
Abstract

Currentsystemloggershave two problems:they dependon the integrity of the operatingsystembeinglogged,and
they donotsavesufficient informationto replayandanalyzeattacksthatincludeany non-deterministicevents.ReVirt
removesthe dependency on the target operatingsystemby moving it into a virtual machineandlogging below the
virtual machine.This allows ReVirt to replaythe system’s executionbefore,during,andafter an intrudercompro-
misesthesystem,evenif theintruderreplacesthetargetoperatingsystem.ReVirt logsenoughinformationto replay
a long-termexecutionof thevirtual machineinstruction-by-instruction.This enablesit to provide arbitrarily detailed
observationsaboutwhat transpiredon thesystem,even in thepresenceof non-deterministicattacksandexecutions.
ReVirt addsreasonabletimeandspaceoverhead.Overheadsdueto virtualizationareimperceptiblefor interactiveuse
andCPU-boundworkloads,and13-58%for kernel-intensive workloads.Loggingadds0-8%overhead,andlogging
traffic for our workloads can be stored on a single disk for several months.

1. Introduction

Improving the security of today’s computersys-
temsis anurgentanddifficult problem.Thecomplexity
and rapid rate of changein current software systems
prevents developers from verifying or auditing their
codethoroughlyenoughto eliminatevulnerabilities.As
a result, even the most diligent systemadministrators
have to cope routinely with computerbreak-ins.This
situation is likely to continue for the foreseeable
future—statisticsfrom theCERT CoordinationCenter
show a steadyincreaseover thepast4 yearsin thenum-
ber of incidentshandled,the numberof vulnerabilities
reported, and the number of advisories posted [CER02].

The infeasibility of preventingcomputercompro-
misesmakesit vital to analyzeattacksafter they occur.
Post-attackanalysisis usedto understandan attack,fix
the vulnerability that allowed the compromise,and
repair any damagecausedby the intruder. Most com-
putersystemstry to enablethis typeof analysisby log-
ging various events [Anderson80]. A typical Unix
installationmay recordlogin attempts,mail processing
events, TCP connectionrequests,file system mount
requests,andcommandsissuedby the superuser. Win-
dows 2000canrecordlogin/logoff events,file accesses,
processstart/exit events, security policy changes,and
restart/shutdown events. Unfortunately, the audit logs

provided by currentsystemsfall short in two ways of
what is needed: integrity and completeness.

Currentsystemloggerslack integrity becausethey
assumethe operating system kernel is trustworthy;
hencethey are ineffective against attackers who com-
promisetheoperatingsystem.Oneway currentloggers
trusttheoperatingsystemis by keepingtheir logson the
local file system;this allows attackerswho compromise
the kernel to hide their activities by deletingpast log
records[CER01a].Evenif theexisting log files arekept
safely on anothercomputeror on write-once media,
attackers can forge misleadinglog recordsor prevent
useful log recordsfrom beingsaved after they compro-
mise the operatingsystem.The absenceof useful log
recordsafterthepoint of compromisemakesit very dif-
ficult to assessandfix thedamageincurredin theattack.
It is ironic thatcurrentloggerswork bestwhentheker-
nel is not compromised,sinceaudit logsareintendedto
be used when the system has been compromised!

Villains canattackkernelsin many ways.Theeas-
iest way is to leveragethe capabilitiesthat the kernel
providesto thesuperuseraccount.An attacker who has
gained superuserprivileges can changethe kernel by
writing to thephysicalmemorythrougha specialdevice
(/dev/memon Unix), by insertinga dynamicallyloaded
kernelmodule,or by overwriting thebootsectoror ker-
nel image on disk. If an administratorhas turned off

ReVirt: Enabling Intrusion Analysis through
Virtual-Machine Logging and Replay

George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, Peter M. Chen

Department of Electrical Engineering and Computer Science
University of Michigan

covirt@umich.edu, http://www.eecs.umich.edu/CoVirt

Proceedings of the 2002 Symposium on Operating Systems Design and Implementation (OSDI)



thesecapabilities,an attacker caninsteadexploit a bug
in thekernelitself. Kernelsarelargeandcomplex andso
tendto containmany bugs.In fact,a recentstudyused
anautomatedtool to find over 100securityvulnerabili-
ties in Linux and OpenBSD [Ashcraft02].

Current system loggers also lack completeness
becausethey do not log sufficient informationto recre-
ateor understandall attacks.Typical loggerssaveonly a
few typesof systemevents,and theseeventsareoften
insufficient to determinewith certaintyhow thebreak-in
occurredor what damagewasinflicted after the break-
in. Instead,theadministratoris left to guesswhatmight
have happened,andthis is a painful anduncertaintask.
The attackanalysispublishedby the Honeynet project
typifiesthisuncertaintyby containingnumerousphrases
suchas“may indicatethemethod”,“it seemsreasonable
to assume”,“appearsto”, “lik ely edited”, “presumably
to”, and “not clear what service was used” [Hon00].

