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KeyKOS Architecture 

Introduction 
This publication provides a description of KeyKOS, a mi - 
crokernel-based system, at a level sufficient to understand 
its basic architectural aspects. Thus, a designer of program 
systems could use the information here to guide alternative 
design efforts, but a programmer will find insufficient detail 
to produce code for the system. 

Because of the formal aspects of the KeyKOS architecture, 
it is possible to reason about many characteristics of sys - 
tems implemented within it in useful ways. The information 
presented in this publication is sufficient to allow one to 
begin such reasoning about KeyKOS and programming 
systems built using its principles.  

Other Key Logic publications of a theoretical nature in - 
clude  KeyKOS Security: Formal Security Model, A 
KeyKOS Solution to the Confinement Problem , and 
Security in KeyKOS .  They are available from Key Logic 
upon request. 

This publication is presented primarily for those who are in - 
terested in reasoning about complex computer program - 
ming systems, and for those interested in foundations for 
such systems. It assumes that readers have a basic knowl - 
edge of computer architectures, and some awareness of 
both objects and capabilities. 

Largely because of an attempt at conciseness, but also be - 
cause of the compactness of KeyKOS and the mutual re - 
liance of the abstractions from which it is developed, certain 
words and phrases appear, of necessity, earlier in this publi - 
cation than the principle discussions explaining them. The 
information in this publication is ordered with the intent 
that a reader will need to assume as little as possible about 
as-yet-unexplained topics. Bold references in the index lo - 
cate their definitions. 

KeyKOS is currently implemented on the Motorola 88000, 
where it supports UNIX, and the IBM System/370 [2], 
where it supports UNIX, VM/CMS, and a high perfor - 
mance transaction processor.  A description of the C lan - 
guage interface to the KeyKOS functions is provided in 
Key Logic’s publication  KeyKOS C Programmer’s 
Referenc e (KL113). 

A description of the IBM System/370 implementation of 
KeyKOS at a level sufficient to implement assembly-level 
programs is provided in Key Logic’s publication 
KeyKOS/370 Principles of Operation  (KL002). Other Key 
Logic publications about KeyKOS and its facilities are 
available at various introductory and programming levels. 

If you would like further information about Key Logic or 
its products, please contact us at (408) 496-1090. 
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Overview 
This publication introduces the architecture of KeyKOS, a 
capability-based system written in software for implementa - 
tion on a wide variety of hardware platforms. KeyKOS 
consists of a microkernel, which executes in privileged- 
mode, plus additional facilities necessary to support operat - 
ing systems and applications.  The KeyKOS functionality 
combined with the hardware can be thought of as a “ma - 
chine” to which one can port operating systems or on 
which one can write applications.  The operating systems 
which have been ported to KeyKOS include UNIX and, on 
the System/370, VM/CMS. 

This paper attempts to tell enough so that certain arguments 
and conclusions about the KeyKOS properties can be 
formed. The description of the  microkernel  functions is es - 
sentially complete. Only the more important additional fa - 
cilities are described. 

KeyKOS was originally designed to solve the security, data 
sharing, pricing, reliability, and extensibility requirements of 
a commercial computer service in a network environment. 
By using the microkernel approach to preserve operating 
system compatibility,  KeyKOS functions equally well on a 
range of hardware, from workstations to mainframes. 
Because it was developed in a commercial environment its 
performance consistently meets or exceeds that of the “na - 
tive” operating systems while remaining semantically iden - 
tical. 

KeyKOS for the System/370 began supporting production 
applications on an IBM 4341 in January 1983. It has run 
on Amdahl 470V/8, IBM 3090/200 (in uni-processor 
System/370 mode), IBM 158, and NAS 8023 processors. 
KeyKOS also executes on the Omron LUNA/88K. 

KeyKOS is in the tradition of message-based systems. 
Messages are the primary interaction between components 
of the system. 

For brevity we use “ key ” where most literature uses “ca - 
pability”.  

KeyKOS supports object-style programming. Indeed, near - 
ly all of the code written so far for KeyKOS serves to de - 
fine some particular type of object. Objects call upon the 
services of other objects by sending key-addressed mes - 
sages to request a service, and accepting a key-addressed 
message in return. This is within the paradigm of “remote 
procedure calls,” and is also similar to the Smalltalk mech - 
anism. 

In object-style programming, objects are implemented by 
some combination of “ordinary programming” and use of 
more primitive objects. In KeyKOS the microkernel termi - 
nates this recursion by implementing several types of primi - 
tive objects. The code that defines such objects is in the mi - 
crokernel. 

A pervasive principle in KeyKOS is that a program “mod - 
ule” should obey the “principle of least privilege” [1]. To 
that end, the design of KeyKOS gives objects  no intrinsic 
authority, and relies totally upon their keys to convey what 
authority they have. Using these facilities, the system is 
conveniently divided into small modules each structured to 
observe the principle of least privilege. 

Objects, keys, and messages 

Programs running in capability systems, such as KeyKOS, 
hold some representations of authority called  keys . 

