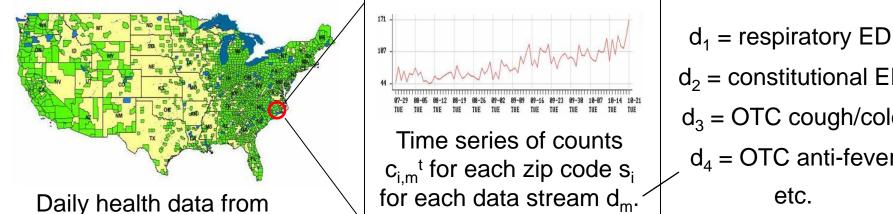
Fast Subset Sums for Multivariate Bayesian Scan Statistics

Daniel B. Neill
Carnegie Mellon University
H.J. Heinz III College
E-mail: neill@cs.cmu.edu

This work was partially supported by NSF grants IIS-0916345, IIS-0911032, and IIS-0325581.

Multivariate event detection



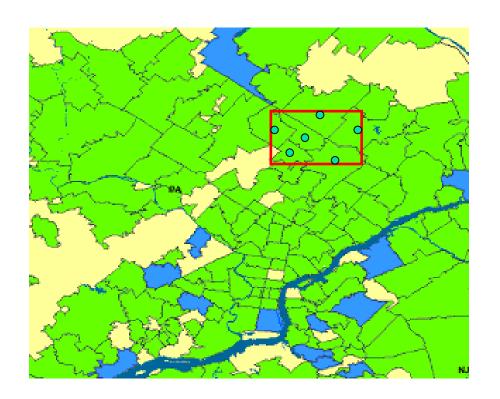
 d_2 = constitutional ED $d_3 = OTC cough/cold$ $d_4 = OTC$ anti-fever etc.

Given all of this nationwide health data on a daily basis, we want to obtain a complete situational awareness by integrating information from the multiple data streams.

More precisely, we have three main goals: to detect any emerging events (i.e. outbreaks of disease), characterize the type of event, and pinpoint the affected areas.

thousands of hospitals and

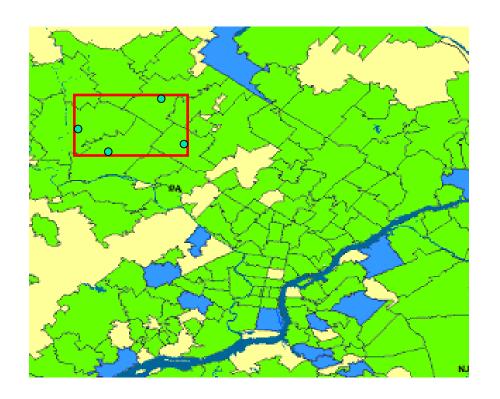
pharmacies nationwide.



(Kulldorff, 1997; Neill and Moore, 2005)

To detect and localize events, we can search for <u>space-time</u> regions where the number of cases is higher than expected.

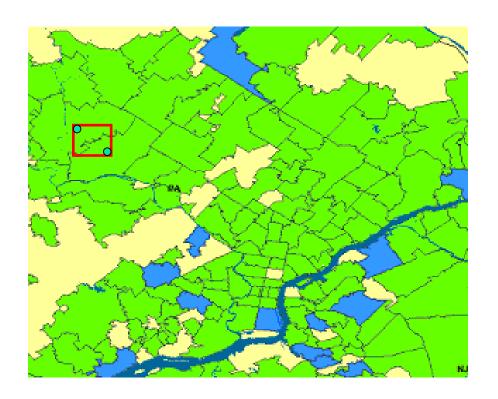
Imagine moving a window around the scan area, allowing the window size, shape, and temporal duration to vary.



(Kulldorff, 1997; Neill and Moore, 2005)

To detect and localize events, we can search for <u>space-time</u> regions where the number of cases is higher than expected.