More secureinstallationsmay log all inputs into
the system,suchasnetwork activity or keyboardinput.
However, even suchextensive logging doesnot enable
an administratorto re-createattacksthat involve non-
deterministic effects. Many attacks exploit the unin-
tendedconsequencesof non-determinism(e.g. time-of-
check to time-of-use race conditions [Bishop96])—
recent advisories have described non-deterministic
exploits in the Linux kernel, Microsoft Java VM,
FreeBSD,NetBSD,kerberos,ssh,Tripwire, KDE, and
Windows Media Services.Furthermore,the effects of
non-deterministic events tend to propagate, so it
becomesimpossibleto re-createor analyzea largeclass
of eventswithout replayingall earliereventsdeterminis-
tically. Encryptionis a goodexampleof this: encryption
algorithms use non-deterministicevents to generate
entropy when choosing cryptographic keys, and all
futurecommunicationdependson thevalueof thethese
keys. Without logging non-deterministic events,
encryptedcommunicationcanbe decryptedonly if the
attacker forgets to delete the key.

The goal of ReVirt is to solve the two problems
with currentaudit logging. To improve the integrity of
the logger, ReVirt encapsulatesthe target system(both
operating system and applications) inside a virtual
machine,thenplacesthe logging softwarebeneaththis
virtual machine. Running the logger in a different
domainthanthetargetsystemprotectstheloggerfrom a
compromisedapplicationor operatingsystem.ReVirt
continuesto log the actionsof intruderseven if they
replace the target boot block or the target kernel.

To improve thecompletenessof thelogger, ReVirt
adaptstechniquesusedin fault-tolerancefor primary-

backuprecovery [Elnozahy02], suchas checkpointing,
logging, and roll-forward recovery. ReVirt is able to
replay the complete,instruction-by-instructionexecu-
tion of the virtual machine, even if that execution
dependson non-deterministiceventssuchas interrupts
and user input. An administratorcan use this type of
replay to answer arbitrarily detailed questionsabout
what transpired before, during, and after an attack.

2. Virtual machines

A virtual-machinemonitor (VMM) is a layer of
softwarethatemulatesfaithfully thehardwareof a com-
plete computersystem(Figure 1) [Goldberg74]. The
abstractioncreatedby the virtual machinemonitor is
calleda virtual machine.Thehardwareemulatedby the
VMM is very similar (often identical) to the hardware
on which the VMM is running,so the sameoperating
systems and applications that run on the physical
machinecanrun on the virtual machine.The hostplat-
form that the VMM runs on can be anotheroperating
system(thehostoperatingsystem)or thebarehardware.
The operatingsystemrunningin the virtual machineis
calledthe guestoperatingsystemto distinguishit from
thehostoperatingsystemrunningon thebarehardware.
The applicationsrunningon top of the guestoperating
systemarecalledguestapplicationsto distinguishthem
from applicationsrunningon the hostoperatingsystem
(of which theVMM is one).TheVMM runsin a sepa-
ratedomainfrom theguestoperatingsystemandappli-
cations;for example,theVMM mayrun in kernelmode
and the guest software may run in user mode.

Our research group (CoVirt) is interested in
enhancingsecurityby runningthe target operatingsys-
tem and all target servicesinside a virtual machine
(makingthemguestoperatingsystemandapplications),
thenaddingsecurityservicesin the VMM or hostplat-
form [Chen01].

Of course,eventheVMM maybesubjectto secu-
rity breaches.Fortunately, theVMM makesa muchbet-
ter trusted computing base than the guest operating
system,dueto its narrow interfaceandsmall size.The

Figure 1: Virtual-machine structure.

host platform

virtual machine monitor (VMM)

guest operating system

guest
application

guest
application

guest
application



interface provided by the VMM is identical or similar to
the physical hardware (CPU, memory, disks, network
card,monitor, keyboard,mouse),whereasthe interface
provided by a typical operatingsystemis much richer
(processes,virtual memory, files, sockets, GUIs). The
narrow VMM interface restricts the actions of an
attacker. In addition, the simpler abstractionsprovided
by a VMM leadto a codesizethat is several ordersof
magnitudesmallerthana typical operatingsystem,and
this smaller code size makes it easier to verify the
VMM. As wewill see,thenarrow interfaceof theVMM
also makes it easier to log and replay.

Virtual machinescanbe classifiedby how similar
they are to the host hardware. At one extreme, tradi-
tional virtual machines such as IBM’ s VM/370
[Goldberg74] and VMware [Sugerman01]export an
interface that is backward compatible with the host
hardware (the interface is either identical or slightly
extended).Operatingsystemsandapplicationsthatwere
intendedto run on the host platform can run on these
VMMs without change.At theotherextreme,language-
level virtual machineslike theJava VM export an inter-
facethatis completelydifferentfrom thehosthardware.
TheseVMMs canrunonly operatingsystemsandappli-
cations written specifically for them.

Other virtual machinessuch as the VAX VMM
securitykernel [Karger91] fall somewherein the mid-
dle—they exportaninterfacethatis similarbut not iden-
tical to the host hardware [Bellino73]. Thesetypesof
VMMs typically deviate from the hosthardware inter-
facewheninteractingwith peripherals.Virtualizing the
register interface to peripheralscontrollers is difficult
andtime consuming,somany virtual machinesprovide
higher-level methodsto invoke I/O. A guestoperating
systemmustbe portedto run on theseVMMs. Specifi-
cally, thedevice driversin theguestkernelmustusethe
higher-level methodsin the VMM; e.g. a disk device
drivermightusethehostsystemcallsread andwrite
to accessthevirtual harddisk.Thework requiredto port
aguestoperatingsystemto thesetypesof VMMs is sim-
ilar to that done by device manufacturerswho write
drivers for their devices.

