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ABSTRACT

The KeyKOS nanokernels a capability-baseabject-orienteperatingsystemthat hasbeenin
productionusesince1983. Its original implementationwas motivatedby the needto provide
security, reliability, and 24-hour availability for applications on the Tymnef hosts.
Requirements included the ability to run multiple instantiations of several operating systems on a
single hardwaresystem.KeyKOS was implementedon the System/370,and has since been
portedto the 680x0and 88x00 processofamilies. Implementation®f EDX, RPS,VM, MVS,

and UNIX have beerconstructed. The nanokernelis approximately20,000lines of C code,
including capability, checkpoint,andvirtual memorysupport. The nanokerneltself canrunin

less than 100 Kilobytes of memory.

KeyKOS is characterized by a small set of powerful and highly optimized primitives that allow it
to achieveperformancecompetitivewith the macrokerneloperatingsystemsthat it replaces.
Objects are exclusively invoked through protected capabilities, suppbitindevelsof security

and intervals between failures in excess of one year. Medsalygseragentsmay containboth
capabilitiesand data. Checkpointsat tunableintervals provide system-widebackup,fail-over
support,and systemrestarttimes typically less than 30 seconds. In addition, a journaling
mechanismprovides support for high-performancetransactionprocessing. On restart, all
processesre restoredto their exact state at the time of checkpoint,including registersand
virtual memory.

This papedescribegshe KeyKOS architectureandthe binary compatibleUNIX implementation
that it supports.

1. Introduction

This paperdescribeghe KeyKOS nanokernel,a small capability-basedsystemoriginally designedto

provide securitysufficientto supportmutually antagonisticusers. KeyKOS consistsof the nanokernel,
which can run in as little as 100 Kilobytes of memory and included #ile systemprivilegedcode,plus

additional facilities necessaryto supportoperatingsystemsand applications. KeyKOS presentseach
applicationwith its own abstracimachineinterface. KeyKOS applicationscanusethis abstractmachine
layer to implement KeyKOS servicesdirectly or to implement other operating system interfaces.
Implementationof EDX, RPS,VM/370, an MVS subsetand UNIX have beerportedto the KeyKOS

platform using this facility.

Tymshare Inc. developedthe earliestversionsof KeyKOS to solve the security,datasharing,pricing,
reliability, and extensibility requirementf a commercialcomputerservicein a network environment.

KeyKOS is a registered mark of Key Logic, Inc.
Tymnet is a registered mark of British Telecom, Inc.

UNIX is a registered mark of AT&T Bell Laboratories, Inc.



Developmenton the KeyKOS systembeganin 1975, and was motivated by three key requirements:
accountingaccuracythat exceededany then available;24-houruninterruptedservice;andthe ability to
support simultaneous,mutually suspicioustime sharing customerswith an unprecedentedevel of
security. Today, KeyKOS is the only commercially available operating system that meets these
requirements.

KeyKOS begansupportingproductionapplicationson an IBM 4341in Januaryl983. KeyKOS hasrun
on Amdahl 470V/8, IBM 3090/200(in uniprocessoiSystem/370mode),IBM 158, and NAS 8023. In
1985, Key Logic wasormedto takeoverdevelopmenbf KeyKOS. In 1988,Key Logic begana rewrite
of thenanokerneln C. After 10 staff monthsof effort a nanokernetanonthe ARIX Corporation68020
systemandthe projectwassetaside. The projectresumedn July of 19900n a different processorand
by October of 1990 a complete nanokernelwas running on the Omron Luna/88K. The current
nanokernel contains approximately 20,000 lines of C code and less than 2,000 lines of assembler code.

This paperpresentghe architectureand designof the KeyKOS nanokerneland the UNIX systemthat
runsontop of it. In theinterestof a clear presentatiorof the KeyKOS architecturewe haveomitteda
description of the underlying kernel implementation.

2. Architectural Foundations

KeyKOSis foundedon threearchitecturaconceptghat are unfamiliarto mostof the UNIX community:
a statelesskernel, single-levelstore, and capabilities. Our experienceindicatesthat understandinga
single-levelstore model requiresa fundamentalshift in perspectivefor developersaccustomedo less
reliable architectures.It thereforeseemsappropriateto presenttheseconceptsfirst asa foundationon
which to build the balance of the KeyKOS architectural description.

Sateless Kernel

An earlydecisionin the KeyKOS designwasto hold no critical statein the kernel. All nanokernebtate
is derived from information that persistsacrosssystemrestartsand power failures. For reasonsof
efficiency, the nanokerneldoesreformat stateinformation in private storage. All private storageis
merelya cacheof the persistenstate,andcanberecycledat anytime. Whenthe discardednformation
is needed again, it is reconstructed from the information in nodes and pages (which are described below)

As a consequencehe nanokerneberformsno dynamicallocationof kernel storage. This hasseveral
ramifications:

» The kernel is faster, since no complicated storage allocation code is ever run.
» The kernel never runs out of space.

» Thereis no nanokernelstorage(such as messagequeues)that must be a part of the
checkpoint.

The absenceof dynamicallocationmeansthat therecan be no interactionbetweendynamicallocation
strategieswhich is the predominantsourceof deadlockand consistencyproblemsin most operating
systems.

The systemoutsidethe nanokernelis completely describedby the contentsof nodesand pages(see
below), which argersistent.This stateincludesfiles, programsprogramvariables jnstructioncounters,
I/O status, and any other information needed to restart the system.



In addition, the ability to recoverall run-time kernel data from checkpointedstate meansthat an
interruptionof powerdoesnot disruptrunning programs. Typically, the systemlosesonly the last few
secondsf keyboardinput. At UNIFORUM '90, Key Logic pulled the plug on our UNIX systemon
demand. Within 30 secondf powerrestorationthe systemhadresumedrocessingcompletewith all
windows and state that had previously been on the display. We are aware of no other UNIX
implementation with this feature today.