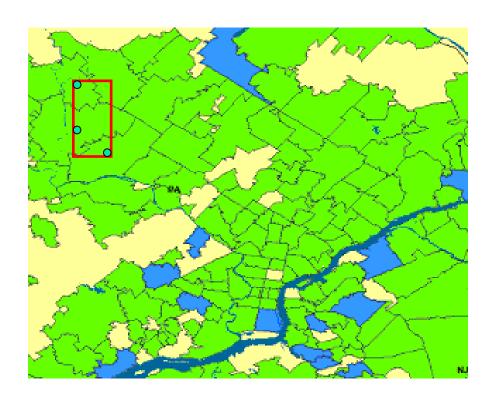
Imagine moving a window around the scan area, allowing the window size, shape, and temporal duration to vary.



(Kulldorff, 1997; Neill and Moore, 2005)

To detect and localize events, we can search for <u>space-time</u> regions where the number of cases is higher than expected.

Imagine moving a window around the scan area, allowing the window size, shape, and temporal duration to vary.

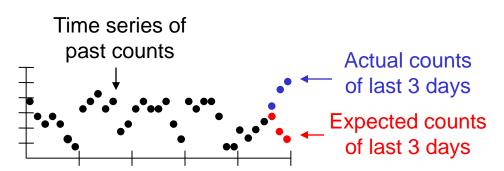


(Kulldorff, 1997; Neill and Moore, 2005)

To detect and localize events, we can search for <u>space-time</u> regions where the number of cases is higher than expected.

Imagine moving a window around the scan area, allowing the window size, shape, and temporal duration to vary.

For each subset of locations, we examine the aggregated time series, and compare actual to expected counts.



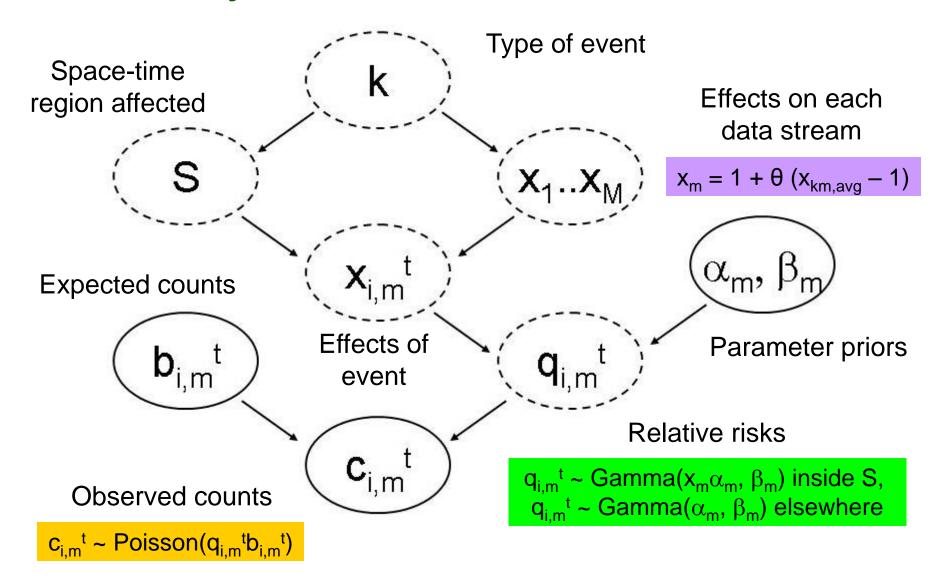
Overview of the MBSS method

Given a set of event types E_k , a set of space-time regions S, and the multivariate dataset D, MBSS outputs the <u>posterior probability</u> $Pr(H_1(S, E_k) \mid D)$ of each type of event in each region, as well as the probability of no event, $Pr(H_0 \mid D)$.

We must provide the <u>prior probability</u> $Pr(H_1(S, E_k))$ of each event type E_k in each region S, as well as the prior probability of no event, $Pr(H_0)$.

MBSS uses <u>Bayes' Theorem</u> to combine the data likelihood given each hypothesis with the prior probability of that hypothesis: $Pr(H \mid D) = Pr(D \mid H) Pr(H) / Pr(D)$.

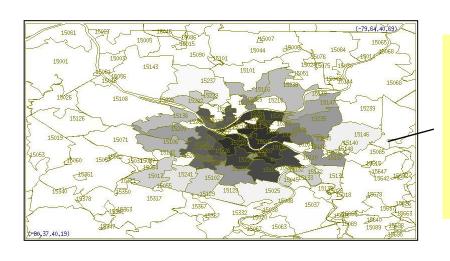
The Bayesian hierarchical model



Interpretation and visualization

MBSS gives the total posterior probability of each event type E_k , and the distribution of this probability over space-time regions S.