3. UMLinux

ReVirt usesa virtual machinecalled UMLinux
[Buchacker01].1 UMLinux falls in the last category of
virtual machines;the VMM in UMLinux exports an
interfacethatis similarbut not identicalto thehosthard-
ware.The versionof UMLinux describedand usedin

this paperis modifiedfrom codedevelopedby research-
ersat theUniversityof Erlangen-Nürnberg. Our version
of theUMLinux VMM usescustomoptimizationsin the
underlyingoperatingsystemto achieveanorderof mag-
nitude speedup over the original UMLinux [King02].

3.1. UMLinux structure and operation

The virtual machinein UMLinux runs as a user
processonthehost.Both theguestoperatingsystemand
all guestapplicationsrun insidethis singlehostprocess
(the virtual-machineprocess).The guestoperatingsys-
tem in UMLinux runson top of the hostoperatingsys-
tem and uses host services (e.g. system calls and
signals)astheinterfaceto peripheraldevices(Figure2).
We call this virtualization strategy OS-on-OS, and we
call the normal structurewheretarget applicationsrun
directly on the host operatingsystemdirect-on-host.
The guestoperatingsystemusedin this paperis Linux
2.4.18, and the host operatingsystem is also Linux
2.4.18.2

The VMM in our versionof UMLinux is imple-
mentedasa loadablemodulein the hostLinux kernel,
plus somehooks in the kernel that invoke our VMM
module.The VMM module is called beforeand after
eachsignalandsystemcall to/from thevirtual-machine
process.

Most instructions executed within the virtual
machineexecute directly on the host CPU. Memory
accessesare translatedby the host’s MMU basedon

1. Note that UMLinux is different from the similarly-named
User-Mode Linux [Dike00].

2. Theguestandhostoperatingsystemscanalsobedifferent.
Weusethesameoperatingsystemfor guestandhostto enable
a moredirectcomparisonbetweenrunningapplicationson the
UMLinux guest and running applications directly on the host.

Figure 2: UMLinux OS-on-OS structure. Our version of
UMLinux is implementedasa loadablekernelmodulein the
hostoperatingsystem.Thedevice andinterruptdriversin the
guestoperatingsystemusehostservicessuchassystemcalls
and signals.

host operating system

VMM kernel module

guest operating system

guest
application

guest
application

guest
application

host hardware



translationsthat are set up via the host operatingsys-
tem’smmap, munmap, andmprotect system calls.

Figure 3 shows the addressspaceof the virtual-
machineprocess.Host memoryprotectionsareusedto
preventguestapplicationsfrom accessingtheguestker-
nel’s address space.

UMLinux provides a software analog to each
peripheraldevice in a normalcomputersystem.Table1
shows themappingfrom eachhostcomponentor event
to its softwareanalogin thevirtual machine.UMLinux
usesa hostfile or raw device to emulatethe harddisk,
CD-ROM, andfloppy. Ourversionof UMLinux usesthe
TUN/TAP virtual Ethernetdevice in Linux to emulate
the network card.UMLinux usesa small X application
on thehostto displayconsoleoutputandreadkeyboard
input; this applicationcommunicateswith theguestker-
nel’s consoledriver via TCP. UMLinux usesno video
card;insteadit displaysgraphicaloutputto a remoteX
server (which would typically be the host’s X server).

UMLinux providesa softwareanalogto the com-
puter’s currentprivilegelevel. TheVMM modulemain-
tains a virtual privilege level, which is set to kernel

whentransferringcontrol to the guestkernel,andis set
to user whentransferringcontrol to a guestapplication.
The VMM module usesthe current virtual privilege
level to distinguishbetweensystemcalls issuedby a
guestapplicationand systemcalls issuedby the guest
kernel.

Systemcalls issuedby a guestapplicationmustbe
redirectedto theguestkernel’s system-calltraphandler.
Whenaguestapplicationexecutesasystem-callinstruc-
tion (int 0x80), the hostCPU trapsto the hostker-
nel’ssystem-callhandler, which thentransferscontrolto
theVMM kernelmodule.If thecurrentvirtual privilege
level is set to kernel, then the VMM knows the guest
kernelmadethe systemcall (typically to accessa host
device or changememorytranslations).In this case,the
VMM checks that this system call is one that a
UMLinux guestkernelis expectedto make, thenpasses
it throughto thehostkernel.If thevirtual privilegelevel
is setto user, thentheVMM knows a guestapplication
madethe systemcall. In this case,the VMM module
notifies the guest kernel by sending it a signal
(SIGUSR1).The VMM modulepassesthe registersat
the time of the trap to theguestkernel’s signalhandler.
The SIGUSR1signalhandlerin the guestkernel is the

Figure 3: UMLinux address space. As with all Linux
processes, the host kernel address space occupies
[0xc0000000,0xffffffff], and the host user addressspace
occupies[0x0, 0xc0000000).The guestkernel occupiesthe
upper portion of the host user space [0x70000000,
0xc0000000),andthe currentguestapplicationoccupiesthe
remainder of the host user space [0x0, 0x70000000).

guest application

0x0

0x6fffffff

0x70000000

0xffffffff

guest operating
system

host operating
system

0xbfffffff

0xc0000000

Table 1: Mapping between host components and
UMLinux equivalents.