Sngle-Level Sore

KeyKOS presentsa persistentsingle-levelstore model. To the KeyKOS application,all datalives in
persistentvirtual memory. Only the nanokernels awareof the distinction betweenmain memoryand
disk pages. Periodicsystem-widecheckpointgyuaranteghe persistencef all systemdata. The paging
systemis tied to the checkpointmechanismandis discussedn the sectionon checkpointing,below.
Persistencextendsacrosssystemshutdownand powerfailure. SeverallBM 4341systemganfor more
than three years across power failures without a logical interruption of service.

Like memorypagesKeyKOS applicationsare persistent. An applicationcontinuesto executeuntil it is
explicitly demolished.To the application,the shutdownperiodis visible only asanunexplainedump in
the value of the realtime clock, if at all. As a result,the usualissuessurroundingorderly startupand
shutdown do noapplyto KeyKOS applications. Most operatingsystemsamplementa transientmodel of
programs;persistencds the exceptionratherthan the rule. A client operatingsystememulator may
provide transient applications by dismantling its processes when they terminate.

The single-levelstore model allows far-reachingsimplificationsin the designof the KeyKOS system.
Among the questions that the nanokernel dmtfiave to answer are:

* How does the system proceed when it runs out of swap space? (It checkpoints.)
* How does the kernel handle the tear-down of a process? (It doesn't.)

* How is kernel stateretainedacrossrestarts?(The kernel containsno state that requires
checkpointing.)

Eachof theseareasis a sourceof significantcomplexityin other systemsanda consequensourceof
reliability problems.

Capabilities

KeyKOSis a capabilitysystem. For brevity, KeyKOS refersto capabilitiesaskeys. Every objectin the
systemis exclusivelyreferredto by one or more associatedeys. Keys are analogousn somewaysto
Mach'sports. KeyKOS entities call uponthe servicesof other entitiesby sendingmessagesia a key.
Messageallsincludea kernel-constructedeturn key that may be usedby the recipientto issuea reply.
Messages are most commonly exchanged in an RPC-like fashion.

What setsKeyKOS apartfrom othermicrokernelsis the total relianceon capabilitieswithout any other
mechanisms.Thereare no othermechanismshat add complexityto the ideasor to the implementation.
Holding a key implies the authority to send messages to the entdypassthe key to a third party. If A

does not have a key f&; thenA cannot communicate with. Applications may duplicate keyisatthey

hold, but the creationof keysis a privilegedoperation. The actualbits thatidentify the objectnamedby

a key are accesible only to the nanokernel.

Throughits useof capabilitiesand messaggassing KeyKOS programsachievethe sameencapsulation
advantageof object-orienteddesigns. Encapsulationis enforced by the operating system,and is



available in any programming language. It is the complete security of this information hiding mechanism
that makes it possible to support mutually suspicious users.

A fundamentaktonceptin KeyKOS s that a programshouldobeythe "principle of leastprivilege". To
thatend,the designof KeyKOS givesobjectsno intrinsic authority,andreliestotally upontheir keysto
conveywhat authority they have. Usingthesefacilities, the systemis convenientlydivided into small
modules, each structured so as to hold the minimal privilege sufficient for its operation.

Entities may be referredto by multiple, distinct keys. This allows an entity that communicateswith
multiple clientsto grantdifferentaccessightsto the clients. Everykey hasanassociate®-bit field that
canbe usedby the recipientto distinguishbetweenclients. Whenthe entity handsout a key, it canset
the field to a known value. Becausell messageseceivedby the entity include the 8-bit value held in
the key, this mechanisntanbe usedto partition clientsinto serviceclasser privilege levelsby giving
each class a different key.

It is worthwhile to contrastthis approachwith the ring-structuredsecurity model pioneeredn Multics
andpropagatedn the modernintel 80x86family. The capabilitymodelis intrinsically more secure. A
ring-structured security policy is not powerful enough to allow a subsystem to dep#rabservicesof a
subsystenwith lesseraccessights. Ring policiesintrinsically violate the principle of leastprivilege. In
addition, ring-based security mechanisms coroagggoricalhuthority:any coderunningin a givenlayer
has accest all of thedatain thatlayer. Capabilitysystemsallow authorityto be minimizedto just that
required to do the job at hand.

Using a capabilitymodel offers significantsimplificationsin the nanokernel. Among the questionghat
the nanokernel dog®t have to answer are:

» Doesthis userhavethe authorityto performthis operationqYes— if you hold the key you
can send the message.)

 How do | allocateenoughkernelmemoryto performnameresolutionon a variablelength
name? (The kernel never deals with names, only keys.)

* Where does thifile namegetinsertedin this directory?(The nanokernetioesnot dealwith
file names or directories.)

Becausdhe nanokernehasno namingmechanisnotherthan capabilities,entity namingis intrinsically
decentralized.As a result, extending KeyKOS to multiprocessorsis straightforward. KeyKOS
applications cannot tell if they are running on a uniprocessor or a multiprocessor.

3. Major Nanokernel Features

The nanokernel includes all of the supervisor-mode code of the system. The entiréeskenpleinented
in approximately 20,000 lines of reasonably portable C code, and [)860f 88x00assemblycode.Of

the assemblylines, 1,000lines arein the contextswitch implementation. This compilesto roughly 60

Kilobytes of executablecode. While running,the nanokernetequiresaslittle as100Kilobytes of main

memory.

The nanokernel is the only portioh the systemthatinterpretskeys. No otherprogramhasdirectaccess
to the bits containedn the keys,which preventskey forgery. In addition,the nanokerneincludescode
that defines the primitive system objects. These objects are sufficient to build the higher-level
abstractions supported by more conventional operating systems. The nanokernel provides:



* multiprogramming support, primitive scheduling, and hooks for more sophisticated
schedulers running as applications;

* asingle-level store, as discussed above;

» separate virtual address space(s) for each KeyKOS process;

* redundant disk storage for system-critical information;

* asystem-wide checkpoint-restart feature;

* journaling pages exempt from checkpoint for database and transaction processing support;

* keys by which messages are sent from one application to another;

* primitive and limited access to individual 1/0O devices;

* interpretation of keys that hides the location of the object on disk or in main memory.
During normal operation, KeyKOS executes a system-wide checlgangfew minutesto protectfrom
power failures, most kernel bugs, and detected hardware errors. Both data and processes are
checkpointed. All run-time state in the nanokernel can be reconstructed from the checkpoint information.
Except for the initial installation, the system restarts from the most recent checkpoint on power up.
In addition to local checkpointsupport,the nanokernelprovidesfor checkpointsto magnetictape or
remote hot-standby systems. This allows a standby systenmediatelypick up executionin the event
of primary system failure.