<u>Visualization</u>: $Pr(H_1(s_i, E_k)) = \sum Pr(H_1(S, E_k))$ for all regions S containing location s_i .



Posterior probability map

Total posterior probability of a respiratory outbreak in each Allegheny County zip code.

Darker shading = higher probability.

MBSS: advantages and limitations

MBSS can detect faster and more accurately by integrating multiple data streams.

MBSS can model and differentiate between multiple potential causes of an event.

MBSS assumes a uniform prior for circular regions and zero prior for non-circular regions, resulting in low power for **elongated** or **irregular** clusters.

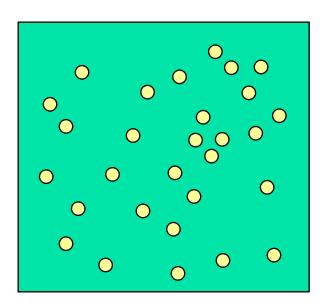
There are too many subsets of the data (2^N) to compute likelihoods for all of them!

How can we extend MBSS to **efficiently** detect irregular clusters?

Hierarchical prior distribution

We define a non-uniform prior $Pr(H_1(S, E_k))$ over all 2^N subsets of the data.

This prior has hierarchical structure:

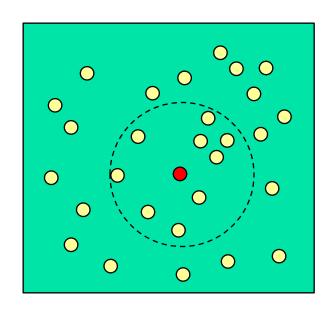


Hierarchical prior distribution

We define a non-uniform prior $Pr(H_1(S, E_k))$ over all 2^N subsets of the data.

This prior has hierarchical structure:

- Choose the center location s_c uniformly at random from {s₁...s_N}.
- Choose the neighborhood size n uniformly at random from {1...n_{max}}.

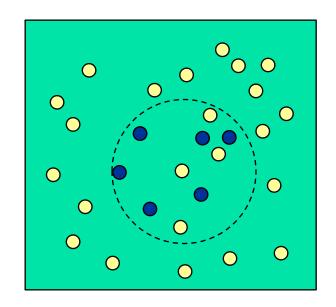


Hierarchical prior distribution

We define a non-uniform prior $Pr(H_1(S, E_k))$ over all 2^N subsets of the data.

This prior has hierarchical structure:

- Choose the center location s_c uniformly at random from {s₁...s_N}.
- Choose the neighborhood size n uniformly at random from {1...n_{max}}.
- 3. Choose **region S** uniformly at random from the 2^n subsets of $S_{cn} = \{s_c \text{ and its } n-1 \text{ nearest neighbors}\}.$



This prior distribution has non-zero prior probabilities for any given subset S, but more compact clusters have larger priors.

Fast Subset Sums (FSS)

Naïve computation of posterior probabilities using this prior requires summing over an exponential number of regions, which is infeasible.

However, the total posterior probability of an outbreak, $Pr(H_1(E_k) \mid D)$, and the posterior probability map, $Pr(H_1(s_i, E_k) \mid D)$, can be calculated efficiently **without** computing the probability of each region S.

In the original MBSS method, the **likelihood ratio** of spatial region S for a given event type E_k and event severity θ can be found by multiplying the likelihood ratios $LR(s_i \mid E_k, \theta)$ for all locations s_i in S.

In FSS, the **average likelihood ratio** of the 2^n subsets for a given center s_c and neighborhood size n can be found by multiplying the quantities $((1 + LR(s_i | E_k, \theta)) / 2)$ for all locations s_i in S.

Since the prior is uniform for a given center and neighborhood, we can compute the posteriors for each s_c and n, and marginalize over them.

