
The KeyKOS® Nanokernel Architecture

Alan C. Bomberger Norman Hardy
A. Peri Frantz Charles R. Landau

William S. Frantz Jonathan S. Shapiro
Ann C. Hardy

ABSTRACT

The KeyKOS nanokernel is a capability-based object-oriented operating system that has been in
production use since 1983. Its original implementation was motivated by the need to provide
security, reliability, and 24-hour availability for applications on the Tymnet® hosts.
Requirements included the ability to run multiple instantiations of several operating systems on a
single hardware system. KeyKOS was implemented on the System/370, and has since been
ported to the 680x0 and 88x00 processor families. Implementations of EDX, RPS, VM, MVS,
and UNIX have been constructed. The nanokernel is approximately 20,000 lines of C code,
including capability, checkpoint, and virtual memory support. The nanokernel itself can run in
less than 100 Kilobytes of memory.

KeyKOS is characterized by a small set of powerful and highly optimized primitives that allow it
to achieve performance competitive with the macrokernel operating systems that it replaces.
Objects are exclusively invoked through protected capabilities, supporting high levels of security
and intervals between failures in excess of one year. Messages between agents may contain both
capabilities and data. Checkpoints at tunable intervals provide system-wide backup, fail-over
support, and system restart times typically less than 30 seconds. In addition, a journaling
mechanism provides support for high-performance transaction processing. On restart, all
processes are restored to their exact state at the time of checkpoint, including registers and
virtual memory.

This paper describes the KeyKOS architecture, and the binary compatible UNIX implementation
that it supports.

1. Introduction

This paper describes the KeyKOS nanokernel, a small capability-based system originally designed to
provide security sufficient to support mutually antagonistic users. KeyKOS consists of the nanokernel,
which can run in as little as 100 Kilobytes of memory and includes all of the system privileged code, plus
additional facilities necessary to support operating systems and applications. KeyKOS presents each
application with its own abstract machine interface. KeyKOS applications can use this abstract machine
layer to implement KeyKOS services directly or to implement other operating system interfaces.
Implementations of EDX, RPS, VM/370, an MVS subset, and UNIX have been ported to the KeyKOS
platform using this facility.

Tymshare, Inc. developed the earliest versions of KeyKOS to solve the security, data sharing, pricing,
reliability, and extensibility requirements of a commercial computer service in a network environment.

KeyKOS is a registered mark of Key Logic, Inc.

Tymnet is a registered mark of British Telecom, Inc.

UNIX is a registered mark of AT&T Bell Laboratories, Inc.

Development on the KeyKOS system began in 1975, and was motivated by three key requirements:
accounting accuracy that exceeded any then available; 24-hour uninterrupted service; and the ability to
support simultaneous, mutually suspicious time sharing customers with an unprecedented level of
security. Today, KeyKOS is the only commercially available operating system that meets these
requirements.

KeyKOS began supporting production applications on an IBM 4341 in January 1983. KeyKOS has run
on Amdahl 470V/8, IBM 3090/200 (in uniprocessor System/370 mode), IBM 158, and NAS 8023. In
1985, Key Logic was formed to take over development of KeyKOS. In 1988, Key Logic began a rewrite
of the nanokernel in C. After 10 staff months of effort a nanokernel ran on the ARIX Corporation 68020
system, and the project was set aside. The project resumed in July of 1990 on a different processor, and
by October of 1990 a complete nanokernel was running on the Omron Luna/88K. The current
nanokernel contains approximately 20,000 lines of C code and less than 2,000 lines of assembler code.

This paper presents the architecture and design of the KeyKOS nanokernel, and the UNIX system that
runs on top of it. In the interest of a clear presentation of the KeyKOS architecture, we have omitted a
description of the underlying kernel implementation.

2. Architectural Foundations

KeyKOS is founded on three architectural concepts that are unfamiliar to most of the UNIX community:
a stateless kernel, single-level store, and capabilities. Our experience indicates that understanding a
single-level store model requires a fundamental shift in perspective for developers accustomed to less
reliable architectures. It therefore seems appropriate to present these concepts first as a foundation on
which to build the balance of the KeyKOS architectural description.

Stateless Kernel

An early decision in the KeyKOS design was to hold no critical state in the kernel. All nanokernel state
is derived from information that persists across system restarts and power failures. For reasons of
efficiency, the nanokernel does reformat state information in private storage. All private storage is
merely a cache of the persistent state, and can be recycled at any time. When the discarded information
is needed again, it is reconstructed from the information in nodes and pages (which are described below)

As a consequence, the nanokernel performs no dynamic allocation of kernel storage. This has several
ramifications:

• The kernel is faster, since no complicated storage allocation code is ever run.

• The kernel never runs out of space.

• There is no nanokernel storage (such as message queues) that must be a part of the
checkpoint.

The absence of dynamic allocation means that there can be no interaction between dynamic allocation
strategies, which is the predominant source of deadlock and consistency problems in most operating
systems.

The system outside the nanokernel is completely described by the contents of nodes and pages (see
below), which are persistent. This state includes files, programs, program variables, instruction counters,
I/O status, and any other information needed to restart the system.

In addition, the ability to recover all run-time kernel data from checkpointed state means that an
interruption of power does not disrupt running programs. Typically, the system loses only the last few
seconds of keyboard input. At UNIFORUM '90, Key Logic pulled the plug on our UNIX system on
demand. Within 30 seconds of power restoration, the system had resumed processing, complete with all
windows and state that had previously been on the display. We are aware of no other UNIX
implementation with this feature today.