4. Fundamental KeyKOS Objects

The KeyKOS kernel supportssix types of fundamentalobjects: devices, pages, nodes, segments,
domains, andmeters.

Devices

The nanokerneimplementsow-level hardwaredriversin privileged code. The supervisor-modelriver
performs messageencapsulationand hardware register manipulation. Except where performance
compels otherwise, KeyKOS applications implement the actual device drivers.

Pages

The simplest KeyKOS object is the pageagesizeis dependenon the underlyinghardwareandstorage
architecturesbutin all currentimplementationss 4 Kilobytes. Every pagehasoneor more persistent
locationson somedisk device,known asits home location. The KeyKOS systemmanagesa fixed
numberof pageghatareallocatedwhenthe systemis first initialized. This numbercanbeincreasecdy
attaching additional mass storage devices to the system.

A pageis designatedy oneor more page keys. Pageshonortwo basicmessagdypes:read,andwrite.
When pagesare mappedinto a process addresspace,loads and storesto locationsin a pageare
isomorphicto readandwrite messagesn the pagekey. Whena messagés sentto a pagethatis notin
memory, the page is transparently faulted in from backing store so that the operation can be performed.



Applications thaperformdynamicspaceallocationhold a key to a space bank. Spacebanksareusedto
managedisk resourceallocation. The systemhasa masterspacebankthat holdskeysto all of the pages
andnodesin the system! Oneof the operationssupportecby spacebanksis creatingsubbankswhich
are subbanks of the master space bank. If gepartmenhasboughtthe right to a megabyteof storage,
it is given a key to a space bank that holds 256 page keys. Space banks are a type of domain.

Nodes

A node is a collection dfeys. All keysin the systemresidein nodes. A node key conveysaccessights
to a node, and can be used to insert or remove keys from a nodegagdsnodescanbe obtainedfrom
space banks. In all current KeyKOS implementations, a node holds precisely 16 keys.

Nodesare critical to the integrity of the system. The KeyKOS systemvitally dependson the data
integrity of nodecontents. As a result, all nodesare replicatedin two (or more) locationson backing
store. In keeping with the general policy of not performing dynamic allocation kethel,andbecause
the integrity requirements for nodes are so critical, KeyKOS does not interconvert nodes and pages.

Segments

A segments a collection of pagesor other segments. Segmentsare usedas addressspacesput also
subsumethe function of files in a conventionaloperatingsystem.Segmentsan be combinedto form
larger segments. Segmentsmay be sparse;they do not necessarilydescribea contiguousrange of
addresses.

Nodesarethe glue that holdssegmentdogether. KeyKOS implementssegmentasa tree of nodeswith
pagesas the leavesof the tree. This facilitatesefficient constructionof hostarchitecturepagetables.
Becausenodesand pagespersist,so do segments. The systemdoesnot needto checkpointpagetable
data structures because they are built exclusively from the information contained in segments.

Meters

Meters control the allocation of CPU resources. A meter key providesthe holder with the right to
executefor the unit of time held by the meter. The KeyKOS kernel maintainsa prime meter that
representghe time interval from the presentuntil the end of time. Like spacebanks, meterscan be
subdividedinto submeters. Every running processholds a meter key that authorizesthe processto
execute for some amount of time.

KeyKOS processegan be preempted. Holding a key to a meterthat provides3 secondsof CPU time
does not guaranteethat the processwill run for 3 contiguousseconds. In the actual KeyKOS
implementation, time slicing is enforced by allowing a process to run for the minimum of its @ntiged
or the time slice unit. Political scheduling policies may be implemented external to the kernel.

Domains

Domains perform program execution services. They are analogous to the virtual procabs@®9O8iX
threadsmechanism. It was a designgoal not to restrict the architectureavailable to the user. A
consequence is that KeyKOS supports virtual machines. Domains model all of the non-privileged state of
the underlyingarchitecture jncluding the generalpurposeregisterset, floating point registerset, status

L' The systemcan support multiple masterspacebanks. In a B3 implementation,system pageswould be
partitioned into multiple security classes, and there would be one master space bank for each class.



registers, instruction set architecture, etc. A dornrdarpretsa programaccordingto the hardwareuser-
mode architecture. Domainsare machine-specificthoughwe have consideredhe implementationof
domains that perform architecture emulation (e.g. for DOS emulation on a RISC machine).

In addition to modeling the machinearchitecture,domainscontain 16 generalkey slots and several
specialslots. The 16 generalslots hold the keys associatedvith the running program. When a key
occupiesone of the slotsof a domain,we saythatthe programexecutingin that domainholdsthe key.

Oneof the specialslotsof the domainis the address slot. The addressslot holdsa segmenkey for the
segmenthatis acting asthe addressspacefor the program. On architectureswith separatenstruction
anddataspacesthe domainwill havean addressslot for eachspace. Eachdomainalso holds a meter
key. The meter key allows the domain to execute for the amount of time specified by the meter.

KeyKOS processesare createdby building a segmentthat will becomethe program addressspace,
obtaininga fresh domain,andinsertingthe segmentkey in the domain'saddressslot. The domainis
createdin the waiting state,which meansthatit is waiting for a message.A threadsparadigmcan be
supported by having two or more domains share a common address space segment.

Becausedomaininitialization is sucha commonoperation,KeyKOS providesa mechanisnto generate
"prepackagedtdomains. A factory is an entity that constructsother domains. Every factory createsa
particular type of domain. For example, the queue factory creates domaimthdé queuingservices.
An importantaspectof factoriesis the ability of the client to determinetheir trustworthiness. It is
possiblefor a client to determinewhetheran object createdby a factory is secure. Understanding
factoriesis crucial to a real understandingf KeyKOS, but in the interestof brevity we haveelectedto
treat factories as "black boxes" for the purposes of this paper. To understand thiengdentatiorit
is sufficient to think of factories as a mechanism for cheaply creating domains of a given type.

