ and the score of the
injected subgroup F (ST ) are both much smaller than the
theoretical score Ftheo(S

T ), and the overlap between S∗ and
ST plateaus around 0.4 even for large ∆. This is because
assumption (A1) is violated: the logistic regression model is
misspecified and cannot learn the intersectional bias against
white females, instead learning separate (and much smaller)
marginal biases against all females and all white individu-
als via the learned model coefficients on these terms. When
an interaction term for white females is manually added to
the logistic regression model specification (Figure 6), we
observe that this additional term resolves the problem, and
we again have a near-perfect match between the theoretical
and observed scores for the injected subgroup ST .

Experiments on NYPD Stop and Frisk Data
The New York Police Department (NYPD) has long been
plagued with accusations of racially discriminatory policing

a) b)

Figure 4: Random forest classifier with intersectional bias. (a)
Scores F ∗ (green), F (ST ) (orange), and Ftheo(S

T ) (blue)
vs. ∆. (b) Overlap vs. ∆, as compared to ∆thresh.

a) b)

Figure 5: Logistic regression classifier with intersectional
bias. (a) Scores F ∗ (green), F (ST ) (orange), and Ftheo(S

T )
(blue) vs. ∆. (b) Overlap vs. ∆, as compared to ∆thresh.

practices related to its “stop, question, and frisk” (SQF) poli-
cies. Gelman, Fagan, and Kiss (2007) found that persons of
color “were stopped more frequently than whites, even after
controlling for precinct variability and race-specific estimates
of crime participation”. Goel, Rao, and Shroff (2016) con-
cluded that Black and Hispanic individuals were dispropor-
tionately impacted by “low hit rate” stops, where the officer
suspected the stopped individual of criminal possession of
a weapon (CPW) but the ex ante probability of recovering a
weapon was low. Here we assess racial bias in NYPD polic-
ing practices by analyzing five years of SQF data during the
peak of the stop and frisk policy, prior to a 2013 court ruling
(Floyd v. City of New York) that NYPD stop-and-frisk tactics
were unconstitutionally targeting New Yorkers of color.

Thus our dataset consists of 760,489 pedestrian stops
(made by NYPD officers for suspected CPW) from 2008-
2012, downloaded from the city’s web site6. Following Goel,
Rao, and Shroff (2016), we first fit a logistic regression model
to predict the probability that each stopped individual was
found to have a weapon, using location (“housing”, “transit”,
or “neither”), precinct, and 18 binary variables describing
the circumstances of the stop7 as predictors. Stops with ex

6www1.nyc.gov/site/nypd/stats/reports-analysis/stopfrisk.page
7These circumstances include suspicious object, fits descrip-

tion, casing, acting as lookout, suspicious clothing, drug transaction,
furtive movements, actions of violent crime, suspicious bulge, wit-
ness report, ongoing investigation, proximity to crime scene, evasive
response, associating with criminals, changed direction, high crime
area, time of day, and sights and sounds of criminal activity.
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Figure 6: Logistic regression classifier (including interaction
term) with intersectional bias. (a) Scores F ∗ (green), F (ST )
(orange), and Ftheo(S

T ) (blue) vs. ∆. (b) Overlap vs. ∆, as
compared to ∆thresh.

ante probability of recovering a weapon at least 0.1 were
marked as “high probability”. If only high probability stops
were conducted, 4.8% of stops would have been made, 46%
of weapons would have been recovered, and the proportion
of stopped individuals who were neither Black nor Hispanic
would have more than doubled, from 9% to 23%.

Next we create a new dataset with the demographics of
each stopped individual (borough, sex, race, and age decile,
all of which were excluded from the predictive model above),
and whether each was a high or low probability stop. We then
assess racial bias by considering the race of the stopped indi-
vidual as the outcome variable, and comparing the original,
biased policing data to an alternative, “less biased”8 policing
practice in which only high probability stops were made.