Single-Level Store

KeyKOS presents a persistent single-level store model. To the KeyKOS application, all data lives in
persistent virtual memory. Only the nanokernel is aware of the distinction between main memory and
disk pages. Periodic system-wide checkpoints guarantee the persistence of all system data. The paging
system is tied to the checkpoint mechanism, and is discussed in the section on checkpointing, below.
Persistence extends across system shutdown and power failure. Several IBM 4341 systems ran for more
than three years across power failures without a logical interruption of service.

Like memory pages, KeyKOS applications are persistent. An application continues to execute until it is
explicitly demolished. To the application, the shutdown period is visible only as an unexplained jump in
the value of the real time clock, if at all. As a result, the usual issues surrounding orderly startup and
shutdown do not apply to KeyKOS applications. Most operating systems implement a transient model of
programs; persistence is the exception rather than the rule. A client operating system emulator may
provide transient applications by dismantling its processes when they terminate.

The single-level store model allows far-reaching simplifications in the design of the KeyKOS system.
Among the questions that the nanokernel does not have to answer are:

• How does the system proceed when it runs out of swap space? (It checkpoints.)

• How does the kernel handle the tear-down of a process? (It doesn't.)

• How is kernel state retained across restarts? (The kernel contains no state that requires
checkpointing.)

Each of these areas is a source of significant complexity in other systems, and a consequent source of
reliability problems.

Capabilities

KeyKOS is a capability system. For brevity, KeyKOS refers to capabilities as keys. Every object in the
system is exclusively referred to by one or more associated keys. Keys are analogous in some ways to
Mach's ports. KeyKOS entities call upon the services of other entities by sending messages via a key.
Message calls include a kernel-constructed return key that may be used by the recipient to issue a reply.
Messages are most commonly exchanged in an RPC-like fashion.

What sets KeyKOS apart from other microkernels is the total reliance on capabilities without any other
mechanisms. There are no other mechanisms that add complexity to the ideas or to the implementation.
Holding a key implies the authority to send messages to the entity or to pass the key to a third party. If A
does not have a key for B, then A cannot communicate with B. Applications may duplicate keys that they
hold, but the creation of keys is a privileged operation. The actual bits that identify the object named by
a key are accesible only to the nanokernel.

Through its use of capabilities and message passing, KeyKOS programs achieve the same encapsulation
advantages of object-oriented designs. Encapsulation is enforced by the operating system, and is

available in any programming language. It is the complete security of this information hiding mechanism
that makes it possible to support mutually suspicious users.

A fundamental concept in KeyKOS is that a program should obey the "principle of least privilege". To
that end, the design of KeyKOS gives objects no intrinsic authority, and relies totally upon their keys to
convey what authority they have. Using these facilities, the system is conveniently divided into small
modules, each structured so as to hold the minimal privilege sufficient for its operation.

Entities may be referred to by multiple, distinct keys. This allows an entity that communicates with
multiple clients to grant different access rights to the clients. Every key has an associated 8-bit field that
can be used by the recipient to distinguish between clients. When the entity hands out a key, it can set
the field to a known value. Because all messages received by the entity include the 8-bit value held in
the key, this mechanism can be used to partition clients into service classes or privilege levels by giving
each class a different key.

It is worthwhile to contrast this approach with the ring-structured security model pioneered in Multics
and propagated in the modern Intel 80x86 family. The capability model is intrinsically more secure. A
ring-structured security policy is not powerful enough to allow a subsystem to depend on the services of a
subsystem with lesser access rights. Ring policies intrinsically violate the principle of least privilege. In
addition, ring-based security mechanisms convey categorical authority: any code running in a given layer
has access to all of the data in that layer. Capability systems allow authority to be minimized to just that
required to do the job at hand.

Using a capability model offers significant simplifications in the nanokernel. Among the questions that
the nanokernel does not have to answer are:

• Does this user have the authority to perform this operation? (Yes – if you hold the key you
can send the message.)

• How do I allocate enough kernel memory to perform name resolution on a variable length
name? (The kernel never deals with names, only keys.)

• Where does this file name get inserted in this directory? (The nanokernel does not deal with
file names or directories.)

Because the nanokernel has no naming mechanism other than capabilities, entity naming is intrinsically
decentralized. As a result, extending KeyKOS to multiprocessors is straightforward. KeyKOS
applications cannot tell if they are running on a uniprocessor or a multiprocessor.

3. Major Nanokernel Features

The nanokernel includes all of the supervisor-mode code of the system. The entire kernel is implemented
in approximately 20,000 lines of reasonably portable C code, and 2,000 lines of 88x00 assembly code. Of
the assembly lines, 1,000 lines are in the context switch implementation. This compiles to roughly 60
Kilobytes of executable code. While running, the nanokernel requires as little as 100 Kilobytes of main
memory.

The nanokernel is the only portion of the system that interprets keys. No other program has direct access
to the bits contained in the keys, which prevents key forgery. In addition, the nanokernel includes code
that defines the primitive system objects. These objects are sufficient to build the higher-level
abstractions supported by more conventional operating systems. The nanokernel provides:

• multiprogramming support, primitive scheduling, and hooks for more sophisticated
schedulers running as applications;

• a single-level store, as discussed above;

• separate virtual address space(s) for each KeyKOS process;

• redundant disk storage for system-critical information;

• a system-wide checkpoint-restart feature;

• journaling pages exempt from checkpoint for database and transaction processing support;

• keys by which messages are sent from one application to another;

• primitive and limited access to individual I/O devices;

• interpretation of keys that hides the location of the object on disk or in main memory.

During normal operation, KeyKOS executes a system-wide checkpoint every few minutes to protect from
power failures, most kernel bugs, and detected hardware errors. Both data and processes are
checkpointed. All run-time state in the nanokernel can be reconstructed from the checkpoint information.
Except for the initial installation, the system restarts from the most recent checkpoint on power up.

In addition to local checkpoint support, the nanokernel provides for checkpoints to magnetic tape or
remote hot-standby systems. This allows a standby system to immediately pick up execution in the event
of primary system failure.