Keys are tokens of authority. A program may only cause 
actions warranted by the keys it holds. Any action that a 
program causes is enabled by some key that it holds and 
explicitly identifies in an  invocation of that key. 

A key  designates a specific  object . The authority con - 
veyed by a key is specific to just the object designated by 

that key. Different keys may designate the same object but 
convey different authority over that object. Exercising au - 
thority represented by a key is done by invoking the key. 
Some objects have state which may be modified by a hold - 
er of a key that designates the object. Weaker keys to that 
object may only let the holder sense the state of the object. 

A  slot holds a key. All keys reside in slots. Just as a register 
holds different numbers at different times, so may a slot 
hold different keys at different times. 

An invocation involves a message, specified by the invoker 
and delivered to the object designated by the invoked key. 
The invoker may include in a message keys and/or data 
that he holds, whereupon the designated object may also 
hold them. 

In summary: If object A holds a key b to object B then A 
may request B’s service by  invoking b thus sending a mes - 
sage to B. 

Introduction to domains 

Domains are the actors of KeyKOS. Any event in 
KeyKOS is the direct and immediate result of an action by 
some domain. Domains are primitive objects that  obey pro - 
grams and thus assume the role of non-primitive objects. 

A domain has sixteen general slots and several special 
slots. The use of the general slots is determined by the pro - 
gram obeyed by the domain. The keys in the general slots 
are invoked or included in messages by the explicit direc - 
tion of the program obeyed by the domain. To say that a 
program holds a key means only that the key is in some 
general slot of a domain that obeys the program. The use of 
the special slots is determined by the domain. Their names 
and use will be explained below. 

As will be seen, domains can act to acquire and hold new 
keys. Such new keys are said to be  accessible . Such ac - 
tions must be warranted by keys already held. 

The domain’s  address slot holds the key to its  address 
segment , which provides the domain’s address space. The 
domain  obeys a program found in its address segment. 
Code designed to be obeyed by a domain is  domain code . 

The domain interprets the program according to the hard - 
ware problem state architecture. The general registers, the 
floating registers and other status are included in the do - 
main’s special slots (as degenerate number keys  q.v. ). 
Similarly included is hardware specific control information. 
KeyKOS extends many features of the hardware architec - 
ture (for example, providing access control via keys), but 
achieves good performance and necessary functionality by 
fully exploiting appropriate features of the architecture. 

A  gate key designates a domain. A message addressed via 
a gate key in an invocation of that key is delivered to the 
domain so that the program obeyed by the domain has 
complete control over the disposition and interpretation of 
the message. 

KeyKOS was designed with the idea that a domain will 
typically spend its life obeying just one program. The func - 
tion of another program may be had by invoking a start key 
to a domain that obeys the other program. This other do - 
main is almost always thought of as an object by the pro - 
grammer of the first domain. 

KeyKOS systems are generally built of a large number of 
small objects.  Such modularization increases reliability 
and simplifies maintenance, since programming errors can 
impact only the objects in which they occur.  Such systems 
are characterized by a large number of context switches 
over time.  The KeyKOS design and implementation 
makes these context switches very efficient, and allows ap - 
plication/system builders to exploit their advantages. 
Because small objects are efficient in KeyKOS they can be 
utilized in the port of operating systems to significantly in - 
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crease reliability while minimizing port-time by reducing 
complexity. 

In KeyKOS, the dynamic relationship between calling and 
called domains is represented by a key first held by the 
called domain. Most other capability systems (see [3] for a 
survey and bibliography) represent this relationship in 
some sort of internal stack that may only be implicitly refer - 
enced by calling and returning operations. In KeyKOS, the 
CALL operation, which is primitive, produces a message 
that contains an implicitly produced  resume key to the 
CALLing domain. The resume key is a form of gate key. 
To the CALLed domain this is merely another key, conven - 
tionally used to return. Alternatively, it may be passed to 
another domain, stored into an array of keys or anything 
else that may be done with a key. 

Domains are like “tasks” of MVS [4] or Ada [5]. They are 
like “processes” in UNIX [6] and various other systems. 

Major microkernel features 

The KeyKOS microkernel is small, runs in privileged state, 
is unswapped, and runs with address translation off. 

A total computing system consists of multiple levels of ab - 
straction, including the hardware, the operating system, the 
file system, the database management system, etc.  The 
function provided at each level must be carefully selected 
and implemented or else higher levels may be subject to 
penalties in performance and/or complexity of design.  The 
KeyKOS microkernel itself does not provide all of the 
functionality conventionally associated with an operating 
system; rather it provides a set of primitives which allow 
such (guest operating system) functions to be implemented 
by problem mode programs in domains.  These KeyKOS 
machine primitives are much easier and more productive to 
use than the functions of the hardware alone.  