5. Message Passing

The mostimportantoperationsupporteddy the nanokernels messaggassing. Messagesentfrom one
domainto anotherinvolve a contextswitch. In orderto encouragehe separatiorof applicationsinto
component®f minimal privilege, the nanokernel'snessagéransferpath hasbeencarefully optimized.
The KeyKOS inter-domainmessagéransferpathrangesfrom 90 instructionson the System/37do 500
cycles on the MC88x00.

Messagesirecomposef a parameteword (commonlyinterpretedasa methodcode),a string of up to
4096 bytes,and four keys. A domainconstructsa messageby specifyingan integer, contiguousdata
from its addressegmentandthe keysto be sent. Only keysheld by the sendercanbe incorporatednto
a message.Onceconstructedthe messagas sentto the object namedby a specifiedkey. Sendinga
message is sometimes referred to as key invocation.

KeyKOS suppliesthree mechanismdor sendingmessages.The call operationcreatesa resume key,
sendsthe messagédo the recipient,and waits for the recipientto reply usingthe message'sesumekey.
While waiting, the calling domainwill not acceptother messages.A variantis fork, which sendsa
messageavithout waiting for a response. The resumekey is most commonly invoked using a return
operation,but creative use of call operationson a resumekeys can achieve synchronouscoroutine
behavior. The returnoperationsendsa messageand leavesthe sendingdomainavailableto respondto
new messages. All message sends have copy semantics.

The nanokerneldoesnot buffer messagesa messagés both sentand consumedn the sameinstant. If
necessaryinvocationof a key is deferreduntil the recipientis readyto acceptthe message.Message
buffering can be implementediransparentlyby an interveningdomainif needed. The decisionnot to
buffer messagewithin the nanokernelvaspromptedby the desireto avoid dynamicmemoryallocation,
limit I/O overhead, keep the context switch path length short, and simplify the checkpoint operation.



A messageecipienthasthe optionto selectivelyignore partsof a message.lt may chooseto acceptthe
parameter word and all or part of the byte string without accepting the keys, or accept the pamameter
and the keys without the data.

6. Checkpointing and Journaling

KeyKOS providesfor regular system-widecheckpointsand individual pagejournaling. Checkpoints
guaranteegapid systemrestartand fail-over support,while journaling providesfor databaseshat must
make commit guarantees.

The Checkpoint Mechanism

The KeyKOS nanokernetakessystem-widecheckpointsvery few minutes. Checkpointfrequencycan
be adjusted by the administrator at any time without interruption of service.

The KeyKOS systemmaintainstwo disk regionsas checkpointareas. Whena checkpointis taken,all
processesre briefly suspendedvhile a rapid sweepis donethroughsystemmemoryto locatemodified
pages. No disk I/O is donewhile processesre frozen. Oncethe sweephasbeendone,processesre
resumedand all modified pagesare written to the currentcheckpointarea. Once the checkpointhas
completed, the system makes the other checkpogatcurrent,andbeginsmigratingpagesrom thefirst
checkpointareabackto their homelocations. Checkpointfrequencyis automaticallytunedto guarantee
that the page migration processwill complete before a secondcheckpointis taken. Becausethe
migration process is incremental, a power failure during migration never leads to a corrupt system.

An implementatiorconsequencef this approachto checkpointings unusuallyefficient disk bandwidth
utilization. Checkpoint, paging, and pagé&rationl/O is optimizedto takeadvantagef disk interleave
and compensate$or arm latenciesto minimize seekdelays. This accountsfor all pagewrites. The
aggregataesultis that KeyKOS achievesmuch higher disk efficiency than most operatingsystems. If

the systembus is fast enough,KeyKOS achievesdisk bandwidthutilization in excessof 90% on all

channels.

It is worth emphasizinghatthe checkpointis not simply of files, but consistof all processeaswell. If
an updateof a file involvestwo different pagesandonly oneof the pageshasbeenmodified at the time
of the checkpointthe file will not be damagedf the systemis restarted. When the systemis restarted
the process thatasperformingthe updateis alsorestartecandthe secondpageof thefile is modified as
if therehadbeenno interruption. A poweroutageor hardwarefault doesnot leavethe systemin some
confusedand damagedstate. The stateat the last checkpointis completelyconsistentand the system
may be restarted from that state without concern about damaged files.

The Journaling Mechanism

For mostapplicationsijt is acceptabldor the systemasa wholeto losethe last few minuteswork aftera
power outage. Transactionprocessingand databasesystemsrequire the additional ability to commit
individual pages to permanent backing store on demand. Using the journaling mechalisrainmay
requesthatchangedo a particularpagebe synchronouslhcommittedto permanenstorage. If a system
failure occursbetweenthe commit and the next completedcheckpoint,the journaledpagewill remain
committed after the system restarts. It is the responsibility of the requesting domain tthesetwantic
consistency of such pages.



Thejournalingmechanisntommitspagesby appendinghemto the mostrecentcommittedcheckpoint.
As a result, journaling doesnot lead to excessivedisk arm motion. A curious consequencef this
implementationis that transactionperformanceunder KeyKOS improves underload? This is due to
locality at two levels. As loadincreasesit becomessommonfor multiple transactiongo be committed
by a singlepagewrite. In addition,performingthesewritesto the checkpointareafrequentlyallowsthe
journaling facility to batch disk I/O, minimizing seek activity. The KeyKOS transactionsystem
significantly exceedghe performanceof competingtransactiorfacilities runningon the samehardware.
CICS, for example, is unable to commit multiple transactions in a single write.

7. Exception Handling

Processxceptionsare encapsulatedby the nanokerneland routedto a user-levelhandlerknown as a
keeper. The keepertechnologyof KeyKOS brings all exceptionpolicy to applicationlevel programs
outside of the nanokernel. A keeperis simply a domain that understandghe exception messages
deliveredby the kernel;it is in all regardsan ordinarydomain. Sincethe UNIX implementatiorrelies
heavily on the Domain Keepertechnology,the ideas and specificationsconcerningKeeperswill be
discussed before we delve into the UNIX specifics.

