
Eighth Edition (December 1990)

This paper was written by Norman Hardy and appeared in
a slightly different form in Operating Systems Review ,
September, 1985.

Key Logic
5200 Great America Parkway
Santa Clara, CA 95054-1108
(408) 255-9496

Copyright  1985, 1987, 1988, 1990 Key Logic. All rights
reserved. Permission to reproduce and redistribute this doc -
ument in paper or electronic form is hereby granted, provid -
ed that this copyright notice remains intact.

KeyKOS  is a trademark of Key Logic.
KeyTXF  is a trademark of Key Logic.
IBM  is a trademark of International Business Machines
Corporation.
UNIX  is a trademark of American Telephone and
Telegraph Corporation.
POSIX  is a trademark of The Institute of Electrical and
Electronics Engineers, Inc.
Ada  is a trademark of the United States Department of
Defense.

KeyKOS Architecture

Introduction
This publication provides a description of KeyKOS, a mi -
crokernel-based system, at a level sufficient to understand
its basic architectural aspects. Thus, a designer of program
systems could use the information here to guide alternative
design efforts, but a programmer will find insufficient detail
to produce code for the system.

Because of the formal aspects of the KeyKOS architecture,
it is possible to reason about many characteristics of sys -
tems implemented within it in useful ways. The information
presented in this publication is sufficient to allow one to
begin such reasoning about KeyKOS and programming
systems built using its principles.

Other Key Logic publications of a theoretical nature in -
clude KeyKOS Security: Formal Security Model, A
KeyKOS Solution to the Confinement Problem , and
Security in KeyKOS . They are available from Key Logic
upon request.

This publication is presented primarily for those who are in -
terested in reasoning about complex computer program -
ming systems, and for those interested in foundations for
such systems. It assumes that readers have a basic knowl -
edge of computer architectures, and some awareness of
both objects and capabilities.

Largely because of an attempt at conciseness, but also be -
cause of the compactness of KeyKOS and the mutual re -
liance of the abstractions from which it is developed, certain
words and phrases appear, of necessity, earlier in this publi -
cation than the principle discussions explaining them. The
information in this publication is ordered with the intent
that a reader will need to assume as little as possible about
as-yet-unexplained topics. Bold references in the index lo -
cate their definitions.

KeyKOS is currently implemented on the Motorola 88000,
where it supports UNIX, and the IBM System/370 [2],
where it supports UNIX, VM/CMS, and a high perfor -
mance transaction processor. A description of the C lan -
guage interface to the KeyKOS functions is provided in
Key Logic’s publication KeyKOS C Programmer’s
Referenc e (KL113).

A description of the IBM System/370 implementation of
KeyKOS at a level sufficient to implement assembly-level
programs is provided in Key Logic’s publication
KeyKOS/370 Principles of Operation (KL002). Other Key
Logic publications about KeyKOS and its facilities are
available at various introductory and programming levels.

If you would like further information about Key Logic or
its products, please contact us at (408) 496-1090.

The Keykos Architecture 5/29/92 1

Overview
This publication introduces the architecture of KeyKOS, a
capability-based system written in software for implementa -
tion on a wide variety of hardware platforms. KeyKOS
consists of a microkernel, which executes in privileged-
mode, plus additional facilities necessary to support operat -
ing systems and applications. The KeyKOS functionality
combined with the hardware can be thought of as a “ma -
chine” to which one can port operating systems or on
which one can write applications. The operating systems
which have been ported to KeyKOS include UNIX and, on
the System/370, VM/CMS.

This paper attempts to tell enough so that certain arguments
and conclusions about the KeyKOS properties can be
formed. The description of the microkernel functions is es -
sentially complete. Only the more important additional fa -
cilities are described.

KeyKOS was originally designed to solve the security, data
sharing, pricing, reliability, and extensibility requirements of
a commercial computer service in a network environment.
By using the microkernel approach to preserve operating
system compatibility, KeyKOS functions equally well on a
range of hardware, from workstations to mainframes.
Because it was developed in a commercial environment its
performance consistently meets or exceeds that of the “na -
tive” operating systems while remaining semantically iden -
tical.

KeyKOS for the System/370 began supporting production
applications on an IBM 4341 in January 1983. It has run
on Amdahl 470V/8, IBM 3090/200 (in uni-processor
System/370 mode), IBM 158, and NAS 8023 processors.
KeyKOS also executes on the Omron LUNA/88K.

KeyKOS is in the tradition of message-based systems.
Messages are the primary interaction between components
of the system.

For brevity we use “ key ” where most literature uses “ca -
pability”.

KeyKOS supports object-style programming. Indeed, near -
ly all of the code written so far for KeyKOS serves to de -
fine some particular type of object. Objects call upon the
services of other objects by sending key-addressed mes -
sages to request a service, and accepting a key-addressed
message in return. This is within the paradigm of “remote
procedure calls,” and is also similar to the Smalltalk mech -
anism.

In object-style programming, objects are implemented by
some combination of “ordinary programming” and use of
more primitive objects. In KeyKOS the microkernel termi -
nates this recursion by implementing several types of primi -
tive objects. The code that defines such objects is in the mi -
crokernel.