4. Fundamental KeyKOS Objects

The KeyKOS kernel supports six types of fundamental objects: devices, pages, nodes, segments,
domains, and meters.

Devices

The nanokernel implements low-level hardware drivers in privileged code. The supervisor-mode driver
performs message encapsulation and hardware register manipulation. Except where performance
compels otherwise, KeyKOS applications implement the actual device drivers.

Pages

The simplest KeyKOS object is the page. Page size is dependent on the underlying hardware and storage
architectures, but in all current implementations is 4 Kilobytes. Every page has one or more persistent
locations on some disk device, known as its home location. The KeyKOS system manages a fixed
number of pages that are allocated when the system is first initialized. This number can be increased by
attaching additional mass storage devices to the system.

A page is designated by one or more page keys. Pages honor two basic message types: read, and write.
When pages are mapped into a process address space, loads and stores to locations in a page are
isomorphic to read and write messages on the page key. When a message is sent to a page that is not in
memory, the page is transparently faulted in from backing store so that the operation can be performed.

Applications that perform dynamic space allocation hold a key to a space bank. Space banks are used to
manage disk resource allocation. The system has a master space bank that holds keys to all of the pages
and nodes in the system.1 One of the operations supported by space banks is creating subbanks, which
are subbanks of the master space bank. If your department has bought the right to a megabyte of storage,
it is given a key to a space bank that holds 256 page keys. Space banks are a type of domain.

Nodes

A node is a collection of keys. All keys in the system reside in nodes. A node key conveys access rights
to a node, and can be used to insert or remove keys from a node. Like pages, nodes can be obtained from
space banks. In all current KeyKOS implementations, a node holds precisely 16 keys.

Nodes are critical to the integrity of the system. The KeyKOS system vitally depends on the data
integrity of node contents. As a result, all nodes are replicated in two (or more) locations on backing
store. In keeping with the general policy of not performing dynamic allocation in the kernel, and because
the integrity requirements for nodes are so critical, KeyKOS does not interconvert nodes and pages.

Segments

A segment is a collection of pages or other segments. Segments are used as address spaces, but also
subsume the function of files in a conventional operating system. Segments can be combined to form
larger segments. Segments may be sparse; they do not necessarily describe a contiguous range of
addresses.

Nodes are the glue that holds segments together. KeyKOS implements segments as a tree of nodes with
pages as the leaves of the tree. This facilitates efficient construction of host architecture page tables.
Because nodes and pages persist, so do segments. The system does not need to checkpoint page table
data structures because they are built exclusively from the information contained in segments.

Meters

Meters control the allocation of CPU resources. A meter key provides the holder with the right to
execute for the unit of time held by the meter. The KeyKOS kernel maintains a prime meter that
represents the time interval from the present until the end of time. Like space banks, meters can be
subdivided into submeters. Every running process holds a meter key that authorizes the process to
execute for some amount of time.

KeyKOS processes can be preempted. Holding a key to a meter that provides 3 seconds of CPU time
does not guarantee that the process will run for 3 contiguous seconds. In the actual KeyKOS
implementation, time slicing is enforced by allowing a process to run for the minimum of its entitled time
or the time slice unit. Political scheduling policies may be implemented external to the kernel.

Domains

Domains perform program execution services. They are analogous to the virtual processors of the POSIX
threads mechanism. It was a design goal not to restrict the architecture available to the user. A
consequence is that KeyKOS supports virtual machines. Domains model all of the non-privileged state of
the underlying architecture, including the general purpose register set, floating point register set, status

1 The system can support multiple master space banks. In a B3 implementation, system pages would be
partitioned into multiple security classes, and there would be one master space bank for each class.

registers, instruction set architecture, etc. A domain interprets a program according to the hardware user-
mode architecture. Domains are machine-specific, though we have considered the implementation of
domains that perform architecture emulation (e.g. for DOS emulation on a RISC machine).

In addition to modeling the machine architecture, domains contain 16 general key slots and several
special slots. The 16 general slots hold the keys associated with the running program. When a key
occupies one of the slots of a domain, we say that the program executing in that domain holds the key.
One of the special slots of the domain is the address slot. The address slot holds a segment key for the
segment that is acting as the address space for the program. On architectures with separate instruction
and data spaces, the domain will have an address slot for each space. Each domain also holds a meter
key. The meter key allows the domain to execute for the amount of time specified by the meter.

KeyKOS processes are created by building a segment that will become the program address space,
obtaining a fresh domain, and inserting the segment key in the domain's address slot. The domain is
created in the waiting state, which means that it is waiting for a message. A threads paradigm can be
supported by having two or more domains share a common address space segment.

Because domain initialization is such a common operation, KeyKOS provides a mechanism to generate
"prepackaged" domains. A factory is an entity that constructs other domains. Every factory creates a
particular type of domain. For example, the queue factory creates domains that provide queuing services.
An important aspect of factories is the ability of the client to determine their trustworthiness. It is
possible for a client to determine whether an object created by a factory is secure. Understanding
factories is crucial to a real understanding of KeyKOS, but in the interest of brevity we have elected to
treat factories as "black boxes" for the purposes of this paper. To understand the UNIX implementation it
is sufficient to think of factories as a mechanism for cheaply creating domains of a given type.

5. Message Passing

The most important operation supported by the nanokernel is message passing. Messages sent from one
domain to another involve a context switch. In order to encourage the separation of applications into
components of minimal privilege, the nanokernel's message transfer path has been carefully optimized.
The KeyKOS inter-domain message transfer path ranges from 90 instructions on the System/370 to 500
cycles on the MC88x00.