Host component or
event

Emulation mecha-
nism in UMLinux

hard disk host raw partition

CD-ROM host /dev/cdrom

floppy disk host /dev/floppy

network card
TUN/TAP virtual
Ethernet device

console
TCP to host
application

video card
none (display to
remote X server)

current privilege level VMM variable

system calls SIGUSR1 signal

timer interrupts
timer + SIGALRM

signal

I/O device interrupts SIGIO signal

memory exception SEGV signal

enable/disable interrupts mask signals



equivalent of the system-calltrap handlerin a normal
operating system.

SIGALRM, SIGIO, and SIGSEGV signals are
usedto emulatethe hardware timer, I/O device inter-
rupts,and memoryexceptions.As with SIGUSR1,the
hostkerneldeliversthesesignalsto theregisteredsignal
handlerin theguestkernel.Thesesignalhandlersarethe
equivalent of the timer-interrupt, I/O-interrupt, and
memoryexceptionhandlersin a normaloperatingsys-
tem.

UMLinux emulatesthe enablinganddisablingof
interrupts by masking signals (using the sigproc-
mask system call).

3.2. Trusted computing base for UMLinux

All the virtualization strategies describedin Sec-
tion 2 dependon the trustworthinessof all layersbelow
theguestoperatingsystem(theVMM andhostplatform
in Figure1). For UMLinux, the trustedcomputingbase
(TCB) is comprisedof theVMM kernelmoduleandthe
host operatingsystem.UMLinux’s TCB is larger than
the TCB for virtual machinesthat run directly on the
hardware, such as IBM’ s VM/370 or VMware’s ESX
Server. UMLinux’s TCB is similar to other virtual
machinesthat cooperatewith a host operatingsystem,
such as VMware Workstation.

A commonquestionis whethera securityservice
that is addedto thehostoperatingsystemin anOS-on-
OSstructureis moreprotectedfrom attackthana secu-
rity servicethat is addedto thehostoperatingsystemin
a direct-on-hoststructure.For example,while the log-
ging in an OS-on-OSstructuredoesnot dependon the
integrity of the guestoperatingsystem,doesn’t it still
depend on the integrity of the host operating system?

Wecontendthattheloggingin anOS-on-OSstruc-
ture is muchmoredifficult to attackthanthe logging in
a direct-on-hoststructure,becausethe TCB for an OS-
on-OSstructurecanbemuchsmallerthanthecomplete
host operatingsystem[Meushaw00]. While both OS-
on-OSanddirect-on-hostdependon the hostoperating
system,the avenuesa villain canuseto attackthe host
differ greatly between the two structures.

Assumefor this comparisonthat the villain has
gainedcontrol over all target applicationsandcansend
arbitrary network packets to the host. A villain can
launchattacksagainst the host operatingsystemfrom
two directions.First, a villain canattackfrom above by
causingapplicationprocessesto invoke thehostoperat-
ing systemin dangerousways.In a direct-on-hoststruc-

ture, the attacker has complete freedom to invoke
whatever functionality thehostoperatingsystemmakes
available to user processes.The attacker can control
multipleapplicationprocesses,accessmultiplefiles,and
issuearbitrarysystemcalls. In an OS-on-OSstructure,
an attacker who has gained control of all application
processescanusethesesameavenuesto attacktheguest
operatingsystem.However, even if the attacker gains
control over the guestoperatingsystem,he/sheis still
severelyrestrictedin theactionshe/shecantake against
thehost operatingsystem.Theguestkernelneedsonly a
small subsetof the functionality available to general-
purposehostprocesses,andthe VMM caneasilydisal-
low functionality outsidethis subset[Goldberg96]. For
example,anattackerwhohasgainedcontroloverall tar-
getapplicationsandtheguestoperatingsystemstill con-
trols only a single host process(the virtual-machine
process),can accessonly a few host files/devices (the
virtual harddisk, the virtual CD-ROM, and the virtual
floppy), and can make only a few system calls.

Second,a villain can attack the low level of the
network protocol stackby sendingdangerousnetwork
packetsto thehost(e.g.ping-of-death).As with attacks
from above, lessof thehostoperatingsystemis exposed
to dangerouspacketswith anOS-on-OSstructurethana
direct-on-host structure. Without virtual machines,
packets traversethrough the entire network stack and
are delivered to applications;villains can thus craft
packets to attackany layer of the network stack.With
virtual machines,packetsneedonly traverseasmallpart
of the network stack.

The portion of the hostoperatingsystemincluded
in UMLinux’s TCB is the hostOS codethat the guest
kernelor incomingpacketscaninvoke (plus theVMM,
which disallows invocationsoutsidethis portion). We
have yet to measurethesizeof this coderigorously, but
earlyindicationssuggestthatthisportionis significantly
smallerthantheentirehostoperatingsystem.For exam-
ple, our VMM restrictsthe guestkernel to use fewer
than 7% of the systemcalls available to generalhost
processes,andnetwork traffic to the virtual machineis
processedmostly by the guestoperatingsystem’s TCP
and UDP stacks(only a small IP-layer packet filter is
used in the host operating system).

The TCB of our current UMLinux prototype,
while smallerthanthe completehostoperatingsystem,
is notyetassmallasit couldbe.Thehostoperatingsys-
tem in our prototyperunsotherprocesseswhich could
beattacked(e.g.theX server),andnetwork messagesto
thesehost processestraverse the entire host network
stack.Our futurework includesmeasuringandreducing



the size of the host operatingsystemusedto support
UMLinux. For example, we could further restrict the
systemcalls issuedby the guestkernelto useonly cer-
tain parametervalues,andwe could move the X server
into another virtual machine.