A pervasive principle in KeyKOS is that a program “mod -
ule” should obey the “principle of least privilege” [1]. To
that end, the design of KeyKOS gives objects no intrinsic
authority, and relies totally upon their keys to convey what
authority they have. Using these facilities, the system is
conveniently divided into small modules each structured to
observe the principle of least privilege.

Objects, keys, and messages

Programs running in capability systems, such as KeyKOS,
hold some representations of authority called keys .

Keys are tokens of authority. A program may only cause
actions warranted by the keys it holds. Any action that a
program causes is enabled by some key that it holds and
explicitly identifies in an invocation of that key.

A key designates a specific object . The authority con -
veyed by a key is specific to just the object designated by

that key. Different keys may designate the same object but
convey different authority over that object. Exercising au -
thority represented by a key is done by invoking the key.
Some objects have state which may be modified by a hold -
er of a key that designates the object. Weaker keys to that
object may only let the holder sense the state of the object.

A slot holds a key. All keys reside in slots. Just as a register
holds different numbers at different times, so may a slot
hold different keys at different times.

An invocation involves a message, specified by the invoker
and delivered to the object designated by the invoked key.
The invoker may include in a message keys and/or data
that he holds, whereupon the designated object may also
hold them.

In summary: If object A holds a key b to object B then A
may request B’s service by invoking b thus sending a mes -
sage to B.

Introduction to domains

Domains are the actors of KeyKOS. Any event in
KeyKOS is the direct and immediate result of an action by
some domain. Domains are primitive objects that obey pro -
grams and thus assume the role of non-primitive objects.

A domain has sixteen general slots and several special
slots. The use of the general slots is determined by the pro -
gram obeyed by the domain. The keys in the general slots
are invoked or included in messages by the explicit direc -
tion of the program obeyed by the domain. To say that a
program holds a key means only that the key is in some
general slot of a domain that obeys the program. The use of
the special slots is determined by the domain. Their names
and use will be explained below.

As will be seen, domains can act to acquire and hold new
keys. Such new keys are said to be accessible . Such ac -
tions must be warranted by keys already held.

The domain’s address slot holds the key to its address
segment , which provides the domain’s address space. The
domain obeys a program found in its address segment.
Code designed to be obeyed by a domain is domain code .

The domain interprets the program according to the hard -
ware problem state architecture. The general registers, the
floating registers and other status are included in the do -
main’s special slots (as degenerate number keys q.v.).
Similarly included is hardware specific control information.
KeyKOS extends many features of the hardware architec -
ture (for example, providing access control via keys), but
achieves good performance and necessary functionality by
fully exploiting appropriate features of the architecture.

A gate key designates a domain. A message addressed via
a gate key in an invocation of that key is delivered to the
domain so that the program obeyed by the domain has
complete control over the disposition and interpretation of
the message.

KeyKOS was designed with the idea that a domain will
typically spend its life obeying just one program. The func -
tion of another program may be had by invoking a start key
to a domain that obeys the other program. This other do -
main is almost always thought of as an object by the pro -
grammer of the first domain.

KeyKOS systems are generally built of a large number of
small objects. Such modularization increases reliability
and simplifies maintenance, since programming errors can
impact only the objects in which they occur. Such systems
are characterized by a large number of context switches
over time. The KeyKOS design and implementation
makes these context switches very efficient, and allows ap -
plication/system builders to exploit their advantages.
Because small objects are efficient in KeyKOS they can be
utilized in the port of operating systems to significantly in -

2 The Keykos Architecture 5/29/92

crease reliability while minimizing port-time by reducing
complexity.

In KeyKOS, the dynamic relationship between calling and
called domains is represented by a key first held by the
called domain. Most other capability systems (see [3] for a
survey and bibliography) represent this relationship in
some sort of internal stack that may only be implicitly refer -
enced by calling and returning operations. In KeyKOS, the
CALL operation, which is primitive, produces a message
that contains an implicitly produced resume key to the
CALLing domain. The resume key is a form of gate key.
To the CALLed domain this is merely another key, conven -
tionally used to return. Alternatively, it may be passed to
another domain, stored into an array of keys or anything
else that may be done with a key.

Domains are like “tasks” of MVS [4] or Ada [5]. They are
like “processes” in UNIX [6] and various other systems.

Major microkernel features

The KeyKOS microkernel is small, runs in privileged state,
is unswapped, and runs with address translation off.

A total computing system consists of multiple levels of ab -
straction, including the hardware, the operating system, the
file system, the database management system, etc. The
function provided at each level must be carefully selected
and implemented or else higher levels may be subject to
penalties in performance and/or complexity of design. The
KeyKOS microkernel itself does not provide all of the
functionality conventionally associated with an operating
system; rather it provides a set of primitives which allow
such (guest operating system) functions to be implemented
by problem mode programs in domains. These KeyKOS
machine primitives are much easier and more productive to
use than the functions of the hardware alone.