The microkernel interprets keys. No other program has di - 
rect access to the bits that represent keys (except Keybits, 
q.v. ). Code defining primitive objects is in the microkernel. 
These primitive objects are tools sufficient to build higher- 
level objects. The microkernel provides: 

• several types of primitive objects; 

• multiprogramming support, primitive scheduling and 
hooks for fancy schedulers running in domains; 

• single-level store. Domain programs are unaware of the 
distinction between main storage and disk; 

• virtual memories for domains based upon the address 
segment using memory mapping hardware; 

• redundant disk storage for selected information (to pro - 
vide reliability and improve read performance); 

• a system-wide checkpoint-restart feature; 

• special pages exempt from checkpoint; 

• gate keys by which messages are sent between domains; 

• primitive and limited access to individual I/O devices; 

• an invariant interpretation of keys (independent of the lo - 
cation of the designated objects—whether on disk or in 
main storage). 

KeyKOS takes system-wide checkpoints every few min - 
utes to protect from power failures, most microkernel bugs, 
and detected hardware errors. All data  and processes are 
checkpointed. The KeyKOS microkernel keeps no internal 
state about the data and processes which cannot be re-con - 
structed from the checkpoint information. After an  Initial 
Domain Load [7], subsequent IPLing restarts the machine 
from a checkpoint. The microkernel also provides primi - 
tives to support concurrent checkpoints to magnetic tape 
which comprise a snapshot of the entire system. 

Messages 

A message is composed of a  parameter word (commonly 
interpreted either as an order or method code, or return 
code), a string of from 0 to 4096 bytes called the  byte 
string , and four keys. A domain may compose a message 
from an integer, from contiguous data in its address seg - 
ment, and from keys it holds. The message is delivered to 
an object designated by a key that is held and indicated by 
the invoking domain. A particular value for the parameter 
word in conjunction with a particular kind of key is called 
an  order on that key. 

The microkernel does not buffer messages. Invocation of a 
gate key is deferred until the recipient domain is ready to 
accept the message. Message buffering can be implemented 
transparently by domain code if needed. We choose not to 
make the microkernel responsible for holding message 
data, which potentially could be held forever. 

Gate keys, when invoked, deliver the message to another 
domain. A gate key is the authority to send a message to 
the designated domain. Messages sent via a gate key are 
delivered to the receiving domain in a way controlled by 
the receiving domain’s program. The program may choose 
to accept the keys from the message, whereupon its domain 
will then hold those keys. It may choose to accept the pa - 
rameter word and all or part of the byte string. The keys 
and data from the message can then be interpreted accord - 
ing to the logic of the receiving domain’s program. The 
sending and receiving of the message causes the data and 
keys to be copied from the domain of the sender to the do - 
main of the receiver. Like an event, a message never per - 
sists: it is consumed the same instant it is created. In this re - 
spect KeyKOS messages are like Smalltalk [8] messages. 

Invocation of keys which are not gate keys delivers the 
message to the microkernel which immediately returns a 
message in response, according to the logic of some micro - 
kernel-implemented object designated by the key. 

Domain states and kinds of invocations 

In KeyKOS, key invocation plays the traditional role of 
subroutine call, and the message plays the role of parame - 
ters. The traditional calling mechanism sends the address of 
data in order to communicate requirements to the subrou - 
tine. In KeyKOS, the message commonly includes keys 
that serve the same purpose—to indicate which objects are 
to be operated upon by the server. 

A domain is always in one of only three states:  running , 
available , and  waiting . 

Running domains will execute instructions, barring page 
faults, insufficient CPUs, and a few other obstacles. CPUs 
are multiplexed among the running domains. Available or 
waiting domains do not execute instructions. 

There are two kinds of gate keys:  start keys and  resume 
keys . A start key can deliver a message only when the do - 
main it designates is available. If a running domain tries to 
invoke a start key to a domain that is not available, the run - 
ning domain is queued along with other domains invoking 
start keys to the unavailable domain. They will run again 
when the designated domain becomes available. A resume 
key is created as a result of the CALL instruction and is de - 
scribed below. 

A program invokes a key by executing an invocation in - 
struction; bits in a register select one of three ways to in - 
voke the key:  FORK ,  CALL , or  RETURN . 

A FORK invocation leaves the invoking domain in the run - 
ning state. 

A CALL leaves the invoking domain in the waiting state 
and automatically generates within the message, as the last 
key, a resume key to the invoking domain. The invoking 
domain remains in the waiting state until the resume key is 
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invoked, whereupon the domain returns to the running 
state. Resume keys exist only to waiting domains, and as a 
resume key is invoked, all resume keys to the designated 
domain disappear and are everywhere efficiently replaced 
by null keys,  q.v. 

A RETURN invocation leaves the invoking domain in the 
available state. If there are domains that were queued by the 
unavailability of the RETURNing domain, one is promptly 
run. 

The state of the domain is determined solely by the type of 
invocation, and not by the key being invoked. 

Summary of gate invocations: 

Two kinds of gate keys : 

• Start key :  Queues invoker until the designated domain is 
available. 

• Resume key:   Automatically created by CALL invoca - 
tion—exists only to waiting domains. 

Three ways to invoke a key: 

• FORK:  Leaves invoking domain running. 

•  CALL:  Leaves invoking domain waiting and includes in 
the message a resume key to invoker. 

• RETURN:  Leaves invoking domain available. 
Dequeues domains on the queue of the domain which 
performed the RETURN. 