4. Logging and replaying UMLinux
4.1. Overview

Logging is usedwidely for recovering state.The
basicconceptis straightforward:startfrom acheckpoint
of a prior state,thenroll forwardusingthe log to reach
the desiredstate.The type of systembeing recovered
determinesthe type of information that needsto be
logged: databaselogs contain transactionrecords,file
systemlogs containfile systemdata.Replayinga pro-
cessrequireslogging the non-deterministiceventsthat
affect the process’s computation.These log records
guidetheprocessasit re-executes(rolls forward)from a
checkpoint.Most events are deterministic(e.g. arith-
metic,memory, branchinstructions)anddo not needto
belogged;theprocesswill re-executetheseeventsin the
same way during replay as it did during logging.

Non-deterministiceventsfall into two categories:
timeandexternalinput.Time refersto theexactpoint in
theexecutionstreamat which anevent takesplace.For
example,to replayaninterrupt,we mustlog theinstruc-
tion at which the interrupt occurred. External input
refersto datareceivedfrom a non-loggedentity, suchas
a humanuseror anothercomputer. Externalinput enters
the processorvia a peripheraldevice, such as a key-
board, mouse, or network card.

Note that outputto peripheralsdoesnot affect the
replayingprocessandhenceneednot besaved (in fact,
output to peripherals will be reconstructedduring
replay). Non-determinismin the micro-architectural
state (e.g. cache misses,speculative execution) also
need not be saved, unless it affects the architectural
state. Replaying a shared-memory multiprocessor
requiressaving the fine-grainedinterleaving order of
memory operationsand is outside the scopeof this
paper [LeBlanc87].

4.2. ReVirt

This sectiondescribeshow we apply the general
conceptsof logging to enablereplayof UMLinux run-
ning on x86 processors.ReVirt is implementedasa set
of modifications to the host kernel.

BeforestartingUMLinux, we checkpointthestate
by making a copy of its virtual disk. We currently
require replay to start from a powered-off virtual

machine,so the virtual disk comprisesall statein the
virtual machine.Weenvisioncheckpointingbeinga rare
event (onceevery few days),so copying speedis not
critical.

Log recordsareaddedandsavedto disk in a man-
nersimilar to thatusedby theLinux syslogd daemon.
The VMM kernel module and kernel hooks add log
recordsto a circularbuffer in hostkernelmemory, anda
user-level daemon(rlogd) consumesthe buffer and
writes the data to a log file on the host.

ReVirt must log all non-deterministicevents that
canaffect theexecutionof thevirtual-machineprocess.
Note that many non-deterministichost events do not
needto belogged,becausethey do not affect theexecu-
tion of thevirtual machine.For example,hosthardware
interrupts do not affect the virtual-machine process
unlessthey causethe hostkernel to deliver a signal to
the virtual-machineprocess.Likewise, the scheduling
orderof otherhostprocessesdoesnot affect thevirtual-
machineprocessbecausethereis no interprocesscom-
munication betweenthe virtual-machineprocessand
otherhostprocesses(no sharedfiles, memory, or mes-
sages).

ReVirt doeshave to log asynchronousvirtual inter-
rupts(synchronousexceptionslike SIGSEGVaredeter-
ministic and do not need to be logged). Before
deliveringaSIGALRM or SIGIOhostsignal(represent-
ing virtual timer and I/O interrupts) to the virtual-
machineprocess,ReVirt logs sufficient information to
re-deliver thesignalat thesamepoint during replay. To
uniquelyidentify theinterruptedinstruction,ReVirt logs
the programcounterand the numberof branchesexe-
cutedsincethe last interrupt[Bressoud96].Becausethe
x86 architectureallows a block memory instruction
(repeatstring) to beinterruptedin themiddleof its exe-
cution, we alsomust log the register (ecx) that stores
the numberof iterationsremainingat the time of the
interrupt.

x86 processorsprovide a hardware performance
counterthatcanbeconfiguredto computethenumberof
branchesthat have executed since the last interrupt
[Int01]. The branch_retired configurationof this
performancecounter on the AMD Athlon processor
countsbranches,hardwareinterrupts(e.g.timerandnet-
work interrupts), faults (e.g. page faults, memory
protection faults, FPU faults), and traps (e.g. system
calls).We useanotherhardwareperformancecounterto
count the numberof hardware interruptsand subtract
this from the branch_retired counter. Similarly,
we instrumentthe host kernel to count the numberof
faults and traps and subtract this from the



branch_retired counter. We configure the
branch_retired counter to count only user-level
branches.This makes it easierto count the numberof
branchesprecisely, becauseit keepsthe countindepen-
dent of the codeexecutedin the kernel interrupt han-
dlers.

In addition to logging asynchronousvirtual inter-
rupts,ReVirt mustalsolog all input from externalenti-
ties. These include most virtual devices: keyboard,
mouse,network interface card, real-time clock, CD-
ROM, andfloppy. Note that input from the virtual hard
disk is deterministic,becausethedataonthevirtual hard
disk will be reconstructedand re-readduring replay.
Onecanimaginerequiringtheuserto re-insertthesame
floppy disk or CD-ROM during replay, in which case
reads from the CD-ROM and floppy would also be
deterministicand would not needto be logged.How-
ever, we do not expectdatafrom thesesourcesto be a
significantportionof thelog, becausethesedatasources
are limited in speedby the user’s ability to switch
media.3

The UMLinux guestkernel readsthesetypes of
input data by issuing host systemcalls recv, read,
and gettimeofday. The VMM kernel module logs
theinputdataby interceptingthesesystemcalls.In gen-
eral,ReVirt mustlog any hostsystemcall thatcanyield
non-deterministic results.