The microkernel interprets keys. No other program has di -
rect access to the bits that represent keys (except Keybits,
q.v.). Code defining primitive objects is in the microkernel.
These primitive objects are tools sufficient to build higher-
level objects. The microkernel provides:

• several types of primitive objects;

• multiprogramming support, primitive scheduling and
hooks for fancy schedulers running in domains;

• single-level store. Domain programs are unaware of the
distinction between main storage and disk;

• virtual memories for domains based upon the address
segment using memory mapping hardware;

• redundant disk storage for selected information (to pro -
vide reliability and improve read performance);

• a system-wide checkpoint-restart feature;

• special pages exempt from checkpoint;

• gate keys by which messages are sent between domains;

• primitive and limited access to individual I/O devices;

• an invariant interpretation of keys (independent of the lo -
cation of the designated objects—whether on disk or in
main storage).

KeyKOS takes system-wide checkpoints every few min -
utes to protect from power failures, most microkernel bugs,
and detected hardware errors. All data and processes are
checkpointed. The KeyKOS microkernel keeps no internal
state about the data and processes which cannot be re-con -
structed from the checkpoint information. After an Initial
Domain Load [7], subsequent IPLing restarts the machine
from a checkpoint. The microkernel also provides primi -
tives to support concurrent checkpoints to magnetic tape
which comprise a snapshot of the entire system.

Messages

A message is composed of a parameter word (commonly
interpreted either as an order or method code, or return
code), a string of from 0 to 4096 bytes called the byte
string , and four keys. A domain may compose a message
from an integer, from contiguous data in its address seg -
ment, and from keys it holds. The message is delivered to
an object designated by a key that is held and indicated by
the invoking domain. A particular value for the parameter
word in conjunction with a particular kind of key is called
an order on that key.

The microkernel does not buffer messages. Invocation of a
gate key is deferred until the recipient domain is ready to
accept the message. Message buffering can be implemented
transparently by domain code if needed. We choose not to
make the microkernel responsible for holding message
data, which potentially could be held forever.

Gate keys, when invoked, deliver the message to another
domain. A gate key is the authority to send a message to
the designated domain. Messages sent via a gate key are
delivered to the receiving domain in a way controlled by
the receiving domain’s program. The program may choose
to accept the keys from the message, whereupon its domain
will then hold those keys. It may choose to accept the pa -
rameter word and all or part of the byte string. The keys
and data from the message can then be interpreted accord -
ing to the logic of the receiving domain’s program. The
sending and receiving of the message causes the data and
keys to be copied from the domain of the sender to the do -
main of the receiver. Like an event, a message never per -
sists: it is consumed the same instant it is created. In this re -
spect KeyKOS messages are like Smalltalk [8] messages.

Invocation of keys which are not gate keys delivers the
message to the microkernel which immediately returns a
message in response, according to the logic of some micro -
kernel-implemented object designated by the key.

Domain states and kinds of invocations

In KeyKOS, key invocation plays the traditional role of
subroutine call, and the message plays the role of parame -
ters. The traditional calling mechanism sends the address of
data in order to communicate requirements to the subrou -
tine. In KeyKOS, the message commonly includes keys
that serve the same purpose—to indicate which objects are
to be operated upon by the server.

A domain is always in one of only three states: running ,
available , and waiting .

Running domains will execute instructions, barring page
faults, insufficient CPUs, and a few other obstacles. CPUs
are multiplexed among the running domains. Available or
waiting domains do not execute instructions.

There are two kinds of gate keys: start keys and resume
keys . A start key can deliver a message only when the do -
main it designates is available. If a running domain tries to
invoke a start key to a domain that is not available, the run -
ning domain is queued along with other domains invoking
start keys to the unavailable domain. They will run again
when the designated domain becomes available. A resume
key is created as a result of the CALL instruction and is de -
scribed below.

A program invokes a key by executing an invocation in -
struction; bits in a register select one of three ways to in -
voke the key: FORK , CALL , or RETURN .

A FORK invocation leaves the invoking domain in the run -
ning state.

A CALL leaves the invoking domain in the waiting state
and automatically generates within the message, as the last
key, a resume key to the invoking domain. The invoking
domain remains in the waiting state until the resume key is

The Keykos Architecture 5/29/92 3

invoked, whereupon the domain returns to the running
state. Resume keys exist only to waiting domains, and as a
resume key is invoked, all resume keys to the designated
domain disappear and are everywhere efficiently replaced
by null keys, q.v.

A RETURN invocation leaves the invoking domain in the
available state. If there are domains that were queued by the
unavailability of the RETURNing domain, one is promptly
run.

The state of the domain is determined solely by the type of
invocation, and not by the key being invoked.

Summary of gate invocations:

Two kinds of gate keys :

• Start key : Queues invoker until the designated domain is
available.

• Resume key: Automatically created by CALL invoca -
tion—exists only to waiting domains.

Three ways to invoke a key:

• FORK: Leaves invoking domain running.

• CALL: Leaves invoking domain waiting and includes in
the message a resume key to invoker.

• RETURN: Leaves invoking domain available.
Dequeues domains on the queue of the domain which
performed the RETURN.