The invoking domain’s program specifies: 

• which key held by the invoker is to be invoked; 

• which data and keys are to be included in the message; 

• which of the three kinds of invocation is to be performed; 

• for CALLs and RETURNs, how to receive the message 
for the invocation that will next cause the domain to run. 

The invoked domain’s program (or initialization) has speci - 
fied: 

• how the components of the message are to be accepted; 

• where to start execution. 

Invoking keys that are not gate keys 

Keys that are not gate keys are  primary keys , and the re - 
sponse to their invocation is performed by the microkernel. 
When a primary key is CALLed, usually the microkernel 
immediately returns a message to the invoker (depending 
on the nature of the invoked key) in such a way that the in - 
voker cannot determine from the behavior of the key that it 
is not a start key. Most invocations of primary keys are 
CALLs. In this case the microkernel needs to “return to” 
the last key parameter. If the invocation is not a CALL and 
the last key parameter is a resume key then the message 
produced by the microkernel will be delivered to the do - 
main designated by the resume key. Otherwise the message 
is lost. 

CALLing a start key 

This style of invocation, together with a matching RE - 
TURN invocation of the resume key, plays the role of the 
classic subroutine linkage and is the primary method of 
putting software together in KeyKOS. (Domains may share 
read-write storage for communication, but seldom do.) 

CALLing a start key provides access to a serially reusable 
resource implemented by a domain’s program. Thus the 
microkernel need not allocate stack frames or cope with 
storage exhaustion. Most domains have state between invo - 
cations. This state is relevant to some context. Other con - 
texts may have their own domains obeying the same pro - 
gram but with another state. The domain thus embodies the 
Smalltalk-style object. Domains obeying the same program 
implement objects of the same  type . Such objects differ 
only in their state, not in their transition rules. However, 

KeyKOS objects exist at the system level, not the language 
level, and are much larger than Smalltalk objects (which 
average about 50 bytes). 

The queuing of invokers of a start key to an unavailable do - 
main provides a convenient and efficient queuing mecha - 
nism for the domain representing a serially reusable re - 
source. Some services, such as a compiler, have no state be - 
tween invocations and should be reentrant. In such cases 
the start key leads to a domain that creates another domain 
that obeys the compiler for one compilation and then de - 
stroys itself. Several compilations may thus proceed at 
once. 

Co-routines—or CALLing a resume key 

If domain X CALLs a resume key to domain Y the situa - 
tions of the two domains are thereby reversed: 

Before CALLing:  X is running and holds a resume 
key to Y;  Y is waiting. 

After  CALLing:  Y is running and holds a resume 
key to X;  X is waiting. 

This action constitutes a co-routine linkage and has the tra - 
ditional attributes of co-routines. This is the method typical - 
ly used by a domain to deliver a sequence of values to an - 
other domain, especially when the values are produced or 
consumed as they are transmitted. 

The co-routine relationship is frequently established as fol - 
lows:  X wishes to deliver a sequence of values to Y to 
whom X holds a start key. X CALLs Y’s start key sending 
an order in the parameter word foretelling a sequence of 
values. Y now holds a resume key to X and CALLs it for 
the first value of the sequence. X now holds a resume key 
to Y and passes the first value by CALLing the resume key. 
(Note that the unavailability of Y prevents other users of Y 
from interfering with Y’s state until Y is finished receiving 
the entire value sequence.) 

This proceeds until X or Y indicates that it wishes to termi - 
nate the relationship, whereupon Y RETURNs to X’s re - 
sume key, making Y available for new transactions. 

Functions of the domain 

The following functional areas are frequently provided sep - 
arately in other systems but are bundled in the KeyKOS 
domain: 

• Abstraction (information hiding) 

• Instantiation 

• Protection (calling some program with different authori - 
ty) 

• Exclusion and queuing 

• Multi-programming 

Pages and nodes 

The microkernel provides some fixed number of  pages and 
nodes . There are typically many thousands of pages and 
nodes. A page holds 4096 bytes of data and a node has six - 
teen slots. A node also has an associated  process-running 
predicate which is TRUE if and only if the node is the dis - 
tinguished node of a running domain. Pages and nodes are 
microkernel-implemented objects and they are accessed by 
keys. State-bearing objects are ultimately built of pages and 
nodes. Pages and nodes carry  all of the state of the system. 
Pages and nodes are swapped by the microkernel to pro - 
vide a single-level store. Pages and nodes are the only 
primitive microkernel objects provided in large numbers. 
The checkpoint-restart mechanism and checkpoint to mag - 
netic tape deal  only with pages and nodes. 

A  node key designates a node and provides authority to re - 
trieve keys from the node or to place keys into the node. A 
fetch key also designates a node but may be used only to 

4 The Keykos Architecture 5/29/92 



retrieve keys from the node. 

A page may be designated by read-write and read-only 
page keys . 