Messages are composed of a parameter word (commonly interpreted as a method code), a string of up to
4096 bytes, and four keys. A domain constructs a message by specifying an integer, contiguous data
from its address segment, and the keys to be sent. Only keys held by the sender can be incorporated into
a message. Once constructed, the message is sent to the object named by a specified key. Sending a
message is sometimes referred to as key invocation.

KeyKOS supplies three mechanisms for sending messages. The call operation creates a resume key,
sends the message to the recipient, and waits for the recipient to reply using the message's resume key.
While waiting, the calling domain will not accept other messages. A variant is fork, which sends a
message without waiting for a response. The resume key is most commonly invoked using a return
operation, but creative use of call operations on a resume keys can achieve synchronous coroutine
behavior. The return operation sends a message and leaves the sending domain available to respond to
new messages. All message sends have copy semantics.

The nanokernel does not buffer messages; a message is both sent and consumed in the same instant. If
necessary, invocation of a key is deferred until the recipient is ready to accept the message. Message
buffering can be implemented transparently by an intervening domain if needed. The decision not to
buffer messages within the nanokernel was prompted by the desire to avoid dynamic memory allocation,
limit I/O overhead, keep the context switch path length short, and simplify the checkpoint operation.

A message recipient has the option to selectively ignore parts of a message. It may choose to accept the
parameter word and all or part of the byte string without accepting the keys, or accept the parameter word
and the keys without the data.

6. Checkpointing and Journaling

KeyKOS provides for regular system-wide checkpoints and individual page journaling. Checkpoints
guarantee rapid system restart and fail-over support, while journaling provides for databases that must
make commit guarantees.

The Checkpoint Mechanism

The KeyKOS nanokernel takes system-wide checkpoints every few minutes. Checkpoint frequency can
be adjusted by the administrator at any time without interruption of service.

The KeyKOS system maintains two disk regions as checkpoint areas. When a checkpoint is taken, all
processes are briefly suspended while a rapid sweep is done through system memory to locate modified
pages. No disk I/O is done while processes are frozen. Once the sweep has been done, processes are
resumed and all modified pages are written to the current checkpoint area. Once the checkpoint has
completed, the system makes the other checkpoint area current, and begins migrating pages from the first
checkpoint area back to their home locations. Checkpoint frequency is automatically tuned to guarantee
that the page migration process will complete before a second checkpoint is taken. Because the
migration process is incremental, a power failure during migration never leads to a corrupt system.

An implementation consequence of this approach to checkpointing is unusually efficient disk bandwidth
utilization. Checkpoint, paging, and page migration I/O is optimized to take advantage of disk interleave
and compensates for arm latencies to minimize seek delays. This accounts for all page writes. The
aggregate result is that KeyKOS achieves much higher disk efficiency than most operating systems. If
the system bus is fast enough, KeyKOS achieves disk bandwidth utilization in excess of 90% on all
channels.

It is worth emphasizing that the checkpoint is not simply of files, but consists of all processes as well. If
an update of a file involves two different pages and only one of the pages has been modified at the time
of the checkpoint, the file will not be damaged if the system is restarted. When the system is restarted
the process that was performing the update is also restarted and the second page of the file is modified as
if there had been no interruption. A power outage or hardware fault does not leave the system in some
confused and damaged state. The state at the last checkpoint is completely consistent and the system
may be restarted from that state without concern about damaged files.

The Journaling Mechanism

For most applications, it is acceptable for the system as a whole to lose the last few minutes work after a
power outage. Transaction processing and database systems require the additional ability to commit
individual pages to permanent backing store on demand. Using the journaling mechanism, a domain may
request that changes to a particular page be synchronously committed to permanent storage. If a system
failure occurs between the commit and the next completed checkpoint, the journaled page will remain
committed after the system restarts. It is the responsibility of the requesting domain to see to the semantic
consistency of such pages.

The journaling mechanism commits pages by appending them to the most recent committed checkpoint.
As a result, journaling does not lead to excessive disk arm motion. A curious consequence of this
implementation is that transaction performance under KeyKOS improves under load.2 This is due to
locality at two levels. As load increases, it becomes common for multiple transactions to be committed
by a single page write. In addition, performing these writes to the checkpoint area frequently allows the
journaling facility to batch disk I/O, minimizing seek activity. The KeyKOS transaction system
significantly exceeds the performance of competing transaction facilities running on the same hardware.
CICS, for example, is unable to commit multiple transactions in a single write.

7. Exception Handling

Process exceptions are encapsulated by the nanokernel and routed to a user-level handler known as a
keeper. The keeper technology of KeyKOS brings all exception policy to application level programs
outside of the nanokernel. A keeper is simply a domain that understands the exception messages
delivered by the kernel; it is in all regards an ordinary domain. Since the UNIX implementation relies
heavily on the Domain Keeper technology, the ideas and specifications concerning Keepers will be
discussed before we delve into the UNIX specifics.

Recall that a KeyKOS application has an address space, a domain, and a meter. Each of these objects
holds a start key to an associated domain known as its keeper. When the process performs an illegal,
unimplemented, or privileged instruction, the error is encapsulated in a message which is sent to the
appropriate keeper, along with the keys necessary to transparently recover or abort the application. The
keeper may terminate the offending program, supply a correct answer and allow execution to continue, or
restart the offending instruction.

Each segment has an associated segment keeper. The segment keeper is a KeyKOS process that is
invoked by the kernel when an invalid operation, such as an invalid reference or protection violation, is
performed on a segment. Page faults are fielded exclusively by the nanokernel.

By appropriate use of a meter keeper, more sophisticated scheduling policies can be implemented. The
meter keeper is invoked whenever the meter associated with a domain times out. A thread supervisor
might implement a priority scheduling policy by attaching the same meter keeper to all threads, and
having the meter keeper parcel out time to the individual threads according to whatever policy seemed
most sensible.