The invoking domain’s program specifies:

• which key held by the invoker is to be invoked;

• which data and keys are to be included in the message;

• which of the three kinds of invocation is to be performed;

• for CALLs and RETURNs, how to receive the message
for the invocation that will next cause the domain to run.

The invoked domain’s program (or initialization) has speci -
fied:

• how the components of the message are to be accepted;

• where to start execution.

Invoking keys that are not gate keys

Keys that are not gate keys are primary keys , and the re -
sponse to their invocation is performed by the microkernel.
When a primary key is CALLed, usually the microkernel
immediately returns a message to the invoker (depending
on the nature of the invoked key) in such a way that the in -
voker cannot determine from the behavior of the key that it
is not a start key. Most invocations of primary keys are
CALLs. In this case the microkernel needs to “return to”
the last key parameter. If the invocation is not a CALL and
the last key parameter is a resume key then the message
produced by the microkernel will be delivered to the do -
main designated by the resume key. Otherwise the message
is lost.

CALLing a start key

This style of invocation, together with a matching RE -
TURN invocation of the resume key, plays the role of the
classic subroutine linkage and is the primary method of
putting software together in KeyKOS. (Domains may share
read-write storage for communication, but seldom do.)

CALLing a start key provides access to a serially reusable
resource implemented by a domain’s program. Thus the
microkernel need not allocate stack frames or cope with
storage exhaustion. Most domains have state between invo -
cations. This state is relevant to some context. Other con -
texts may have their own domains obeying the same pro -
gram but with another state. The domain thus embodies the
Smalltalk-style object. Domains obeying the same program
implement objects of the same type . Such objects differ
only in their state, not in their transition rules. However,

KeyKOS objects exist at the system level, not the language
level, and are much larger than Smalltalk objects (which
average about 50 bytes).

The queuing of invokers of a start key to an unavailable do -
main provides a convenient and efficient queuing mecha -
nism for the domain representing a serially reusable re -
source. Some services, such as a compiler, have no state be -
tween invocations and should be reentrant. In such cases
the start key leads to a domain that creates another domain
that obeys the compiler for one compilation and then de -
stroys itself. Several compilations may thus proceed at
once.

Co-routines—or CALLing a resume key

If domain X CALLs a resume key to domain Y the situa -
tions of the two domains are thereby reversed:

Before CALLing: X is running and holds a resume
key to Y; Y is waiting.

After CALLing: Y is running and holds a resume
key to X; X is waiting.

This action constitutes a co-routine linkage and has the tra -
ditional attributes of co-routines. This is the method typical -
ly used by a domain to deliver a sequence of values to an -
other domain, especially when the values are produced or
consumed as they are transmitted.

The co-routine relationship is frequently established as fol -
lows: X wishes to deliver a sequence of values to Y to
whom X holds a start key. X CALLs Y’s start key sending
an order in the parameter word foretelling a sequence of
values. Y now holds a resume key to X and CALLs it for
the first value of the sequence. X now holds a resume key
to Y and passes the first value by CALLing the resume key.
(Note that the unavailability of Y prevents other users of Y
from interfering with Y’s state until Y is finished receiving
the entire value sequence.)

This proceeds until X or Y indicates that it wishes to termi -
nate the relationship, whereupon Y RETURNs to X’s re -
sume key, making Y available for new transactions.

Functions of the domain

The following functional areas are frequently provided sep -
arately in other systems but are bundled in the KeyKOS
domain:

• Abstraction (information hiding)

• Instantiation

• Protection (calling some program with different authori -
ty)

• Exclusion and queuing

• Multi-programming

Pages and nodes

The microkernel provides some fixed number of pages and
nodes . There are typically many thousands of pages and
nodes. A page holds 4096 bytes of data and a node has six -
teen slots. A node also has an associated process-running
predicate which is TRUE if and only if the node is the dis -
tinguished node of a running domain. Pages and nodes are
microkernel-implemented objects and they are accessed by
keys. State-bearing objects are ultimately built of pages and
nodes. Pages and nodes carry all of the state of the system.
Pages and nodes are swapped by the microkernel to pro -
vide a single-level store. Pages and nodes are the only
primitive microkernel objects provided in large numbers.
The checkpoint-restart mechanism and checkpoint to mag -
netic tape deal only with pages and nodes.

A node key designates a node and provides authority to re -
trieve keys from the node or to place keys into the node. A
fetch key also designates a node but may be used only to

4 The Keykos Architecture 5/29/92

retrieve keys from the node.

A page may be designated by read-write and read-only
page keys .

Three special objects

Domains , segments , and meters are three special primitive
objects. By their nature these objects must be implemented
in the microkernel. For each of these special objects there
are infrequent exceptional states, encountered by the micro -
kernel, whose disposition must be determined by code out -
side the microkernel. (In KeyKOS, by design, the policies
to be implemented in these exceptional situations are left to
domain code, as in [9].) In such cases the key in the objec -
t’s keeper slot is invoked with a message that includes in -
formation about the nature of the state, and the service key
to the object. The key in the keeper slot is normally a start
key to a domain obeying a program called a keeper . The
keeper may use the service key to return the object to a
state where the kernel’s rules for the special object are suit -
able again.