Three special objects 

Domains ,  segments , and  meters are three special primitive 
objects. By their nature these objects must be implemented 
in the microkernel. For each of these special objects there 
are infrequent exceptional states, encountered by the micro - 
kernel, whose disposition must be determined by code out - 
side the microkernel. (In KeyKOS, by design, the  policies 
to be implemented in these exceptional situations are left to 
domain code, as in [9].)  In such cases the key in the objec - 
t’s  keeper slot is invoked with a message that includes in - 
formation about the nature of the state, and the  service key 
to the object. The key in the keeper slot is normally a start 
key to a domain obeying a program called a  keeper . The 
keeper may use the service key to return the object to a 
state where the kernel’s rules for the special object are suit - 
able again.  

A keeper invocation is one which is triggered by some ex - 
ceptional state of a domain, a segment, or a meter. This in - 
vocation is in the form of a CALL invocation, and is de - 
signed such that, after the exceptional states which trig - 
gered the event are rectified, control may be transferred to 
the domain whose action caused the circumstance (by a 
RETURN invocation of the resume key) without it being 
aware of the interruption of its execution. 

In KeyKOS, the use of keeper invocations to summon aid 
is motivated by the intent to remove policy concerning the 
handling of such events from the microkernel. Fixed poli - 
cies of this kind tend (in conventional systems) to inhibit 
the evolution of the system. By moving such policy to pro - 
grams implemented in domain code, an attempt is made to 
provide an avenue for future evolution and growth of the 
system, as well as a mechanism to allow multiple policies to 
be simultaneously supported in a single system. 

Domain service 

The key from the domain’s  keeper slot is called when the 
domain encounters difficulty in executing instructions. 
Program interrupts (beyond address translation faults) and 
Supervisor Calls (SVCs) cause the domain’s keeper to be 
called. The domain keeper may thus emulate environments 
provided by other operating systems, or provide debugging 
services. 

The  domain service key designates a domain. It provides 
authority to retrieve and replace parts of the state of the do - 
main including the keys in the general and special slots. 
The domain service key provides complete access to the 
state of the computation within the domain, and authority to 
intervene therein. 

The code that interprets the domain service key invocation 
is in the microkernel, in contrast to the code which inter - 
prets the domain start key invocation, which is the domain 
code. The domain code (obeyed by the domain) has no 
control over and is not involved in interpreting these do - 
main service key invocations. The domain service key is 
used to initialize a domain and to intervene if the domain’s 
program should not behave as expected. Many domains 
hold their own domain service key. One order on a domain 
service key yields a start key to that domain. This order also 
takes a one byte value, the  data byte . The start key in - 
cludes this byte, which is delivered along with messages 
delivered via that start key. 

Segment service 

A  segment has some specific size which is a power of six - 
teen. A segment is either a page or is  compound . A com - 
pound segment comprises sixteen equal-size portions. To a 
compound segment there are both a  segment key and a 
segment service key . Page keys and segment keys are 

memory keys   *. The memory key to a compound segment 
is a node key, fetch key, sense key ( q.v.) or segment key 
designating the node that is the root of the segment.  

The sixteen portions of a compound segment S are each 
represented by the key from one of sixteen component slots 
in S accessible via the segment service key to S. To the seg - 
ment key holder the segment appears as the seamless con - 
catenation of the sixteen portions. A fetch or store reference 
to a portion of S via the segment key to S has the effect of a 
fetch or store reference via the key from the corresponding 
component slot. These keys are typically memory keys to 
smaller segments. A fetch or store reference to a portion of 
a segment whose component slot key is not a memory key 
is  invalid . Store references via read-only memory keys are 
also invalid. Invalid fetch or store references to segments 
cause invocations of the key from the segment’s keeper slot 
or lacking that, the referencing domain’s keeper slot. The 
referencing domain is left in the state just before the refer - 
ence was made. The invocation message includes the ad - 
dress within the segment to which the reference occurred, a 
segment service key, and a resume key to the referencing 
domain. 

If M is a memory key to a segment, then one may con - 
struct, given M, the following three types of segments: 

• a sub-segment of the original (specified on page bound - 
aries) 

• a read-only version of the original 

• a version of the original via which it is impossible to sig - 
nal the segment’s keeper 

A memory key to a page or segment may be used to define 
the address segment of a domain or it may be used to de - 
fine a portion of another segment. The same memory key 
may be used in several contexts at once. 

Meter service 

Meters account for certain system resources including CPU 
time. To a meter there is a  meter key and a  meter service 
key . For a domain to run, its  meter slot must hold a meter 
key to a valid superior meter. 

Within a meter appear: 

• counters of the resources consumed by domains depen - 
dent on the meter; 

• a slot for a superior meter key; 

• a meter keeper slot. 

For a meter to be valid, its superior meter key slot must 
hold a meter key to a valid higher meter. There is a primi - 
tive meter which is always valid. There must be a chain of 
meters leading to the primitive meter. As a domain runs, the 
chain of meters rooted in the domain’s meter slot all record 
the resources used. The meter service key supports fetching 
from and storing to the various slots of the meter while the 
meter key provides (but limits) the resources the holder can 
consume. The meter key holder can build inferior meters. 