The most interesting keeper for this paper is the domain keeper. The domain keeper is invoked when a
trap or exception is taken. When a domain encounters an exception (system call, arithmetic fault, invalid
operation, etc.) the domain stops executing and the domain keeper receives a message. The message
contains the non-privileged state of the domain (its registers, instruction counter, etc.), a domain key to
the domain, and a form of resume key that the keeper can use to restart the domain. When the faulting
domain is restarted, it resumes at the instruction pointed to by the program counter. If necessary, the
domain keeper can adjust the PC value of the faulting domain before resumption.

8. A KeyKOS-Based UNIX Implementation

In July of 1990, Key Logic undertook to produce a binary-compatible prototype UNIX implementation
for the Omron Luna/88K. The effort had two principle goals. The first was to rapidly construct a system
that could run existing Omron application binaries. Based on Mach 2.5, the Omron implementation
provides a reasonably complete version of the Berkeley UNIX system, including the X11r4 windowing

2 Up to a point. There ain't no such thing as a free lunch.

system. KeyNIX was implemented by a single developer over a six month period, without reference to
the UNIX source code. The implementation was partly based on an earlier Minix port that had been built
for KeyKOS on the System/370.

Our experience in implementing other systems was that breaking an application into separate function-
oriented domains simplified the application enough to improve overall performance. A second goal of
the KeyNIX implementation was to learn where such decomposition into separate domains would cause
performance degradation. In several areas, multi-domain implementations were tried where the problem
area was clearly a boundary case in order to explore the limitations of the domain paradigm.

UNIX Services

Broadly speaking, the UNIX system provides the following services:

• Process management (fork, exec, exit, kill),

• File system and namespace services (open, link),

• I/O services (read, write, stat, ...)

• Timing facilities (sleep, nap, sometimes socket)

• Messaging (sockets, pipes)

• Memory management (mmap, mprotect)

• Signals

• Device support

• Networking (TCP/IP, NFS)

With the exception of networking, KeyNIX implements all of these services. Adding networking support
would be straightforward, but was not part of the prototype effort.

9. Structure of KeyNIX

Under KeyNIX, every UNIX process runs as a KeyKOS domain with a segment as its address space. A
standard KeyKOS segment keeper is used to manage stack and heap growth within the address space
segment. From the outside, the UNIX process model is essentially unchanged. No KeyNIX code is
mapped in with the application, nor is special linking required. The application address spaces are bit for
bit identical. This severely penalizes all trivial system calls, and is a significant departure from the
implementations used by other microkernels. The penalty could be eliminated in a dynamic-library
based standard such as System V Release 4.

To support UNIX processes, we implemented a domain keeper, known as the UNIX Keeper. The UNIX
keeper interprets the system call and either manages the call itself or directs request to other domains for
servicing. The implementation includes a number of cooperating domains, is shown in Figure 1. The
gray box surrounds the domains and segments that are replicated for each UNIX process.

Each of these domains in turn depends on other domains provided by the KeyKOS system. For example,
a small integer allocator domain is used to allocate monotonically increasing inode numbers. To simplify

Address Space
SegmentProcess

Keeper

UNIX

UNIX

Keeper
Segment

Btree
Domain

File

File

File System

Device
Table

Domain

Device

Domain
Driver

Device

Domain
Driver

Device

Domain
Driver

Process

Table

and
Open File

Queue
Domain

Sleep

Domain
Timer

Domain

Segment

Device System
Inode

Domain

Inode
Domain

Inode
DomainInode

Domain

File

Figure 1: Structure of the UNIX Implementation

the picture, domains that are not essential to understanding the structure of the UNIX implementation
have been omitted.

One Kernel per Process

An unusual aspect of the KeyNIX design is that every UNIX process has a dedicated copy of the UNIX
Keeper. When a process forks, the UNIX Keeper is replicated along with the process. By providing a
separate UNIX keeper to each UNIX application, the scope of UNIX system failures is reduced to a
single process. If a given UNIX process does manage to crash its copy of the operating system, no other
processes are impacted. An individual kernel is very hard to crash. To crash the entire UNIX system
essentially requires physical abuse of the machine or its power supply.

State that must be shared between multiple UNIX keepers, including the process table and open file table,
is kept in a segment shared by all UNIX Keepers. Each process has a description block (a process table
entry) that describes the process' address space, open files, and signal handling. Process table entries
contain chains of child processes and pointers to the parent process table entry. Each open file has an
entry in the Open File Table which keeps track of the number of processes that have the file open, the
attributes of the file, and a pointer to the data structures that buffer the file data in memory.

The UNIX keeper implements UNIX process and memory management services by calling directly on
the underlying KeyKOS services. The nanokernel handles virtual memory mapping and coherency
directly. When a program is loaded by exec(2), the UNIX keeper builds an address space segment and
copies the executable file segment into it. Manipulating the KeyKOS segment structures is simpler than
the equivalent structure manipulations in UNIX, and allows the UNIX keeper to be largely platform
independent. The nanokernel is responsible for the construction of mapping tables for the particular
hardware platform.

The KeyNIX File and Device System

The UNIX Keeper holds a key to the root inode of the KeyNIX file system. Each inode contains the
usual UNIX inode information, and is implemented by a KeyKOS domain. If the inode denotes a file,

the inode domain holds a key to a KeyKOS segment containing the file data. If the inode denotes a
device, the device major and minor numbers are contained in the inode.

By making each UNIX inode into a KeyKOS domain, the UNIX Keeper does not have to manage an
inode cache or worry about doing I/O to read and write inodes. When the Keeper needs to read the status
information from an inode it sends a message to the Inode object and waits for the reply. Similar
arguments apply to other operations. The Keeper does not cache file or directory blocks, and does not
maintain paging tables for support of virtual memory. All of these functions are handled by the
nanokernel.