The x86 architectureincludesa few instructions
thatcanreturnnon-deterministicresults,but thatdo not
normally trap whenrunningin usermode.Specifically,
the x86 rdtsc (readtimestampcounter)andrdpmc
(readperformancemonitoringcounter)instructionsare
difficult for us to log. To make thevirtual-machinepro-
cesscompletelydeterministicduring replay, we set the
processorcontrol register (CR4) to trap when these
instructionsareexecuted.We remove theguestkernel’s
rdtsc instructionsby replacingthemwith agettim-
eofday host systemcall (and scaling the result); it
would alsobe possibleto leave thesecalls in the guest
kernel, then trap, emulate,and log the rdtsc instruc-
tion. We disallow rdpmc in the guestkernelandguest
applications.

During replay, ReVirt preventsnew asynchronous
virtual interruptsfrom perturbingthe replayingvirtual-
machineprocess.ReVirt plays back the original asyn-
chronousvirtual interruptsusingthe samecombination
of hardware countersand host kernel hooksthat were

usedduringlogging.ReVirt goesthroughtwo phasesto
find theright instructionat which to deliver theoriginal
asynchronousvirtual interrupt.In thefirst phase,ReVirt
configures the branch_retired performance
counterto generatean interruptaftermost(all but 128)
of thebranchesin thatschedulinginterval. In thesecond
phase,ReVirt usesbreakpointsto stopeachtime it exe-
cutesthe target instruction.At eachbreakpoint,ReVirt
comparesthe current number of brancheswith the
desiredamount.The first phaseexecutesat the same
speedastheoriginal run andis thusfasterthanthesec-
ondphase,whichtriggersabreakpointeachtimethetar-
get instructionis executed.Thesecondphaseis needed
to stopat exactly theright instruction,becausetheinter-
rupt generatedby thebranch_retired counterdoes
notstopexecutioninstantaneouslyandmayexecutepast
the target number of branches.

Replay can be conductedon any host with the
sameprocessortypeastheoriginalhost.Replayingona
different host allows an administrator to minimize
downtime for the original host.

4.3. Cooperative logging

Most sourcesof non-determinismgenerateonly a
smallamountof log data.Keyboardandmouseinput is
limited by thespeedof humandataentry. Interruptsare
relatively frequent,but eachinterrupt generatesonly a
few bytesof log data.Of all the sourcesof non-deter-
minism, only received network messageshave the
potential to generate enormous quantities of log data.

We canreducetheamountof loggednetwork data
with a simple observation: one computer’s received
messageis another computer’s sent message.If the
sendingcomputeris being loggedvia ReVirt, then the
receiver need not log the messagedata becausethe
sendercanre-createthe sentdatavia replay. This tech-
nique is usedcommonly in message-loggingrecovery
protocols[Elnozahy02] andcanbeviewedasexpanding
the domainof the replaysystemto includeothercom-
puters.Thus the receiver neednot log datasent from
computersthatcancooperatein the replay;the receiver
needonly log a uniqueidentifier for the message(e.g.
the identity of the sendingcomputerand a sequence
number).

Cooperative logging can reduce the amount of
loggednetwork datadramaticallyin certaincases.For
example, if all computerson a LAN participate,then
only traffic from outsidethe LAN needsto be logged,
thusreducingthe maximumlog growth ratefrom LAN
bandwidths to WAN bandwidths.

3. If theCD-ROM is switchedby anautomatedjukebox,then
the jukeboxcanparticipatein replayandCD-ROM readscan
be considered deterministic.



While cooperatingloggingcanreducelog volume,
it complicatesreplayandrequiresthatcooperatingcom-
puterstrust eachother to regeneratethe samemessage
dataduring replay. We have not yet implementedcoop-
erative logging in ReVirt.

4.4. Alternative architectures for logging
and replay

Weconsideredseveralstrategiesfor building a log-
ging/replay system before settling on the virtual-
machineapproachdescribedabove. In particular, we
startedby implementinga direct-on-hostsystem,where
the host kernel logged and replayedall its host pro-
cesses.As discussedin Section3.2, the direct-on-host
approachis notassecureasavirtual-machineapproach.
We also found it to be much more difficult to log and
replayall hostprocessesthanto log andreplayavirtual-
machine process.Interestingly, the narrow interface
(betweenUMLinux andthe hostkernel) that makesan
OS-on-OSapproachmore securethan a direct-on-host
structure also makes an OS-on-OSsystem easier to
replay.

The generalapproachfor replaying a direct-on-
hostsystemis similar to thatusedin ReVirt: thesystem
must log and replay all non-determinism.The same
types of non-determinismexist for multiple host pro-
cessesas for our virtual-machineapproach(interrupt
timing, external input).

However, it is muchmorechallengingto log and
replaya direct-on-hoststructurethana virtual-machine
process,becausea direct-on-host structure involves
multiple host processeswhile an OS-on-OSapproach
involvesonly a singlehostprocess.(While theschedul-
ing orderbetweenguestprocessesin UMLinux is non-
deterministic,this is an abstractionabove the virtual
machineandis replayeddeterministicallyasa resultof
deterministicsignaldelivery to thevirtual-machinepro-
cess.)