A meter’s keeper slot key is called when a resource counter 
in the meter reaches zero. The message associated with the 
invocation includes a meter service key which may be used 
to replenish the counter if that is the plan. The message also 
includes a resume key to the waiting domain whose execu - 
tion exhausted the meter. This key may be used to restart 
the waiting domain when appropriate. The meter keeper is 
in a position to perform scheduling (directly or indirectly) 
over all the domains served by that meter. 

Role of nodes in the special objects 

Nodes are of very general use. They play much the same 
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role of control blocks of some programming systems. 
Nodes assume a fundamental role in the definition of most 
other objects. The special objects (domains, segments, and 
meters) are actually composed of nodes. Their behavior is 
determined by code in the microkernel. It might be said that 
these extra behaviors of the node are merely alternate per - 
sonalities of the node, inherent in the node itself. Segment 
keys, domain service keys, and meter keys designate nodes 
while limiting their holders to the corresponding special 
function. A segment service key or meter service key is 
merely a node key to the underlying node. We call them all 
service keys here merely to emphasize their parallel role. 
Similarly, the meter service key is the node key to the un - 
derlying node. 

To build a segment or meter it suffices merely to place the 
appropriate keys in a new node, and request the segment 
key or meter key by an order on the node key. To limit the 
number of programs that know how domains are built from 
nodes, getting a domain service key takes a special key: the 
domain tool key  q.v. . The domain service key is used to in - 
stall the parts of a domain. Typically the domain service key 
is obtained from a  domain creator , which is the only type 
of object holding the domain tool key. 

The effects of invoking primitive keys are immediate. 
Invoking a node key to change the definition of a segment 
has immediate effects on all address spaces in which that 
segment occurs. 

The reader may have noticed by now that some keys have 
other uses than invocation. In particular, memory keys are 
used in the address slots of domains and meter keys are 
used in the meter slots of domains. 

Creating an object 

The domain is the microkernel primitive used to implement 
new kinds of objects. Upon invocation of a gate key, the 
message is delivered to and interpreted by code which is 
obeyed by that domain. 

To create an object:  Put the code to instruct the object in a 
segment (perhaps just a page); request a new domain and 
accept the domain service key. With the domain service 
key: 

• install the segment as the domain’s address segment; 

• set the domain’s initial PSW; 

• install a meter key in the domain’s meter slot; 

• install a domain keeper (if your program may fault); 

• order a start key (from the domain service key). 

Now the start key may be passed to intended users of the 
object. 

The program segment of a domain is typically read-only if 
several domains are to obey the program. If the program 
has store instructions a write-able address segment must be 
provided for the domain. One may do this by providing, for 
each domain, a private segment the domain can store into 
and composing the domain’s address segment from that 
segment and the shared read-only program segment. 
Alternatively, one may create a “copy on write” segment 
keeper which will share all pages which are only read, but 
create write-able private pages upon stores. 

Many simple objects can be implemented in assembler so 
as to require no private pages. Such programs have no store 
instructions as the domain’s address segment consists of 
just read-only pages (frequently, only one). Objects of this 
simple type all share the same read-only segment. Such ob - 
jects typically occupy from 200 to 700 bytes of individually 
dedicated disk storage.  

Programmers usually work at a higher level and these seg - 
ment planning details are handled automatically. 

In contrast to the Smalltalk object [8], there are no “vari - 
ables” local to the start key invocation. There are, however, 
variables that keep their values between invocations (like 
“own” variables in Algol 60). 

A start key to a domain conveys no authority to examine 
the state of the domain or to examine the domain code. In a 
computer supporting two non-privileged instruction sets, 
the set employed by a given domain would not be visible, 
given start keys to the domain. 

What KeyKOS domains have 

KeyKOS domains provide environments in which pro - 
grams may execute. They contain some ordinary process 
state information and some state information unique to 
KeyKOS. 

Slots of the Domain: 

• data for most of the real hardware program status 

• general and floating point registers’ values 

• address slot 

• Domain keeper slot 

• Meter slot 

• sixteen general slots to be referenced by the domain code 

• trap information produced by the hardware or kernel in - 
dicating if and why the program can’t run 

• hardware specific values such as debugging aids. 

• a brand ( q.v.) unique to its creator 

What KeyKOS domains do not have 

Here are a few features that analogs of domains in other 
systems frequently have that KeyKOS domains lack: 

• Terminal :  The domain has no special terminal with 
which it can converse (unless one of its accessible keys 
provides that). 

• Directory :  The domain has no special authority to ac - 
cess some directory by virtue of the fact that it was creat - 
ed by the directory’s owner or by any other virtue except 
holding a key to the directory. 

• Priority :  The domain has no special scheduling or 
billing properties beyond those stemming from its meter 
key. 

• Address Space :  The domain has no special affinity to an 
“address space” beyond that explicitly designated in the 
domain’s address slot. 

• Stack :  There is no “caller of this domain” implicitly 
known by the system that can be “referenced” only by 
returning to it. 

• System Call : There are no System Calls other than:  

1) those interpreted by the microkernel (key invoca - 
tions CALL,  RETURN and FORK) and,  

2) those interpreted by the domain’s keeper (all oth - 
ers). 