In the original KeyNIX implementation, directory inodes contained a key to a B-tree domain that was an
underlying KeyKOS tool. An analysis of typical directory sizes led to the conclusion that it would be
more space efficient to implement small directories (less than five entries) in the inode itself. As a result,
directory protocol requests are implemented directly by the inode domain. If the inode does not denote a
directory it fails the directory messages appropriately. A curious artifact of this approach is that directory
order is alphabetical order. This is occasionally visible to end users as a change of behavior in programs
that search directories without sorting them.

When opening a file, the UNIX Keeper issues a message to the file system root inode domain. This
domain in turn calls on other domains, until ultimately the request is resolved to a segment key that holds
the file content. Once the file has been located, the UNIX keeper maps the segment into the keeper
address space and adds an entry to the open file table. The open file table is shared by all UNIX Keepers,
and is used to hold dynamically changing information such as the file's current size and last modification
date.

When opening a device, the UNIX Keeper receives the major and minor device number from the
appropriate inode domain. The major number is in turn handed to the device table domain, which returns
a key to the domain that implements the driver. Drivers implemented in the prototype include character
I/O, graphics console (supports the X Window System), the null device, sockets, kmem, and the mouse.
Support for /dev/kmem is limited to forging those responses necessary to run the ps(1) command. In
most cases, the device driver domain consists of the original UNIX device driver code linked with a
support library that maps the UNIX driver-kernel interface onto KeyKOS key invocations.

The Problem of Signals

The most difficult part of the KeyNIX implementation, was support for the signal(2) mechanism. One of
the deliberate design decisions of KeyKOS is that domains are single threaded. A domain is either
waiting for a message, waiting for a reply to a message, or processing a message. There is no mechanism
for stacking messages. This decision increases the reliability of the KeyKOS system, but occasionally
requires that queuing domains be inserted into an otherwise straightforward remote procedure call.

UNIX signals are asynchronous with respect to the receiving process. As a result, the implementation of
the signal mechanism is one of the more complicated and pervasive (not to say perverse) aspects of the
UNIX kernel.3

To ensure that the UNIX Keeper is always able to receive signal notifications promptly, trivial queuing
domains are required where an operation might block or complete slowly. The purpose of these domains
is to queue messages to devices such as ttys and pipes that might otherwise delay the receipt of signals by
the UNIX Keeper. The UNIX Keeper delivers these messages through the queue domain, and waits
asynchronously for the queue domain to send a message indicating completion of the requested service.

3 This is also a significant problem for debugging interfaces, such as /proc(4) and ptrace(2).

UNIX
Keeper
Domain

Queue
Domain Pipe

Device
Domain

UNIX
Keeper
Domain

Queue
Domain

Figure 2: Domains in a Pipe

In effect, a series of fork messages are used to implement a non-blocking remote procedure call to the
device domain in order to ensure that the UNIX kernel is always ready to receive another message.

The queue insertion approach has unfortunate consequences for slow devices (with disk devices one can
reasonably assume instant service and duck the issue), and severly impacted communication facilities
such as pipes or sockets, as shown in Figure 2.

These mechanisms are penalized by the requirement from both sides to remain able to receive signals
while proceeding with the I/O transfer. The impact is easily visible in the performance of KeyNIX pipes.
A better alternative is discussed below.

Expected Performance

To the best of our knowledge, the KeyNIX system uses far more processes than any other microkernel-
based UNIX implementation. Reactions to the KeyNIX design from UNIX developers range from
shocked to appalled at the profligate use of processes. UNIX developers find it difficult to accept that the
task switch cost can be lower than the data management code that it replaces. We find this ironic, as one
of the major innovations of the UNIX system was the notion that processes were cheap.

The object paradigm was at the heart of the design of the KeyKOS system and, as a result, the task switch
costs are very much lower than in traditional systems and several times lower than in competing
microkernels such as MACH and Chorus. On the Motorola 88x00 series, a typical message send takes
less than 500 cycles.4 The low cost of task switches makes it possible to obtain better performance with
much simpler software by taking an object-oriented approach to the decomposition of the system. The
UNIX implementation described here takes considerable advantage of KeyKOS building blocks. The
complete UNIX kernel implementation is approximately 16,000 lines of C code.

Known Incompatibilities

The KeyNIX implementation is 99% compatible with the Omron BSD 4.3 implementation. While
KeyNIX could be equally compatible with MACH 2.5, the existing prototype is not. There are four
significant incompatibilities in the prototype:

1. The application prolog ("crt0") in MACH 2.5 initializes certain MACH ports. Because
KeyNIX does not yet implement MACH ports, applications built with the MACH 2.5 crt0.o
do not run under KeyNIX.

4 This time includes the context switch and copying both data and keys. The Motorola implementation is the
slowest implementation to date.

2. MACH 2.5 port functions are accessed by a trap instruction in the same fashion as are UNIX
system calls. KeyNIX does not implement these traps.

3. In MACH 2.5, the fork(2) system call does the same port initialization for the new task that
was done by "crt0" in the parent task. This change is not implemented in KeyNIX.

4. MACH 2.5 does not implement the sbrk(2) system call. This call is handled by a library
routine that uses the "VMALLOC" of MACH 2.5 to handle memory expansion and
contraction.

5. The KeyNIX text segment is writable, which can impact buggy programs. This is the result
of a quick and dirty implementation, and could be easily fixed.

Programs compiled on the Luna 88K under MACH 2.5 that are to be run in the KeyNIX system must be
linked with a new prolog and new library stubs for fork(2) and sbrk(2). In cases where the ".o" files exist,
there is no need to recompile the programs, but the programs must be relinked.