A keeper invocation is one which is triggered by some ex -
ceptional state of a domain, a segment, or a meter. This in -
vocation is in the form of a CALL invocation, and is de -
signed such that, after the exceptional states which trig -
gered the event are rectified, control may be transferred to
the domain whose action caused the circumstance (by a
RETURN invocation of the resume key) without it being
aware of the interruption of its execution.

In KeyKOS, the use of keeper invocations to summon aid
is motivated by the intent to remove policy concerning the
handling of such events from the microkernel. Fixed poli -
cies of this kind tend (in conventional systems) to inhibit
the evolution of the system. By moving such policy to pro -
grams implemented in domain code, an attempt is made to
provide an avenue for future evolution and growth of the
system, as well as a mechanism to allow multiple policies to
be simultaneously supported in a single system.

Domain service

The key from the domain’s keeper slot is called when the
domain encounters difficulty in executing instructions.
Program interrupts (beyond address translation faults) and
Supervisor Calls (SVCs) cause the domain’s keeper to be
called. The domain keeper may thus emulate environments
provided by other operating systems, or provide debugging
services.

The domain service key designates a domain. It provides
authority to retrieve and replace parts of the state of the do -
main including the keys in the general and special slots.
The domain service key provides complete access to the
state of the computation within the domain, and authority to
intervene therein.

The code that interprets the domain service key invocation
is in the microkernel, in contrast to the code which inter -
prets the domain start key invocation, which is the domain
code. The domain code (obeyed by the domain) has no
control over and is not involved in interpreting these do -
main service key invocations. The domain service key is
used to initialize a domain and to intervene if the domain’s
program should not behave as expected. Many domains
hold their own domain service key. One order on a domain
service key yields a start key to that domain. This order also
takes a one byte value, the data byte . The start key in -
cludes this byte, which is delivered along with messages
delivered via that start key.

Segment service

A segment has some specific size which is a power of six -
teen. A segment is either a page or is compound . A com -
pound segment comprises sixteen equal-size portions. To a
compound segment there are both a segment key and a
segment service key . Page keys and segment keys are

memory keys *. The memory key to a compound segment
is a node key, fetch key, sense key (q.v.) or segment key
designating the node that is the root of the segment.

The sixteen portions of a compound segment S are each
represented by the key from one of sixteen component slots
in S accessible via the segment service key to S. To the seg -
ment key holder the segment appears as the seamless con -
catenation of the sixteen portions. A fetch or store reference
to a portion of S via the segment key to S has the effect of a
fetch or store reference via the key from the corresponding
component slot. These keys are typically memory keys to
smaller segments. A fetch or store reference to a portion of
a segment whose component slot key is not a memory key
is invalid . Store references via read-only memory keys are
also invalid. Invalid fetch or store references to segments
cause invocations of the key from the segment’s keeper slot
or lacking that, the referencing domain’s keeper slot. The
referencing domain is left in the state just before the refer -
ence was made. The invocation message includes the ad -
dress within the segment to which the reference occurred, a
segment service key, and a resume key to the referencing
domain.

If M is a memory key to a segment, then one may con -
struct, given M, the following three types of segments:

• a sub-segment of the original (specified on page bound -
aries)

• a read-only version of the original

• a version of the original via which it is impossible to sig -
nal the segment’s keeper

A memory key to a page or segment may be used to define
the address segment of a domain or it may be used to de -
fine a portion of another segment. The same memory key
may be used in several contexts at once.

Meter service

Meters account for certain system resources including CPU
time. To a meter there is a meter key and a meter service
key . For a domain to run, its meter slot must hold a meter
key to a valid superior meter.

Within a meter appear:

• counters of the resources consumed by domains depen -
dent on the meter;

• a slot for a superior meter key;

• a meter keeper slot.

For a meter to be valid, its superior meter key slot must
hold a meter key to a valid higher meter. There is a primi -
tive meter which is always valid. There must be a chain of
meters leading to the primitive meter. As a domain runs, the
chain of meters rooted in the domain’s meter slot all record
the resources used. The meter service key supports fetching
from and storing to the various slots of the meter while the
meter key provides (but limits) the resources the holder can
consume. The meter key holder can build inferior meters.

A meter’s keeper slot key is called when a resource counter
in the meter reaches zero. The message associated with the
invocation includes a meter service key which may be used
to replenish the counter if that is the plan. The message also
includes a resume key to the waiting domain whose execu -
tion exhausted the meter. This key may be used to restart
the waiting domain when appropriate. The meter keeper is
in a position to perform scheduling (directly or indirectly)
over all the domains served by that meter.

Role of nodes in the special objects

Nodes are of very general use. They play much the same

The Keykos Architecture 5/29/92 5

 * While a page is a segment, a page key is not a segment key .

A page key is, however, a memory key .

role of control blocks of some programming systems.
Nodes assume a fundamental role in the definition of most
other objects. The special objects (domains, segments, and
meters) are actually composed of nodes. Their behavior is
determined by code in the microkernel. It might be said that
these extra behaviors of the node are merely alternate per -
sonalities of the node, inherent in the node itself. Segment
keys, domain service keys, and meter keys designate nodes
while limiting their holders to the corresponding special
function. A segment service key or meter service key is
merely a node key to the underlying node. We call them all
service keys here merely to emphasize their parallel role.
Similarly, the meter service key is the node key to the un -
derlying node.