• Debugging :  There are no special provisions for interven - 
ing in a broken domain beyond that provided by the do - 
main’s keeper or some other holder of the domain ser - 
vice key. No key—no access. 

Other primitive microkernel objects 

Besides pages and nodes, the microkernel implements the 
following miscellaneous objects: 

• Node range object:   Controls a fixed set of nodes. An 
order on a node range object key will provide a node 
key to any of the nodes it controls. The node range ob - 
ject will also efficiently destroy all keys to a specified 
node that it controls.  Page range objects do the same for 
pages. 
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• Number keys:   Designate numbers and are convenient 
for keeping a few bytes of data in a slot. Invoking a num - 
ber key yields its number. The  null key is merely the 
number key that designates zero. The  number key cre - 
ator creates any particular number key. Number keys are 
described as designating numbers for the formal conve - 
nience of saying that every key designates an object. In 
fact the number (data) is in the key. 

• Wait objects:   Will return a message at some future 
specified time. That time is an internal state of the wait 
object. There are just a few primitive wait objects; one of 
them is multiplexed by domain code to produce a large 
number of non-primitive wait objects. 

• Device allocation object:   Produces and rescinds  device 
keys that designate and control a particular I/O device. 
The microkernel does its own I/O to the disks that it 
owns which hold pages and nodes. I/O to other devices 
is done by the kernel in response to calls to device keys 
that designate the device. 

Microkernel code also defines these individual, miscella - 
neous one-of-a-kind objects: 

• Keybits :  An object that provides the bits that are char - 
acteristic of a provided key. Keybits returns the same bits 
for the same key and different bits for different keys. The 
sole current use of Keybits is to provide for a sorted list 
of keys. 

• Peek :  A very powerful object that displays the real stor - 
age of the system. Peek is closely held by domains used 
for system debugging. 

• Domain tool :  An object that will produce a domain ser - 
vice key to a node given a node key to that node. Given 
a gate key or domain service key designating a node and 
a key that matches the brand of that domain, the domain 
tool will return a node key to that node. The  brand of a 
domain is found in its  brand slot . A node key to the do - 
main root is required to install the brand. Presumably 
only the creator of the domain has the brand. This is the 
primitive KeyKOS  rights amplification mechanism. 

• Discrim :  Compares two keys for equality. 

• Returner :  An object that merely returns any message 
sent to it. 

Sensory keys 

A universal paradigm in software design is the linking to - 
gether of data structures with pointers. This idea is carried 
over into capability systems by using keys as pointers. 
Consider a tree of nodes with pages at the leaves. The 
nodes hold node keys and page keys. To our knowledge, in 
previous capability-based systems a node key to the root 
node allowed the holder to peruse and modify the collec - 
tion. There was no “read-only” key to the structure. A fetch 
key to the root node is too strong because it may be used to 
fetch a node key to a lower node which, in turn, may be 
used to change lower nodes of the tree. 

To solve this problem KeyKOS provides  sense keys to 
nodes. A sense key is weaker than a fetch key. A sense key 
appears to the holder as a fetch key except that any key de - 
livered to the holder as a result of an invocation of a sense 
key is the  sensory version of the key being fetched. 

The sensory version of a node, sense, or fetch key to node 
N is the sense key to node N. The sensory version of a seg - 
ment key is a segment key without authority to invoke a 
segment keeper. The sensory version of a page key is the 
read-only key to the same page. 

If K is a number key or a key to one of the following ob - 
jects then the sensory version of K is K: 

• Discrim 

• the Number Key Creator 

• the Returner 

The sensory version of other keys is the null key. 

The important thing about a sense key is that it conveys no 
authority to influence a structure. The holder of the sense 
key can browse through the structure but is unable to affect 
it, nor may a non-sensory key be obtained using a sense 
key. If the structure holds page keys (a common situation) 
then those pages will be available for reading but not writ - 
ing. 

Fundamental objects implemented by do - 
mains 

The remainder of this document is a sketch of the major 
fundamental software outside the microkernel. These are 
the major features of the KeyKOS programming environ - 
ment. There are now more than 150 types of ready-made 
objects available to the KeyKOS programmer. Up to this 
point adjectives used to describe keys have depicted key 
classes of significance to the microkernel. Hereafter we dif - 
ferentiate the types of start keys that designate domains that 
obey different code. 

A  bank holds keys to node and page range objects. The 
bank keeps track of which pages and nodes are in use. The 
holder of a key to a bank can buy a node. The bank selects 
a currently unused node, creates a node key to it, records 
that the node is in-use, places null keys in each of the 
node’s slots, and returns the node key to the requestor, thus 
providing a key to a “newly created node”. As the bank in - 
vocation finishes, the bank and the requestor hold the only 
copies of any key to that node. New pages from the bank 
are similarly acquired, and are zero-filled. The bank holds 
the only node range object key that controls the space from 
which the node was created. Another order on a bank will 
sell the node back (reclaim the storage). Just after such an 
invocation all slots with keys to that node are efficiently 
filled with null keys. There is also an invocation on the 
bank to reclaim all of the pages and nodes ever bought 
from that bank. 