The existing prototype does not support all BSD 4.3 system calls. The major criterion for choosing what
to implement and what not to implement was the need to run X-Windows, csh(1), ls(1) and similar useful
utilities. If the system call is not needed to run these applications then it is not implemented. There are a
number of calls that are implemented in a limited fashion, again sufficiently to run the required
applications. As an example, csh(1) makes usage(2) calls but does not depend on the answers for correct
behavior. Usage(2) always returns the same fixed values and is not useful as a measuring tool as a result.

To get an intuitive sense of the compatibility achieved, it may suffice to say that all of the application
binaries running on KeyKOS were obtained by copying the binary file from the existing BSD 4.3 system.
The X Window System, compilers, shells, file system utilities, etc. all run without change under KeyNIX.

10. Performance Comparison

A limited performance comparison was made between the KeyNIX prototype and the Omron MACH 2.5
implementation. A more careful analysis would be required for any serious evaluation of the two systems
for production use. KeyNIX got mixed results for common system call sequences:

Operation Iterations KeyNIX MACH 2.5 Ratio
getpid(); 10,000 12,000/sec 30,000/sec 0.4
open();close(); 1,000 714/sec 2777/sec 0.26
fork();exit(); 100 64/sec 10/sec 6.4
exec(); 100 151/sec 12/sec 11.6
sbrk(4096);sbrk(-4096) 100 2564/sec 181/sec 14

I/O performance was equally mixed:

Operation KeyNIX MACH 2.5 Ratio
Pipe (round trip) .588 Mbyte/sec 1.05 Mbyte/sec .56
Disk access program 4 seconds 26 seconds 6.5

As anticipated, the simplification achieved by adding domains doesn't always lead to better performance.
The cases that the KeyNIX prototype handled poorly have straightforward corrections which are
discussed below.

Simple System Calls

Simple system calls include calls such as getprocid(2), putprocid(2), and gettimeofday(2), which are
essentially accessor functions. A trap is taken, but the system call itself performs little or no interesting
activity within the kernel. The KeyNIX system is binary compatible with this approach.

The MACH 2.5 implementation is able to execute these system calls 2.5 times as fast as the KeyNIX
system because no context switch is involved. MACH 3 uses special system call libraries to implement
some of these functions in the UNIX process address space. A similar approach would be possible in
KeyNIX if the system calls were implemented in dynamic libraries, as in System V Release 4, or if
binary compatibility could be sacrificed. We were surprised that KeyNIX did so well on this comparison.

Open and Close

To explore the limits of domain performance, we elected to implement each inode as an individual
domain. On the basis of our previous experiences, it seemed likely that the simplification achieved by
this approach would overcome the overhead of multiple domains. With the benefit of hindsight, we were
mistaken, and the performance of open(2) suffered excessively. The namei() routine within the UNIX
kernel is heavily used, and the decision to use multiple domains in effect inserted four context switches
into the inner loop(for two round-trip RPC's).5 In a small program that simply opens and closes a single
file 1,000 times, the MACH 2.5 system outperformed the KeyNIX system by nearly four to one (3.89).
Alternative implementations are discussed below.

Fork and Exit

Because the UNIX programming model assumes that processes are cheap, the performance of fork(2) is
critical to the overall performance of the system. In KeyKOS, the equivalent to fork(2) is even more
critical, and is possibly the most carefully optimized path in the nanokernel. We therefore expected
KeyNIX to do well on fork(2) calls. KeyNIX outperforms MACH 2.5 by a little more than six to one.

The current KeyNIX implementation suffers from an extremely naive loader implementation in the UNIX
keeper. When performing a fork(2), a complete copy of the process address space is made. The
implementation could be improved by sharing the read-only text pages rather than copying their content.
In addition, it would not be difficult to implement UNIX copy-on-write semantics as part of the segment
keeper that services faults on the UNIX address space. Neither of these optimizations was performed in
the prototype due to time constraints, and we would expect each to result in substantial improvements.

Exec

Given the naive loader implementation, we were pleasantly surprised to find that KeyNIX outperformed
MACH 2.5 by better than eleven to one on exec(2) calls. The test program simply calls exec(2) one
hundred times and exits. Implementing shared text would significantly improve the KeyNIX results.

Sbrk

In order to compare the performance of the sbrk(2) system call, a program was written to repeatedly grow
and shrink the heap. 100 calls to sbrk(4096) and sbrk(-4096) were executed with a fetch of a byte from
the newly allocated memory. The fetch of the byte forces the UNIX implementation to actually allocate

5 One round trip to access the inode domain, the second to access the directory domain.

the main store for the page, and consequently forces the page to be deallocated when the heap segment
size is reduced. KeyNIX outperformed the MACH 2.5 implementation by fourteen to one, which was
consistent with our expectation.

Pipe Bandwidth

Pipe performance is one of the areas where we expected KeyNIX to suffer. In order to compare the pipe
implementations, a megabyte of data was passed through a pipe to a child process task and back in 1000
byte chunks. The MACH 2.5 implementation outperformed KeyNIX by nearly two to one.

This result is principally due to the insertion of queue domains into both ends of the pipe, imposing
considerable context switch overhead. In retrospect, we could have eliminated the queues and depended
on the fact that asynchronous signal delivery timing is not guaranteed by the UNIX process model. In
particular, correct UNIX programs cannot depend on the fact that interprocess signals will interrupt a
system call in the receiving process. Taking advantage of this loophole would allow for a much simpler
and faster implementation.

Disk File I/O

To measure disk performance, we built a program to create a large test file and read it repeatedly. The
I/O model of KeyNIX and MACH 2.5 are so radically different that other comparisons are very difficult.
Uncached writes, for example, are dominated by disk arm movement, so a comparison of such activity is
unenlightening. The times reported are the elapsed time to write and then read a one megabyte file ten
times. KeyNIX outperforms MACH 2.5 by better than six to one.