To build a segment or meter it suffices merely to place the
appropriate keys in a new node, and request the segment
key or meter key by an order on the node key. To limit the
number of programs that know how domains are built from
nodes, getting a domain service key takes a special key: the
domain tool key q.v. . The domain service key is used to in -
stall the parts of a domain. Typically the domain service key
is obtained from a domain creator , which is the only type
of object holding the domain tool key.

The effects of invoking primitive keys are immediate.
Invoking a node key to change the definition of a segment
has immediate effects on all address spaces in which that
segment occurs.

The reader may have noticed by now that some keys have
other uses than invocation. In particular, memory keys are
used in the address slots of domains and meter keys are
used in the meter slots of domains.

Creating an object

The domain is the microkernel primitive used to implement
new kinds of objects. Upon invocation of a gate key, the
message is delivered to and interpreted by code which is
obeyed by that domain.

To create an object: Put the code to instruct the object in a
segment (perhaps just a page); request a new domain and
accept the domain service key. With the domain service
key:

• install the segment as the domain’s address segment;

• set the domain’s initial PSW;

• install a meter key in the domain’s meter slot;

• install a domain keeper (if your program may fault);

• order a start key (from the domain service key).

Now the start key may be passed to intended users of the
object.

The program segment of a domain is typically read-only if
several domains are to obey the program. If the program
has store instructions a write-able address segment must be
provided for the domain. One may do this by providing, for
each domain, a private segment the domain can store into
and composing the domain’s address segment from that
segment and the shared read-only program segment.
Alternatively, one may create a “copy on write” segment
keeper which will share all pages which are only read, but
create write-able private pages upon stores.

Many simple objects can be implemented in assembler so
as to require no private pages. Such programs have no store
instructions as the domain’s address segment consists of
just read-only pages (frequently, only one). Objects of this
simple type all share the same read-only segment. Such ob -
jects typically occupy from 200 to 700 bytes of individually
dedicated disk storage.

Programmers usually work at a higher level and these seg -
ment planning details are handled automatically.

In contrast to the Smalltalk object [8], there are no “vari -
ables” local to the start key invocation. There are, however,
variables that keep their values between invocations (like
“own” variables in Algol 60).

A start key to a domain conveys no authority to examine
the state of the domain or to examine the domain code. In a
computer supporting two non-privileged instruction sets,
the set employed by a given domain would not be visible,
given start keys to the domain.

What KeyKOS domains have

KeyKOS domains provide environments in which pro -
grams may execute. They contain some ordinary process
state information and some state information unique to
KeyKOS.

Slots of the Domain:

• data for most of the real hardware program status

• general and floating point registers’ values

• address slot

• Domain keeper slot

• Meter slot

• sixteen general slots to be referenced by the domain code

• trap information produced by the hardware or kernel in -
dicating if and why the program can’t run

• hardware specific values such as debugging aids.

• a brand (q.v.) unique to its creator

What KeyKOS domains do not have

Here are a few features that analogs of domains in other
systems frequently have that KeyKOS domains lack:

• Terminal : The domain has no special terminal with
which it can converse (unless one of its accessible keys
provides that).

• Directory : The domain has no special authority to ac -
cess some directory by virtue of the fact that it was creat -
ed by the directory’s owner or by any other virtue except
holding a key to the directory.

• Priority : The domain has no special scheduling or
billing properties beyond those stemming from its meter
key.

• Address Space : The domain has no special affinity to an
“address space” beyond that explicitly designated in the
domain’s address slot.

• Stack : There is no “caller of this domain” implicitly
known by the system that can be “referenced” only by
returning to it.

• System Call : There are no System Calls other than:

1) those interpreted by the microkernel (key invoca -
tions CALL, RETURN and FORK) and,

2) those interpreted by the domain’s keeper (all oth -
ers).

• Debugging : There are no special provisions for interven -
ing in a broken domain beyond that provided by the do -
main’s keeper or some other holder of the domain ser -
vice key. No key—no access.

Other primitive microkernel objects

Besides pages and nodes, the microkernel implements the
following miscellaneous objects:

• Node range object: Controls a fixed set of nodes. An
order on a node range object key will provide a node
key to any of the nodes it controls. The node range ob -
ject will also efficiently destroy all keys to a specified
node that it controls. Page range objects do the same for
pages.

6 The Keykos Architecture 5/29/92

• Number keys: Designate numbers and are convenient
for keeping a few bytes of data in a slot. Invoking a num -
ber key yields its number. The null key is merely the
number key that designates zero. The number key cre -
ator creates any particular number key. Number keys are
described as designating numbers for the formal conve -
nience of saying that every key designates an object. In
fact the number (data) is in the key.

• Wait objects: Will return a message at some future
specified time. That time is an internal state of the wait
object. There are just a few primitive wait objects; one of
them is multiplexed by domain code to produce a large
number of non-primitive wait objects.