Evaluation

- We injected simulated disease outbreaks into two streams of Emergency Department data (cough, nausea) from 97 Allegheny County zip codes.
- Results were computed for ten different outbreak shapes, including compact, elongated, and irregularly-shaped, with 200 injects of each type.
- We compared FSS to the original MBSS method (searching over circles) in terms of run time, timeliness of detection, proportion of outbreaks detected, and spatial accuracy.

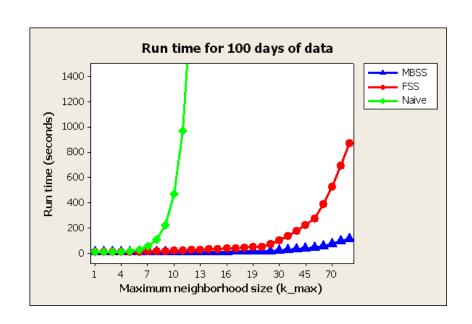
Computation time

We compared the run times of MBSS, FSS, and a naïve subset sums implementation as a function of the maximum neighborhood size n_{max} .

Run time of MBSS increased gradually with increasing n_{max} , up to 1.2 seconds per day of data.

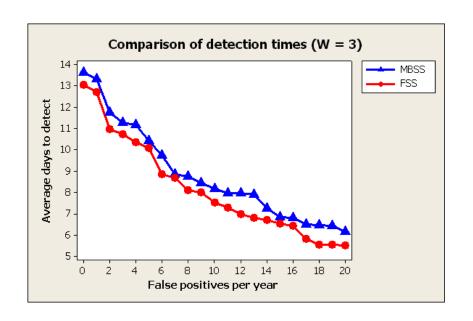
Run time of Naïve Subset Sums increased exponentially, making it infeasible for $n_{max} \ge 25$.

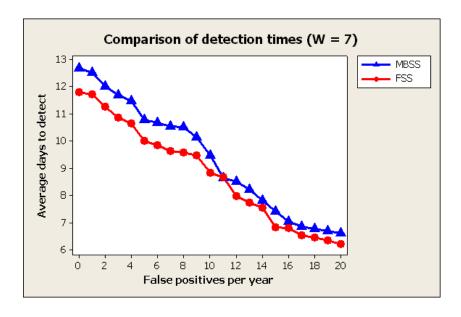
Run time of FSS scaled quadratically with n_{max} , up to 8.8 seconds per day of data.



Thus, while FSS is approximately 7.5x slower than the original MBSS method, it is still extremely fast, computing the posterior probability map for each day of data in under nine seconds.

Timeliness of detection

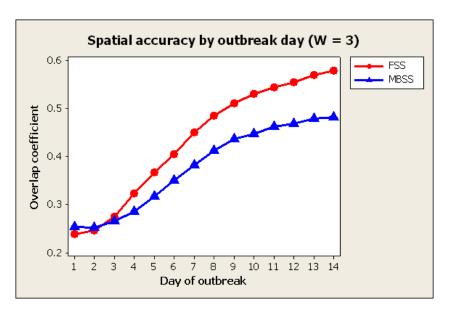


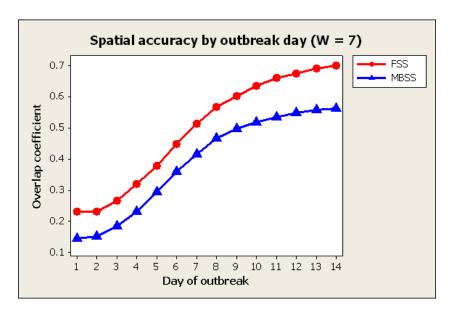


FSS detected an average of **one day earlier** than MBSS for maximum temporal window W = 3, and **0.54 days earlier** for W = 7, with less than half as many missed outbreaks.

Both methods achieve similar detection times for compact outbreak regions. For highly elongated outbreaks, FSS detects 1.3 to 2.2 days earlier, and for irregular regions, FSS detects 0.3 to 1.2 days earlier.

Spatial accuracy





As measured by the average overlap coefficient between true and detected clusters, FSS outperformed MBSS by 10-15%.

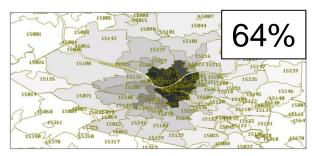
For elongated and irregular clusters, FSS had much higher precision and recall. For compact clusters, FSS had higher precision, and MBSS had higher recall.