Recallthata KeyKOS applicationhasan addressspace,a domain,and a meter. Eachof theseobjects
holds a startkey to an associatedlomainknown asits keeper. Whenthe processperformsan illegal,
unimplementedopr privileged instruction,the error is encapsulatedn a messagevhich is sentto the
appropriatekeeperalongwith the keysnecessaryo transparentlyecoveror abortthe application. The
keeper may terminate the offending program, supply a correct answalt@maeéxecutionto continue,or
restart the offending instruction.

Each segmenthas an associatedsegment keeper. The segmentkeeperis a KeyKOS processthat is
invokedby the kernelwhenan invalid operation,suchasan invalid referenceor protectionviolation, is
performed on a segment. Page faults are fielded exclusively by the nanokernel.

By appropriateuseof a meter keeper, more sophisticatedgschedulingpolicies canbe implemented. The

meterkeeperis invoked wheneverthe meterassociatedvith a domaintimesout. A threadsupervisor
might implementa priority schedulingpolicy by attachingthe samemeter keeperto all threads,and

havingthe meterkeeperparcelout time to the individual threadsaccordingto whateverpolicy seemed
most sensible.

The mostinterestingkeeperfor this paperis the domain keeper. The domainkeeperis invokedwhena
trap or exception is taken. When a domamcountersan exception(systemcall, arithmeticfault, invalid
operation,etc.) the domainstopsexecutingand the domain keeperreceivesa message. The message
containsthe non-privilegedstateof the domain(its registers,jnstructioncounter,etc.),a domainkey to
the domain,anda form of resumekey that the keepercan useto restartthe domain. Whenthe faulting
domainis restartedt resumesat the instructionpointedto by the programcounter. If necessarythe
domain keeper can adjust the PC value of the faulting domain before resumption.

8. A KeyKOS-Based UNIX Implementation

In July of 1990, Key Logic undertookto producea binary-compatibleprototypeUNIX implementation
for the Omron Luna/88K. The effort had twdnciple goals. Thefirst wasto rapidly constructa system
that could run existing Omron applicationbinaries. Basedon Mach 2.5, the Omron implementation
providesa reasonablycompleteversionof the BerkeleyUNIX system,including the X11r4 windowing

2 Up to a point. There ain't no such thing as a free lunch.



system. KeyNIX wasimplementedby a single developerover a six month period, without referenceo

the UNIX source code. The implementation was partly based eararMinix portthathadbeenbuilt

for KeyKOS on the System/370.

Our experiencdan implementingother systemswas that breakingan applicationinto separatdunction-

orienteddomainssimplified the applicationenoughto improve overall performance. A secondgoal of

the KeyNIX implementationwasto learnwheresuchdecompositiorinto separatealomainswould cause

performancelegradation.In severalareasmulti-domainimplementationsveretried wherethe problem
area was clearly a boundary case in order to explore the limitations of the domain paradigm.

UNIX Services
Broadly speaking, the UNIX system provides the following services:

» Process management (fork, exec, exit, kill),

* File system and namespace services (open, link),

* 1/O services (read, write, stat, ...)

» Timing facilities (sleep, nap, sometimes socket)

» Messaging (sockets, pipes)

* Memory management (mmap, mprotect)

* Signals

» Device support

* Networking (TCP/IP, NFS)
With the exception of networking, KeyNIX implemerati of theseservices. Adding networkingsupport
would be straightforward, but was not part of the prototype effort.
9. Structure of KeyNIX
UnderKeyNIX, everyUNIX procesgunsasa KeyKOSdomainwith a segmengsits addresspace. A
standardkeyKOS segmentkeeperis usedto managestack and heapgrowth within the addressspace
segment. From the outside,the UNIX processmodel is essentiallyunchangedNo KeyNIX codeis
mapped in with the application, nor is special linking requirElde applicationaddresspacesarebit for
bit identical. This severelypenalizesall trivial systemcalls, andis a significant departurefrom the
implementationsused by other microkernels. The penalty could be eliminatedin a dynamic-library
based standard such as System V Release 4.
To supportUNIX processesye implementeda domainkeeper knownasthe UNIX Keeper. The UNIX
keeperinterpretsthe systemcall andeithermanageshe call itself or directsrequestto otherdomainsfor
servicing. The implementationincludesa numberof cooperatingdomains,is shownin Figure1l. The

gray box surrounds the domains and segments that are replicated for each UNIX process.

Each of these domaitis turn depend®on otherdomainsprovidedby the KeyKOS system. For example,
a small integer allocator domain is used to allocate monotonically increasing inode nufitbgiraplify
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Figure 1. Structure of the UNIX Implementation

the picture,domainsthat are not essentiato understandinghe structureof the UNIX implementation
have been omitted.

One Kernel per Process

An unusualaspectbof the KeyNIX designis thatevery UNIX processhasa dedicatedcopy of the UNIX

Keeper.Whena procesdorks, the UNIX Keeperis replicatedalongwith the process. By providing a
separatdJNIX keeperto eachUNIX application,the scopeof UNIX systemfailuresis reducedto a
singleprocess.If agivenUNIX procesgdoes manageo crashits copy of the operatingsystem,no other
processesireimpacted. An individual kernelis very hardto crash. To crashthe entire UNIX system
essentially requires physical abuse of the machine or its power supply.

State that must be shared between multiple UNIX keepers, including the process table and tajpém file
is keptin a segmensharedby all UNIX Keepers. Eachprocesshasa descriptionblock (a procesgable
entry) that describeghe processaddressspace,openfiles, and signal handling. Procesdable entries
containchainsof child processesnd pointersto the parentprocesgable entry. Eachopenfile hasan
entry in the OpenFile Table which keepstrack of the numberof processeshat havethe file open,the
attributes of the file, and a pointer to the data structures that buffer the file data in memory.

The UNIX keeperimplementsUNIX processand memory managemenservicesby calling directly on

the underlying KeyKOS services. The nanokernelhandlesvirtual memory mapping and coherency
directly. Whena programis loadedby exec(2), the UNIX keeperbuilds an addresspacesegmentand

copiesthe executabldile segmeninto it. Manipulatingthe KeyKOS segmenstructureds simplerthan

the equivalentstructuremanipulationsin UNIX, and allows the UNIX keeperto be largely platform

independent. The nanokernelis responsiblefor the constructionof mappingtablesfor the particular
hardware platform.