• Device allocation object: Produces and rescinds device
keys that designate and control a particular I/O device.
The microkernel does its own I/O to the disks that it
owns which hold pages and nodes. I/O to other devices
is done by the kernel in response to calls to device keys
that designate the device.

Microkernel code also defines these individual, miscella -
neous one-of-a-kind objects:

• Keybits : An object that provides the bits that are char -
acteristic of a provided key. Keybits returns the same bits
for the same key and different bits for different keys. The
sole current use of Keybits is to provide for a sorted list
of keys.

• Peek : A very powerful object that displays the real stor -
age of the system. Peek is closely held by domains used
for system debugging.

• Domain tool : An object that will produce a domain ser -
vice key to a node given a node key to that node. Given
a gate key or domain service key designating a node and
a key that matches the brand of that domain, the domain
tool will return a node key to that node. The brand of a
domain is found in its brand slot . A node key to the do -
main root is required to install the brand. Presumably
only the creator of the domain has the brand. This is the
primitive KeyKOS rights amplification mechanism.

• Discrim : Compares two keys for equality.

• Returner : An object that merely returns any message
sent to it.

Sensory keys

A universal paradigm in software design is the linking to -
gether of data structures with pointers. This idea is carried
over into capability systems by using keys as pointers.
Consider a tree of nodes with pages at the leaves. The
nodes hold node keys and page keys. To our knowledge, in
previous capability-based systems a node key to the root
node allowed the holder to peruse and modify the collec -
tion. There was no “read-only” key to the structure. A fetch
key to the root node is too strong because it may be used to
fetch a node key to a lower node which, in turn, may be
used to change lower nodes of the tree.

To solve this problem KeyKOS provides sense keys to
nodes. A sense key is weaker than a fetch key. A sense key
appears to the holder as a fetch key except that any key de -
livered to the holder as a result of an invocation of a sense
key is the sensory version of the key being fetched.

The sensory version of a node, sense, or fetch key to node
N is the sense key to node N. The sensory version of a seg -
ment key is a segment key without authority to invoke a
segment keeper. The sensory version of a page key is the
read-only key to the same page.

If K is a number key or a key to one of the following ob -
jects then the sensory version of K is K:

• Discrim

• the Number Key Creator

• the Returner

The sensory version of other keys is the null key.

The important thing about a sense key is that it conveys no
authority to influence a structure. The holder of the sense
key can browse through the structure but is unable to affect
it, nor may a non-sensory key be obtained using a sense
key. If the structure holds page keys (a common situation)
then those pages will be available for reading but not writ -
ing.

Fundamental objects implemented by do -
mains

The remainder of this document is a sketch of the major
fundamental software outside the microkernel. These are
the major features of the KeyKOS programming environ -
ment. There are now more than 150 types of ready-made
objects available to the KeyKOS programmer. Up to this
point adjectives used to describe keys have depicted key
classes of significance to the microkernel. Hereafter we dif -
ferentiate the types of start keys that designate domains that
obey different code.

A bank holds keys to node and page range objects. The
bank keeps track of which pages and nodes are in use. The
holder of a key to a bank can buy a node. The bank selects
a currently unused node, creates a node key to it, records
that the node is in-use, places null keys in each of the
node’s slots, and returns the node key to the requestor, thus
providing a key to a “newly created node”. As the bank in -
vocation finishes, the bank and the requestor hold the only
copies of any key to that node. New pages from the bank
are similarly acquired, and are zero-filled. The bank holds
the only node range object key that controls the space from
which the node was created. Another order on a bank will
sell the node back (reclaim the storage). Just after such an
invocation all slots with keys to that node are efficiently
filled with null keys. There is also an invocation on the
bank to reclaim all of the pages and nodes ever bought
from that bank.

Banks also provide for measuring and limiting the degree
of storage use. New banks may be created inferior to a
given bank. It is as if the inferior bank bought its material
from its superior. The inferior bank may have its own limits.
Inferior banks may have their own inferior banks, etc.

A domain creator will accept a bank key and build a new
domain out of nodes from that bank. It will return a domain
service key to the new domain. A domain fresh from a do -
main creator has no address segment, meter or domain
keeper. They must be installed by use of the domain service
key. Each domain creator holds a unique key which it in -
stalls in the domain’s brand slot . Another order on a do -
main creator takes a gate key to a domain as a parameter
and returns the domain service key to that domain if the do -
main was one that this creator created (as determined by
the brand).

A factory [10] is an object that initiates a compartment in
which a computation may take place. A compartment is a
collection of objects that collectively hold no unaudited,
non-sensory keys that designate objects outside the com -
partment. Compartments produced under such circum -
stances have measured discreetness . A factory can certify
the degree of discretion of another factory. If one trusts the
(fixed) logic of a factory, one need not trust the logic of the
programs obeyed by domains within the compartment not
to disclose one’s data. Factories allow the construction of
programs which “keep secrets”, and address containment

The Keykos Architecture 5/29/92 7

and mutually suspicious user security problems [11].

A top secret user might have a discreet compartment creat -
ed for him by a factory to house his workspace. His work
will go unobserved by users in other compartments.