Replayingmultiple hostprocessescanbe donein
two ways,bothof which areproblematic.First, onecan
replaythe communicationchannelsbetweenprocesses,
but replayinga shared-memorycommunicationchannel
requirescomplex instrumentationof theexecutingcode
and adds significant overhead [Netzer94].

Second, one can replay the scheduling order
betweenhost processes[Russinovich96]. This strategy
is difficult becausea host processcan be interrupted
while executingin kernelmode(e.g.while executinga
systemcall). It is hardto identify thepoint in thekernel
whereaninterruptoccurred,yet identifying this point is

critical for replaying the exact schedulingorder. The
hardwareperformancecounterswe usedto identify the
exact interruptpoint in ReVirt do not work well when
theinterruptpoint is in thekernel,becausewe configure
themto countonly user-modeinstructions.Configuring
them to count both user and kernel instructionsalso
leadsto difficulties—thekerneldoesnot executedeter-
ministically, so the instructioncountswould differ dur-
ing replay.

A few solutions are possible, though none is
appealing.First, one could changethe host kernel to
only allow interruptsat a few well-definedpoints and
log which of thesepoints was interrupted.This would
requirewidespreadchangesto the hostkernel.Second,
onecouldtry to replaytheentirehostkernel.Thiswould
requirechangingtheinterrupthandlersto log andreplay
hardwareinterrupts,andadjustingthe hardwareperfor-
mancecountersfor thedifferentcodepathsexecutedby
the interrupt handlers during logging and replay.

In addition to coping with scheduling order
between multiple host processes,a direct-on-host
approachmustcopewith a large numberof non-deter-
ministic interfaces.Therearea large numberof system
calls, including some (e.g. ioctl) that have a very
wide varietyof possibleparameters.Replayinga direct-
on-hostsystemrequiresoneto identify, log, andreplay
non-determinismin eachof thesesystemcalls. In con-
trast,ReVirt only needsto handlethe few systemscalls
used by UMLinux.

4.5. Using ReVirt to analyze attacks

ReVirt enablesanadministratorto replaythecom-
pleteexecutionof a computerbefore,during, andafter
theattack.Two typesof toolscanbebuilt on this foun-
dation to assist the administrator to understandthe
attack.

The first type of tool runs insidethe guestvirtual
machine.ReVirt supportsthe ability to continue live
(i.e. non-replaying)executionat any point in thereplay.
An administratorcan usethis ability to run new guest
commandsto probethevirtual machinestate.For exam-
ple, the administratorcanstopthe replayafter a suspi-
ciouspoint andusenormalguestcommandsto edit the
currentfiles, list the currentprocesses,anddebug pro-
cesses.However, the virtual machine cannot switch
backto replayingafter beingperturbedin this manner,
becausethe instruction counts will not apply to the
revised state.To continuethe replay beyond the per-
turbedpoint, the analystshouldcheckpointthe process
beforeperturbingit or start the replay over and let it
continue to the later point.



Second,tools suchasdebuggersanddisk analyz-
erscan run outsidethe guestvirtual machineandana-
lyze the state of a virtual machine (addressspace,
registers,anddisk data).Theadvantageof theseoff-line
tools is that they do not dependon the guestkernelor
guest applications.For example, an off-line tool can
inspectthe contentsof a directory even if the attacker
hasreplacedthecommandthatnormally lists thedirec-
tory.

A particularly useful tool that runs outside the
guestis onethat re-displaysthe original graphicalout-
put. Recall that UMLinux usesa remoteX server (per-
hapsrunningon the host)as its graphicaldisplay. The
replaying virtual-machineprocessfaithfully recreates
thestreamof network packetsbeingsentto theX server.
However, the X server is not under the control of the
replaysystemandwill likely sendbackdifferentpackets
to the virtual machine (e.g. due to different mouse
movements). The packets being sent to the virtual
machine do not affect replay, becausethe replaying
machinegetsits input packets from the log. However,
the TCP protocol at the X server may expect different
repliesto thepacketsit sendsto thevirtual machineand
may be confusedby the virtual machine’s resentpack-
ets.We addressthis with a simpleX proxy on the host
thatopensa new TCPconnectionto theX server. TheX
proxy’s goal is to act asa new X client that happensto
sendthe samedisplaymessagesto the X server as the
virtual machine did during logging. The X proxy
accomplishesthis by receiving the packets being
(re)sentfrom the replaying virtual machine,stripping
off the Ethernet,IP, andTCP headersfrom thesepack-
ets,reconstitutingtheX window datastream,andsend-
ing the datastreamto the X server. Fortunately, the X
protocolis largelydeterministicanddoesnot requirethe
client to reply to messagessentfrom the X server (the
soleexceptionis the X authenticationprotocol,andthe
X proxy canbe written to navigate throughthis proto-
col).

5. Experiments

This sectionvalidatescorrectnessand quantifies
virtualization and logging overheadfor our modified
UMLinux andtheReVirt loggingandreplaysystem.All
experimentsarerun on a computerwith a AMD Athlon
1800+processor, 256 MB of memory, and a Samsung
SV4084 IDE disk. The guest kernel is Linux 2.4.18
portedto UMLinux, andthehostkernelfor UMLinux is
a modifiedversionof Linux 2.4.18.Thevirtual machine
is configuredto use192MB of “physical” memory. The
virtual harddisk is storedon a raw disk partitionon the
hostto avoid doublebuffering thevirtual diskdatain the

guestand host file caches,and to prevent the virtual
machinefrom benefittingunfairly from the host’s file
cache.