The KeyNIX File and Device System

The UNIX Keeperholds a key to the root inode of the KeyNIX file system. Eachinode containsthe
usualUNIX inodeinformation,andis implementedoy a KeyKOS domain. If the inode denotesa file,



the inode domainholds a key to a KeyKOS segmentcontainingthe file data. If the inode denotesa
device, the device major and minor numbers are contained in the inode.

By making eachUNIX inodeinto a KeyKOS domain,the UNIX Keeperdoesnot haveto managean
inode cache or worry about doing 1/0 to read and write inodésenthe Keeperneedgo readthe status
information from an inode it sendsa messagedo the Inode object and waits for the reply. Similar
argumentsapply to otheroperations. The Keeperdoesnot cachefile or directoryblocks,anddoesnot
maintain paging tables for supportof virtual memory. All of thesefunctions are handledby the
nanokernel.

In the original KeyNIX implementationdirectoryinodescontaineda key to a B-treedomainthatwasan
underlyingKeyKOS tool. An analysisof typical directory sizesled to the conclusionthat it would be
more space efficient to implement small directories (less than five entries) in thetgsdideAs a result,
directory protocol requests armaplementedirectly by theinodedomain. If theinodedoesnot denotea
directory it fails the directory messages appropriately. A curious artifact of this approaatdisectory
orderis alphabeticabrder. Thisis occasionallyvisible to endusersasa changeof behaviorin programs
that search directories without sorting them.

When openinga file, the UNIX Keeperissuesa messagdo the file systemroot inode domain. This
domain in turn calls on other domains, until ultimately the reqaessolvedio a segmenkey thatholds
the file content. Oncethe file hasbeenlocated,the UNIX keepermapsthe segmentinto the keeper
address space and adds an entry to the open file table. The open file table is shatédIXykdepers,
andis usedto hold dynamicallychanginginformationsuchasthefile's currentsizeandlast modification
date.

When opening a device, the UNIX Keeperreceivesthe major and minor device number from the
appropriate inode domain. The major number is in turn handbe tevicetabledomain,which returns
a keyto the domainthatimplementsthe driver. Driversimplementedn the prototypeinclude character
I/O, graphicsconsole(supportshe X Window System),the null device,socketskmem,andthe mouse.
Supportfor /dev/ikmemis limited to forging thoseresponsesiecessaryo run the ps(1) command. In

most casesthe device driver domain consistsof the original UNIX device driver code linked with a

support library that maps the UNIX driver-kernel interface onto KeyKOS key invocations.

The Problem of Sgnals

The most difficult part of th&eyNIX implementationwassupportfor the signal(2) mechanism.Oneof
the deliberatedesigndecisionsof KeyKOS is that domainsare single threaded. A domainis either
waiting for a message, waiting for a reply to a message, or processing a mdssages no mechanism
for stackingmessages.This decisionincreaseghe reliability of the KeyKOS system,but occasionally
requires that queuing domains be inserted into an otherwise straightforward remote procedure call.

UNIX signalsareasynchronousvith respecto thereceivingprocess.As a result,the implementatiorof
the sighalmechanisnis one of the more complicatedand pervasive(not to say perverseaspectf the
UNIX kernel3

To ensurethatthe UNIX Keeperis alwaysableto receivesignalnotificationspromptly, trivial queuing
domains are requiragherean operationmight block or completeslowly. The purposeof thesedomains
is to queue messages to devices such as ttys and pipes that might otthelawithee receiptof signalsby
the UNIX Keeper. The UNIX Keeperdeliversthesemessageshroughthe queuedomain, and waits
asynchronouslyor the queuedomainto senda messageéndicatingcompletionof the requestedervice.

3 Thisis also a significant problem for debugging interfaces, sufdt@g4) andptrace(2).
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In effect, a seriesof fork messagesare usedto implementa non-blockingremoteprocedurecall to the
device domain in order to ensure that the UNIX kernel is always ready to receive another message.

The queueinsertionapproachthasunfortunateconsequencef®r slow devices(with disk devicesone can
reasonablyassumeinstant serviceand duck the issue),and severlyimpactedcommunicationfacilities
such as pipes or sockets, as shown in Figure 2.

Thesemechanismsre penalizedby the requirementrom both sidesto remainable to receivesignals
while proceeding with the I/O transfer. The impaatasilyvisible in the performanceof KeyNIX pipes.
A better alternative is discussed below.

Expected Performance

To the bestof our knowledge the KeyNIX systemusesfar more processeshanany other microkernel-
basedUNIX implementation. Reactionsto the KeyNIX designfrom UNIX developersrange from
shocked to appalled at the profligate use of processes. UNIX developers find it difficult totlaatiyet
task switch cost can be lower thitie datamanagementodethatit replaces.We find thisironic, asone
of the major innovations of the UNIX system was the notion that processes were cheap.

The object paradigm was at the heart of the design of the KeyKOS system and, as a r&sshtswhiteh
costs are very much lower than in traditional systemsand severaltimes lower than in competing
microkernelssuchasMACH and Chorus. On the Motorola 88x00 series,a typical messagesendtakes
lessthan500cycles* Thelow costof taskswitchesmakesit possibleto obtainbetterperformancewith

much simpler softwareby taking an object-orientedapproachto the decompositiorof the system. The
UNIX implementationdescribedhere takesconsiderableadvantageof KeyKOS building blocks. The
complete UNIX kernel implementation is approximately 16,000 lines of C code.

Known Incompatibilities

The KeyNIX implementationis 99% compatiblewith the Omron BSD 4.3 implementation. While
KeyNIX could be equally compatiblewith MACH 2.5, the existing prototypeis not. There are four
significant incompatibilities in the prototype:

1. The applicationprolog ("crt0") in MACH 2.5 initializes certain MACH ports. Because
KeyNIX doesnotyetimplementMACH ports,applicationsbuilt with the MACH 2.5 crt0.0
do not run under KeyNIX.

4 This time includesthe contextswitch and copying both dataand keys. The Motorola implementationis the
slowest implementation to date.