Posterior probability maps

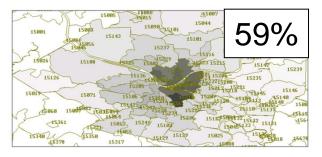
Spatial accuracy of FSS was similar to MBSS for compact clusters.

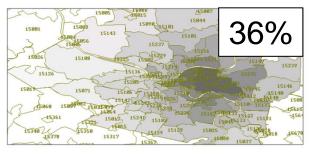
True outbreak region

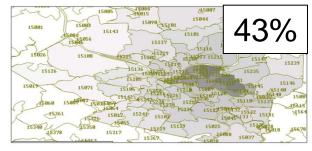
MBSS



Fast Subset Sums







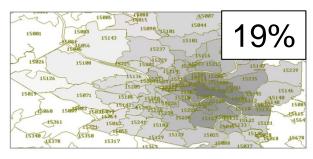
Posterior probability maps

FSS had much higher spatial accuracy than MBSS for elongated clusters.

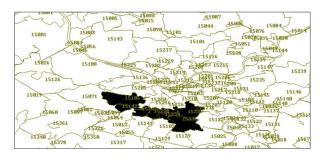
True outbreak region

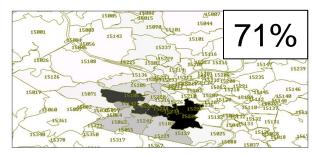
15001 15000 15001 15000 15001 15000

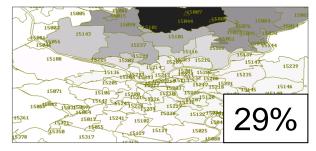
MBSS



Fast Subset Sums







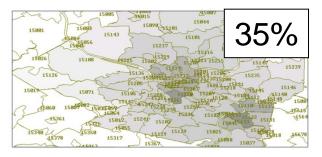
Posterior probability maps

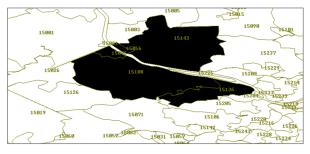
FSS was better able to capture the shape of irregular clusters.

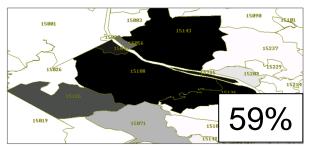
True outbreak region

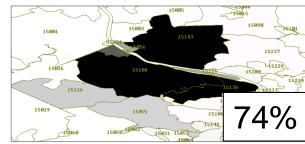
MBSS

Fast Subset Sums









Conclusions

FSS shares the essential advantages of MBSS: it can integrate information from **multiple data streams**, and can accurately distinguish between **multiple outbreak types**.

As compared to the original MBSS method, FSS substantially improves **accuracy** and **timeliness** of detection for elongated or irregular clusters, with similar performance for compact clusters.

While a naïve computation over the exponentially many subsets of the data is computationally infeasible, FSS can **efficiently** and **exactly** compute the posterior probability map.

Future work includes generalizing the hierarchical prior for FSS while maintaining efficient computation.

We can also **learn** the prior distribution from a small amount of labeled training data, as in Makatchev and Neill (2008).

References

- D.B. Neill. Fast Bayesian scan statistics for multivariate event detection and visualization. Submitted for publication.
- D.B. Neill and G.F. Cooper. A multivariate Bayesian scan statistic for early event detection and characterization. *Machine Learning*, 2009, in press.
- M. Makatchev and D.B. Neill. Learning outbreak regions in Bayesian spatial scan statistics. *Proc. ICML Workshop on Machine Learning in Health Care Applications*, 2008.
- D.B. Neill. Incorporating learning into disease surveillance systems.
 Advances in Disease Surveillance 4: 107, 2007.
- D.B. Neill, A.W. Moore, and G.F. Cooper. A multivariate Bayesian scan statistic. *Advances in Disease Surveillance* 2: 60, 2007.
- D.B. Neill, A.W. Moore, and G.F. Cooper. A Bayesian spatial scan statistic. In *Advances in Neural Information Processing Systems* 18, 2006.