Banks also provide for measuring and limiting the degree 
of storage use. New banks may be created inferior to a 
given bank. It is as if the inferior bank bought its material 
from its superior. The inferior bank may have its own limits. 
Inferior banks may have their own inferior banks, etc. 

A domain creator will accept a bank key and build a new 
domain out of nodes from that bank. It will return a domain 
service key to the new domain. A domain fresh from a do - 
main creator has no address segment, meter or domain 
keeper. They must be installed by use of the domain service 
key. Each domain creator holds a unique key which it in - 
stalls in the domain’s  brand slot . Another order on a do - 
main creator takes a gate key to a domain as a parameter 
and returns the domain service key to that domain if the do - 
main was one that this creator created (as determined by 
the brand). 

A  factory [10] is an object that initiates a  compartment in 
which a computation may take place. A compartment is a 
collection of objects that collectively hold no unaudited, 
non-sensory keys that designate objects outside the com - 
partment. Compartments produced under such circum - 
stances have measured  discreetness . A factory can certify 
the degree of discretion of another factory. If one trusts the 
(fixed) logic of a factory, one need not trust the logic of the 
programs obeyed by domains within the compartment not 
to disclose one’s data. Factories allow the construction of 
programs which “keep secrets”, and address containment 
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and mutually suspicious user security problems [11]. 

A top secret user might have a discreet compartment creat - 
ed for him by a factory to house his workspace. His work 
will go unobserved by users in other compartments. 

Factories can produce segments with keepers that support 
the illusion of initially zero segments. Real storage is ac - 
quired as pages are read from or stored into for the first 
time. 

A significant object that has been implemented using sense 
keys is the  virtual copy segment . Such a segment will pro - 
duce, on demand, a source of segment copies whose initial 
state is that of the original at the instant of the demand. 
Such a copy is modifiable but such modification is insensi - 
ble except by the key to the copy. The cost of the copy is 
proportional to the number of modified pages in the copy. 
Such segments are said to be  discreet . Factories can certify 
that this source of new segments produces only discreet 
segments. The virtual copy functionality is available in 
some operating systems and is generally known as “copy 
on write”. The segment keeper function of KeyKOS allows 
one to implement this function in unprivileged code. 

Objects called  record collections serve as directories and 
indexed files in KeyKOS. Record collections provide the 
services other systems achieve by the combination of files 
and access methods; for example they are used to provide 
UNIX directories, and, on the System/370 the functionality 
of IBM VSAM data sets. 

A  symbolic machine language debugger is in the tradi - 
tion of the MIT DDTs. The debugger runs as a domain 
keeper and is thus safe from the flailing of a sick program. 
The debugger can be connected to any terminal for which 
appropriate keys are available. For all but a few basic 
KeyKOS system domains this debugger is available with - 
out “preplanning” and with no cost until used. 

Programming facilities 

Knowing a password to a KeyKOS system allows the user 
to connect a terminal to some object created for that user. 
Commonly this object is a switch that lets the terminal talk 
to one of a set of objects.  

An individual who programs KeyKOS or understands keys 
has a command system (also an object) that holds the key 
to his  directory . A directory associates names with keys, 
and provides a key name space of the immediately execut - 
ed commands expressed in the command language. There 
are normally a number of command systems and directories 
available to a user. 

The command system is the only program that has “natu - 
ral” access to the directory. If the user wants a program to 
run with access to some of his data, the user must invoke 
the start key to the domain containing the program, passing 
the key to the data. Such a program lacks access to the 
user’s directory unless a key to the directory is explicitly 
passed. 

Keepers can emulate the behavior of operating systems. 
Operating systems that have been emulated include 
BSD4.3, Minix, VM/CP (S/370), a reduced MVS (S/370), 
and EDX (Series/1).  These emulations provide binary 
compatibility at the application level. 

C and PL/I source are expanded (through preprocessor and 
runtime library routines) to produce programs for KeyKOS 
that explicitly manipulate keys. The compiler is bundled 
into an object that reads source programs and creates a fac - 
tory which produces objects that obey the compiled pro - 
gram. Keys are named symbolically and the program is re - 
lieved of the sixteen key limit for held keys.  

Since all KeyKOS functionality is packaged with keys, and 
the key invocation facility is general, a program can use 
any function authorized to it by a key without resorting to 

the assembly code necessary in older systems. The 
KeyKOS facility provides extensive sharing:  all objects 
written in a given language share the same library, and ob - 
jects from the same factory share the same compiled code. 
Data segments may be flexibly shared by programs written 
in high level languages. 

Transaction processing foundation 

KeyTXF, a transaction processing foundation program 
product, provides locking, commit/abort, journaling, moni - 
toring, and similar function in domains appropriate for the 
development and operation of transaction processing appli - 
cations. 

Operator functions 

The KeyKOS microkernel has no built-in operator inter - 
face. Such function, such as a tape operator interface, is im - 
plemented in domains. 
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