2. MACH 2.5 port functions are accessed by a trap instruction in the same fashiotuaiare
system calls. KeyNIX does not implement these traps.

3. In MACH 2.5,thefork(2) systemcall doesthe sameportinitialization for the newtaskthat
was done by "crt0" in the parent task. This change is not implemented in KeyNIX.

4. MACH 2.5 doesnot implementthe sbrk(2) systemcall. This call is handledby a library
routine that usesthe "VMALLOC" of MACH 2.5 to handle memory expansionand
contraction.

5. TheKeyNIX text segments writable,which canimpactbuggyprograms. This is the result
of a quick and dirty implementation, and could be easily fixed.

Programscompiledon the Luna88K underMACH 2.5 thatareto berunin the KeyNIX systemmustbe
linked with a new prolog and new library stubsfink(2) andsbrk(2). In cases where the ".fles exist,
there is no need to recompile the programs, but the programs must be relinked.

The existingprototypedoesnot supportall BSD 4.3 systemcalls. The major criterionfor choosingwhat
to implement and what not to implement wasrkedto run X-Windows, csh(1), Is(1) andsimilar useful
utilities. If the system call is not needed to run these applications therottilsplemented. Therearea
number of calls that are implementedin a limited fashion, again sufficiently to run the required
applications. Asnexamplecsh(1) makesusage(2) calls but doesnot dependon the answerdor correct
behavior. Usage(2) always returns the same fixed values and is not useful as a measuring tool as a result.

To getan intuitive senseof the compatibility achieved,it may suffice to saythat all of the application
binaries running on KeyKOS were obtairtadcopyingthe binaryfile from the existingBSD 4.3 system.
The X Window System, compilers, shells, file system utilities, etc. all run without change under KeyNIX.

10. Performance Comparison
A limited performanceeomparisorwasmadebetweenthe KeyNIX prototypeandthe OmronMACH 2.5

implementation. A more careful analysis would be required for any serious evaluation of the two systems
for production use. KeyNIX got mixed results for common system call sequences:

Operation Iterations  KeyNIX MACH 2.5 Ratio
getpid(); 10,000 12,000/sec 30,000/sec 0.4
open();close(); 1,000 714/sec 2777/sec 0.26
fork();exit(); 100 64/sec 10/sec 6.4
exec(); 100 151/sec 12/sec 11.6
sbrk(4096);sbrk(-4096) 100 2564/sec 181/sec 14

I/O performance was equally mixed:

Operation KeyNIX MACH 2.5 Ratio
Pipe (round trip) .588 Mbyte/sec 1.05 Mbyte/sec .56
Disk access program 4 seconds 26 seconds 6.5

As anticipatedthe simplification achievedy addingdomainsdoesn'talwaysleadto betterperformance.
The casesthat the KeyNIX prototype handled poorly have straightforward correctionswhich are
discussed below.



Smple System Calls

Simple systemcalls include calls such as getprocid(2), putprocid(2), and gettimeofday(2), which are
essentiallyaccessofunctions. A trapis taken,but the systemcall itself performslittle or no interesting
activity within the kernel. The KeyNIX system is binary compatible with this approach.

The MACH 2.5 implementationis able to executethesesystemcalls 2.5 times as fast as the KeyNIX
systembecausao contextswitchis involved. MACH 3 usesspecialsystemcall librariesto implement
someof thesefunctionsin the UNIX process addresspace. A similar approachwould be possiblein
KeyNIX if the systemcalls were implementedin dynamiclibraries, asin SystemV Released, or if
binary compatibility could be sacrificed. We were surprised that KeyNIX did so well on this comparison.

Open and Close

To explore the limits of domain performancewe electedto implementeachinode as an individual
domain. On the basisof our previousexperiencesit seemedikely that the simplification achievedby
this approach would overcome the overhead of multpleains. With the benefitof hindsight,we were
mistaken,and the performanceof open(2) sufferedexcessively. The namei() routine within the UNIX

kernelis heavily used,andthe decisionto usemultiple domainsin effectinsertedfour contextswitches
into theinnerloop(for two round-tripRPC's)? In a small programthat simply opensandclosesa single
file 1,000times,the MACH 2.5 systemoutperformedhe KeyNIX systemby nearly four to one (3.89).
Alternative implementations are discussed below.

Fork and Exit

Becausdhe UNIX programmingmodelassumeshat processesre cheapthe performanceof fork(2) is
critical to the overall performanceof the system. In KeyKOS, the equivalentto fork(2) is evenmore
critical, and is possiblythe most carefully optimized path in the nanokernel. We thereforeexpected
KeyNIX to do well onfork(2) calls. KeyNIX outperforms MACH 2.5 by a little more than six to one.

The current KeyNIX implementation suffers from an extremely naive loader implementation in the UNIX
keeper. When performing a fork(2), a complete copy of the process addresspaceis made. The
implementatiorcould beimprovedby sharingthe read-onlytext pagesratherthancopyingtheir content.

In addition,it would not be difficult to implementUNIX copy-on-writesemanticsas part of the segment
keeperthat servicesfaults on the UNIX addresspace. Neitherof theseoptimizationswas performedin

the prototype due to time constraints, and we would expect each to result in substantial improvements.

Exec

Giventhe naiveloaderimplementationwe werepleasantlysurprisedo find that KeyNIX outperformed
MACH 2.5 by betterthan elevento one on exec(2) calls. The test programsimply calls exec(2) one
hundred times and exits. Implementing shared text would significantly improve the KeyNIX results.

Sork

In order to compare the performance of $hik(2) system call, a program was writtenrepeatedlygrow
andshrinkthe heap. 100 calls to sbrk(4096)andsbrk(-4096)were executedwith a fetch of a byte from
the newly allocatedmemory. Thefetch of the byte forcesthe UNIX implementatiorto actuallyallocate

5 One round trip to access the inode domain, the second to access the directory domain.



the main storefor the page,and consequentlyorcesthe pageto be deallocatedvhenthe heapsegment
sizeis reduced. KeyNIX outperformedhe MACH 2.5 implementationby fourteento one, which was
consistent with our expectation.