More precisely, we perform the following steps, for each
value of k ∈ {0, 10, . . . , 100}: (1) split the data into equal-
sized training and test sets; (2) remove all low probability
stops from the test data; (3) remove (100− k)% of the low
probability stops from the training data; (4) learn a random
forest classifier from the training data to estimate the probabil-
ity that Race = Black for each stopped individual, conditional
on the other demographic features; (5) use the learned model
to predict the probability p̃i that Race = Black for each stop
in the test data; and (6) run Bias Scan on the predicted prob-
abilities p̃i and observed outcomes yi = 1{Race = Black}
to identify the highest-scoring subgroup S∗ and its score
F ∗ = F (S∗). Here k = 0 corresponds to drawing the train-
ing data from the same, “less biased” distribution of stops
as the test data, and k = 100 corresponds to drawing the
training data from the original, “biased” distribution of stops.

Thus, for k > 0, this process can be thought of as in-
jecting differential sampling bias, increasing the odds that
Race = Black by some factor ∆ > 1, as compared to the
alternative policing practice of only making high probability
stops. However, this scenario poses several new challenges
for our theoretical analysis: we do not know the injected
subgroup ST or the amount of bias ∆, and in fact the bias

8We refer to the high probability stop data as “less biased” rather
than “unbiased” because it still contains biases based on which
neighborhoods the NYPD officers chose to patrol, but eliminates
the many low probability stops which predominantly and unfairly
target racial minorities.

Figure 7: Random forest classifier with heterogeneous
bias (SQF data). Scores F ∗ (green), F (ST ) (orange), and
Ftheo(S

T ) (blue) vs. proportion of low probability stops k.

may be heterogeneous (different ∆ for different covariate
profiles). Thus we make several simplifying assumptions.
First, when auditing predictions from the model learned from
the most biased training data (k = 100), Bias Scan iden-
tifies a large, high-scoring subgroup S∗ consisting of indi-
viduals with Gender ∈ {Male, Female}, Age < 70, and
Borough ∈ {Manhattan,Brooklyn,Queens, Staten Island}
(excluding the Bronx). We assume that this S∗ is the true
injected subgroup ST . Second, we assume that ∆ is con-
stant over subgroup ST , and thus compute the odds ratio
∆ = pk(1−p0)

(1−pk)p0
, where pk is the proportion of Black individu-

als in subgroup ST of the training dataset for a given value
of k. Thus we have amounts of differential sampling bias
ranging from ∆ = 1 for k = 0 to ∆ = 2.675 for k = 100.
We then use these values of ∆ along with the “less biased”
training and test data (k = 0) to plot Ftheo(S

T ) as a function
of k, and compare these theoretical values to the Bias Scan
score F ∗ and the subgroup score F (ST ). In Figure 7, we
observe that F ∗ = F (ST ) except when k = 0, i.e., the same
subgroup S∗ is detected for all k > 0. Additionally, we see
that Ftheo(S

T ) is a relatively good approximation for F (ST ),
with F (ST ) consistently about 16% lower than Ftheo(S

T )
across all values of k. This difference can be explained by our
approximation of the heterogeneous bias ∆x, for covariate
profiles x ∈ ST , by estimating a single, constant ∆ value.

Conclusion
It is critical both to analyze the downstream impacts of bi-
ases as they propagate through the learning pipeline, and to
create new analytical tools to detect and mitigate propagating
biases. With this work, we take a step toward these goals by
quantifying how a particular data bias, differential sampling
bias, propagates into biased model predictions, and providing
theoretical guarantees for detection of the propagated biases.
We validate our theoretical results through experiments on
real-world criminal justice data where our assumptions are
relaxed. In future work, we plan to extend our theoretical anal-
ysis of propagating biases to other types of data bias (e.g.,
measurement bias) as well as biases in other pipeline stages.
We are particularly interested in analyzing when model pre-
dictions are impacted by multiple, interacting biases, which
we believe is often the case in complex, real-world settings.
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