Factories can produce segments with keepers that support
the illusion of initially zero segments. Real storage is ac -
quired as pages are read from or stored into for the first
time.

A significant object that has been implemented using sense
keys is the virtual copy segment . Such a segment will pro -
duce, on demand, a source of segment copies whose initial
state is that of the original at the instant of the demand.
Such a copy is modifiable but such modification is insensi -
ble except by the key to the copy. The cost of the copy is
proportional to the number of modified pages in the copy.
Such segments are said to be discreet . Factories can certify
that this source of new segments produces only discreet
segments. The virtual copy functionality is available in
some operating systems and is generally known as “copy
on write”. The segment keeper function of KeyKOS allows
one to implement this function in unprivileged code.

Objects called record collections serve as directories and
indexed files in KeyKOS. Record collections provide the
services other systems achieve by the combination of files
and access methods; for example they are used to provide
UNIX directories, and, on the System/370 the functionality
of IBM VSAM data sets.

A symbolic machine language debugger is in the tradi -
tion of the MIT DDTs. The debugger runs as a domain
keeper and is thus safe from the flailing of a sick program.
The debugger can be connected to any terminal for which
appropriate keys are available. For all but a few basic
KeyKOS system domains this debugger is available with -
out “preplanning” and with no cost until used.

Programming facilities

Knowing a password to a KeyKOS system allows the user
to connect a terminal to some object created for that user.
Commonly this object is a switch that lets the terminal talk
to one of a set of objects.

An individual who programs KeyKOS or understands keys
has a command system (also an object) that holds the key
to his directory . A directory associates names with keys,
and provides a key name space of the immediately execut -
ed commands expressed in the command language. There
are normally a number of command systems and directories
available to a user.

The command system is the only program that has “natu -
ral” access to the directory. If the user wants a program to
run with access to some of his data, the user must invoke
the start key to the domain containing the program, passing
the key to the data. Such a program lacks access to the
user’s directory unless a key to the directory is explicitly
passed.

Keepers can emulate the behavior of operating systems.
Operating systems that have been emulated include
BSD4.3, Minix, VM/CP (S/370), a reduced MVS (S/370),
and EDX (Series/1). These emulations provide binary
compatibility at the application level.

C and PL/I source are expanded (through preprocessor and
runtime library routines) to produce programs for KeyKOS
that explicitly manipulate keys. The compiler is bundled
into an object that reads source programs and creates a fac -
tory which produces objects that obey the compiled pro -
gram. Keys are named symbolically and the program is re -
lieved of the sixteen key limit for held keys.

Since all KeyKOS functionality is packaged with keys, and
the key invocation facility is general, a program can use
any function authorized to it by a key without resorting to

the assembly code necessary in older systems. The
KeyKOS facility provides extensive sharing: all objects
written in a given language share the same library, and ob -
jects from the same factory share the same compiled code.
Data segments may be flexibly shared by programs written
in high level languages.

Transaction processing foundation

KeyTXF, a transaction processing foundation program
product, provides locking, commit/abort, journaling, moni -
toring, and similar function in domains appropriate for the
development and operation of transaction processing appli -
cations.

Operator functions

The KeyKOS microkernel has no built-in operator inter -
face. Such function, such as a tape operator interface, is im -
plemented in domains.

References

[1] Theodore A. Linden, “Operating System Structures
to Support Security and Reliable Software,” NBS
Technical Note 919, U.S. Department of Commerce,
National Bureau of Standards, Institute for Computer
Sciences and Technology, August, 1976. (Also published
in ACM Computing Surveys , 8, 4, December 1976, pages
409-445.).

[2] System/370 Principles of Operation, GA22-7000-9,
IBM, 1983.

[3] Henry M. Levy, Capability Based Computer
Systems, Digital Press, 1984.

[4] OS/VS2 MVS Supervisor Services and Macro
Instructions, GC28-1114-1, IBM, 1983.

[5] Reference Manual for the Ada Programming
Language, United States Department of Defense,
ANSI/MIL-STD-1815A-1983, 1983.

[6] D. M. Ritchie and K.L. Thompson, “The UNIX
Time-sharing System,” Communications of the ACM, July,
1974.

[7] KeyKOS /370 Principles of Operation, KL002, Key
Logic, 1988.

[8] Adele Goldberg and David Robson, Smalltalk–80
The Language and its Implementation., Addison Wesley,
1983.

[9] William A. Wulf, Roy Levin, and Samuel P. Harbison,
Hydra/C.mmp An Experimental Computer System,
McGraw-Hill Book Company, 1981.

[10] U.S. Patent number 4,584,639.

[11] Butler Lampson, “A Note on the Confinement
Problem”, Communications of the ACM , V 16, N 10,
October, 1973.

[12] Virtual Machine/System Product CMS Command
and Macro Reference, SC19-6209-1, IBM, 1983.

[13] Huberman , B. A. et al., The Ecology of
Computation, North Holland, 1988.

[14] Hardy, Norm., “The Confused Deputy”, Operating
System Review, Oct. 1988 vol. 22 #4, pp 36:38

8 The Keykos Architecture 5/29/92