Pipe Bandwidth

Pipeperformancas oneof the areasvherewe expectedKeyNIX to suffer. In orderto comparethe pipe
implementationsa megabyteof datawaspassedhrougha pipeto a child procesgaskandbackin 1000
byte chunks. The MACH 2.5 implementation outperformed KeyNIX by nearly two to one.

This resultis principally due to the insertion of queuedomainsinto both endsof the pipe, imposing
considerableontextswitchoverhead.In retrospectwe could haveeliminatedthe queuesanddepended
on the fact that asynchronousignal delivery timing is not guaranteedy the UNIX procesanodel. In
particular,correctUNIX programscannotdependon the fact that interprocess signalswill interrupta
systemcall in the receivingprocess. Taking advantagef this loopholewould allow for a muchsimpler
and faster implementation.

Disk File /O

To measuralisk performancewe built a programto createa largetestfile andreadit repeatedly. The
I/O modelof KeyNIX andMACH 2.5 aresoradically differentthat othercomparisonsrevery difficult.
Uncachedwrites, for example aredominatedoy disk arm movementso a comparisorof suchactivity is
unenlighteningThe timesreportedarethe elapsedime to write andthenreada one megabytefile ten
times. KeyNIX outperforms MACH 2.5 by better than six to one.

KeyNIX I/O performancas a directresultof the underlyingKkeyKOS I/O design. KeyKOS neverwrites
to disk asa directresultof writing to afile. All writesto thedisk arepartof the paging,checkpointand
migration system.

To determinethe impactof the checkpointprocesson the test, we arrangedfor KeyKOS to performa

checkpointandmigrationin parallel. This procesancreaseshe KeyKOStime to 4.4 secondsgiving a

performanceaatio of 5.9to one. To the bestof our knowledge the prototypeKeyNIX systemachieves
the highest 1/0 bandwidth utilization of any UNIX system toflaieyKOS'sl/O performancemakesthe

overall performanceof manyapplicationsbetterunderKeyNIX thanundera more conventionalsystem,
and appears to more than balance the prototype's performance deficiencies.

Performance Summary

The overall performanceof the KeyNIX systemis quite comparablevith MACH 2.5. Someoperations
areslowerand somequite a bit faster. A userusing X-Windows doing VI andusinga variety of shell
commandsand scriptsis unawareof any significant performancedifference betweenMACH 2.5 and
KeyNIX.

We are well awareof the significanceof the I/O subsystendesignin this claim, and believethat the claim
would hold up whenexaminedwith otherl/O subsystemandbusarchitectures.On the System/370KeyKOS
achieves channel utilization of better than 988@ll channels.With currentSCSltechnology KeyKOS'sdisk
utilization is limited by the SCSI channel performance.



11. Implementation Alternatives

In the courseof the prototypeeffort, we cameup with severalwaysto simplify the UNIX keeperandto
cutdown on someof the overhead. Eachof these ideasepresents compromisen the useof domains
and multiple instantiation.

Domains for Process and File Table Manipulation

The currentprocesdable segments an array of procesdable entries. The UNIX processd is usedto
indexthetable. Processwumbersarereallocatedquickly, which leadsto certainproblemsin the human
interfacefor systemmaintenance.Also there are circumstancesvhen processtable entriesshould be
chainedsothatchildrencanbelocatedmorequickly. This is besthandledby introducinga domainfor
processtable entry manipulationthat allocatesand chains processtable entries. The UNIX keeper
continuesto referenceits own processtable entry directly, but accesse®ther processtable entries(to
obtaina signalkey) usingthe procesgable managementiomain. Similarly, the openfile tablecouldbe
implementedby a domain. Thesemodificationswould both simplify the UNIX keeperandremovethe
primary impediment to distribution of the KeyNIX implementation on loosely coupled architectures.

Small Files

The datafor smallfiles could be keptin nodesinsteadof segments.A smallfile might be a single-level

tree of nodes with up to 16 leaf hodes each holding 176 bytes of data. When the 17th node is required the
file is convertedo a segment. The inodedomainwould convertthefile to a segmentwvhenit is opened,

and on the last close would convertit backinto nodeform if it is small enough. This would allow

KeyNIX to achieve more efficient storage of small files than current UNIX systems.

File System Domain

Openindfiles is a crucial operationin UNIX systemsandthe domain-per-inodeapproachs not nearly
fast enough. Two alternative implementations would have delivered competitive performance.

The first approachis to build the entire directory and inode supportstructurefor a file systeminto a
singledomain,while continuingto implementfiles asindividual segments.This would eliminatealmost
all of the contextswitchingperformedin the file subsystemandwould probablyoutperformthe MACH

2.5 implementation.

The secondalternativeis to implementa compatibility library thatwould enableus to simply compilea
vnodes-compatibléle systeminto a domain. Usingthis approachthe entirefile systemwould residein
a single KeyKOS segmergndbug-for-bugcompatibility is achievable. This approachs somethingdike
the File Managertasksof CHORUS and MACH 3. In practice, supportingvnodesfile systemsis
probably a compatibility requirementfor a commercialUNIX implementation,but systemreliability
suffers greatly from this requirement.

Our currentpreferencawould be the first alternative,mainly to eliminatethe bugsof the existing file
systemimplementations.In addition,we feel that this approachsignificantly simplifies recoveryin the
event of a disk block failure, as it eliminates the need for a complicated file system consistency checker.



12. Conclusions

The KeyKOS nanokernelhas beenrunning in productionenvironmentsfor nine years. It is proven
technology,and we feel that the architectureand implementatiorhave muchto offer to the computing
communityat large. A seriousdevelopmenprojectcould far exceedthe performancehat we obtained
from the six month UNIX prototype effort.

KeyKOS represents pardigmaticshift in operatingsystemtechnology. It is thereforedifficult to make
direct comparisonsvith otherapproaches.A pure capability architecturebrings fundamentallygreater

discipline, control, and reliability to application construction. In the long term, we feel that this degree of

reliability is necessary to realize the productivity promises of the information age.

For further information on KeyKOS:

U.S. Mail: Norman Hardy
143 Ramona Road
Portola Valley, CA 94028
Phone: (415) 851-2582

Email: norm@xanadu.com
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