KeyNIX I/O performance is a direct result of the underlying KeyKOS I/O design. KeyKOS never writes
to disk as a direct result of writing to a file. All writes to the disk are part of the paging, checkpoint, and
migration system.

To determine the impact of the checkpoint process on the test, we arranged for KeyKOS to perform a
checkpoint and migration in parallel. This process increases the KeyKOS time to 4.4 seconds, giving a
performance ratio of 5.9 to one. To the best of our knowledge, the prototype KeyNIX system achieves
the highest I/O bandwidth utilization of any UNIX system today.6 KeyKOS's I/O performance makes the
overall performance of many applications better under KeyNIX than under a more conventional system,
and appears to more than balance the prototype's performance deficiencies.

Performance Summary

The overall performance of the KeyNIX system is quite comparable with MACH 2.5. Some operations
are slower and some quite a bit faster. A user using X-Windows doing VI and using a variety of shell
commands and scripts is unaware of any significant performance difference between MACH 2.5 and
KeyNIX.

6 We are well aware of the significance of the I/O subsystem design in this claim, and believe that the claim
would hold up when examined with other I/O subsystems and bus architectures. On the System/370, KeyKOS
achieves channel utilization of better than 95% on all channels. With current SCSI technology, KeyKOS's disk
utilization is limited by the SCSI channel performance.

11. Implementation Alternatives

In the course of the prototype effort, we came up with several ways to simplify the UNIX keeper and to
cut down on some of the overhead. Each of these ideas represents a compromise in the use of domains
and multiple instantiation.

Domains for Process and File Table Manipulation

The current process table segment is an array of process table entries. The UNIX process id is used to
index the table. Process numbers are reallocated quickly, which leads to certain problems in the human
interface for system maintenance. Also there are circumstances when process table entries should be
chained so that children can be located more quickly. This is best handled by introducing a domain for
process table entry manipulation that allocates and chains process table entries. The UNIX keeper
continues to reference its own process table entry directly, but accesses other process table entries (to
obtain a signal key) using the process table management domain. Similarly, the open file table could be
implemented by a domain. These modifications would both simplify the UNIX keeper and remove the
primary impediment to distribution of the KeyNIX implementation on loosely coupled architectures.

Small Files

The data for small files could be kept in nodes instead of segments. A small file might be a single-level
tree of nodes with up to 16 leaf nodes each holding 176 bytes of data. When the 17th node is required the
file is converted to a segment. The inode domain would convert the file to a segment when it is opened,
and on the last close would convert it back into node form if it is small enough. This would allow
KeyNIX to achieve more efficient storage of small files than current UNIX systems.

File System Domain

Opening files is a crucial operation in UNIX systems, and the domain-per-inode approach is not nearly
fast enough. Two alternative implementations would have delivered competitive performance.

The first approach is to build the entire directory and inode support structure for a file system into a
single domain, while continuing to implement files as individual segments. This would eliminate almost
all of the context switching performed in the file subsystem, and would probably outperform the MACH
2.5 implementation.

The second alternative is to implement a compatibility library that would enable us to simply compile a
vnodes-compatible file system into a domain. Using this approach, the entire file system would reside in
a single KeyKOS segment, and bug-for-bug compatibility is achievable. This approach is something like
the File Manager tasks of CHORUS and MACH 3. In practice, supporting vnodes file systems is
probably a compatibility requirement for a commercial UNIX implementation, but system reliability
suffers greatly from this requirement.

Our current preference would be the first alternative, mainly to eliminate the bugs of the existing file
system implementations. In addition, we feel that this approach significantly simplifies recovery in the
event of a disk block failure, as it eliminates the need for a complicated file system consistency checker.

12. Conclusions

The KeyKOS nanokernel has been running in production environments for nine years. It is proven
technology, and we feel that the architecture and implementation have much to offer to the computing
community at large. A serious development project could far exceed the performance that we obtained
from the six month UNIX prototype effort.

KeyKOS represents a pardigmatic shift in operating system technology. It is therefore difficult to make
direct comparisons with other approaches. A pure capability architecture brings fundamentally greater
discipline, control, and reliability to application construction. In the long term, we feel that this degree of
reliability is necessary to realize the productivity promises of the information age.

For further information on KeyKOS:

U.S. Mail: Norman Hardy
143 Ramona Road
Portola Valley, CA 94028

Phone: (415) 851-2582

Email: norm@xanadu.com

13. Bibliography

1. Theodore A. Linden, "Operating System Structures to Support Security and Reliable Software," NBS
Technical Note 919, U.S. Department of Commerce, National Bureau of Standards, Institute for
Computer Sciences and Technology, August 1976. (Also published in ACM Computing Surveys, 8,
4, December 1976, pp. 409-445).

2. Norman Hardy, "The Keykos Architecture," Operating Systems Review, September, 1985.

3. Introduction to KeyKOS Concepts, KL004, Key Logic, 1988.

4. KeyKOS/370 Principles of Operation, KL002, Key Logic, 1988.

5. KeyKOS Architecture, KL028, Key Logic, 1988.

6. Butler Lampson, "A Note on the Confinement Problem," Communications of the ACM, 16, 10,
October 1973.

7. Henry M. Levy, Capability Based Computer Systems, Digital Press, 1984.

8. M. Ritchie and K. L. Thompson, "The UNIX Time-sharing System." Communications of the ACM,
July, 1974.

9. System/370 Principles of Operation, GA22-7000-9, IBM, 1983.

10. Patent number 4,584,639 (describes the secure factory mechanism).

11. William A. Wulf, Roy Levin, and Samuel P. Harbison, Hydra/C.mmp: An Experimental Computer
System, McGraw-Hill Book Company, 1981.