We evaluate our systemon five workloads.All
workloadsstartwith a warm guestfile cache.POV-Ray
is a CPU-intensive ray-tracingprogram.We renderthe
benchmarkimage from the POV-Ray distribution at
quality 8. kernel-build compiles the complete Linux
2.4.18kernel (make clean,make dep,make bzImage).
NFS kernel-build is the sameas kernel-build with the
kernelstoredon anNFSserver. SPECweb99 is a bench-
markthatmeasureswebserver performance;we usethe
2.0.36Apacheweb server. We configuredSPECweb99
with 15 simultaneousconnectionsspreadover two cli-
ents connectedto a 100 Mb/s Ethernetswitch. Both
workloadsexercisethe virtual machineintensively by
makingmany systemcalls.They aresimilar to the I/O-
intensive andkernel-intensive workloadsusedto evalu-
ateCellular Disco [Govil00]. We alsousedReVirt and
UMLinux as the first author’s desktopmachinefor 24
hours to get an idea of the virtualization and logging
overhead for day-to-day use.

Each result representsthe averageof three runs
(exceptfor the daily-usetest,which representsa single
24-hour period). Variance across runs is less than 3%.

5.1. Virtualization overhead

Our first concernis the time overheadthat arises
from running all applicationsin the UMLinux virtual
machine.We comparerunning all applicationswithin
UMLinux with running them directly on a host Linux
2.4.18kernel.The hostandguestfile systemshave the
same versions of all software exercised in the tests
(based on RedHat 6.2).

Table2 shows theresults.UMLinux with our host
optimizationsadds very little overheadfor compute-
intensive applicationssuch as POV-Ray. We also per-
ceive no overheadwhenusingUMLinux for interactive
jobs suchase-mail, editing,word processing,andweb
browsing.

The overheadsfor SPECweb99, kernel-build, and
NFS kernel-build are higher becausethey issuemore
guestkernelcalls,eachof which mustbetrappedby the
VMM kernelmoduleandreflectedbackto theguestker-
nel by sendinga signal. In addition, kernel-build and
NFS kernel-build causea large numberof guestpro-
cessesto becreated,eachof which mapsits executable
pageson demand.Eachdemand-mappedpagecausesa
signal to be deliveredto the guestkernel,which must
then ask the host kernel to map the new page.



We believe the overheadsfor usingUMLinux are
low enoughto be unnoticeablefor normaldesktopuse.
While overheadsarehigher for workloadsthat usethe
guestkernel intensively, we believe that even an over-
headof 58%is not prohibitive for sitesthatvaluesecu-
rity.

For reference,VMwareWorkstation3.1hasa nor-
malizedruntimeof approximately1.25for kernel-build,
UMLinux without our modificationsto the host kernel
hasa normalizedrunningtime of 26, anda recentver-
sion of User-Mode Linux (configured to protect the
guestkernelmemoryfrom guestapplications)hasanor-
malizedruntime of 14. The low overheadof VMware
and its acceptancein productionsettingsindicate that
virtualization can be madefast enoughto enableser-
vices such as ReVirt.

5.2. Validating ReVirt correctness

Our next goalwasto verify that theReVirt system
faithfully replaystheexactexecutionof theoriginal run.
For theseruns,we addextensive errorcheckingto alert
us if the replaying run deviated from the original. At
every systemcall andvirtual interrupt,we log all regis-
ter valuesandthebranch_retired counterandver-
ify that thesevalues are the sameduring replay. In
addition, ReVirt’s mechanismfor replaying interrupts
verifiesthat the branchcountat the interruptedinstruc-
tion matchesthe branchcount seenat that instruction
during logging.

We first run two micro-benchmarksin the virtual
machine to verify that virtual interrupts are being
replayedat the samepoint at which they occurreddur-
ing logging. The first micro-benchmarkrunstwo guest
processesthat sharean mmap’edmemoryregion. Each
guestprocessincrementsa sharedvariable10,000,000
times,prints the resultingvalue, then repeats.Because
thetwo guestprocessessharethisvariable,theoutputof

processA dependson how many iterationsprocessB
executedby the time processA prints the value. The
second microbenchmarkruns a single process that
incrementsa variable in an infinite loop. The process
prints the currentvaluewhen it receivesa signal.This
testverifiesthattheguestkernelre-deliversthesignalat
the same point as during logging.

We ran eachmicro-benchmarks5 times,andeach
time the outputduring replaymatchedthe original out-
put, and all error checks passed.

We next run a macro-benchmarkto verify that
ReVirt faithfully playsbackinput from externalsystems
andto exercisethesystemasawholefor longerperiods.
During the macro-benchmark,we boot the computer,
start the GNOME window manager(displaying on a
remoteX server),openseveral interactive terminalwin-
dows, andconcurrentlybuild two applications(free-
civ andmup) ona remoteNFSserver. Theloggingrun
of this benchmarkgenerates15,000,000systemcalls
and 55,000virtual interrupts.ReVirt replayedthis run
without any deviation from the original run.

For the other testsusedin this paper, we disable
the extra error checking mentionedabove. However,
ReVirt alwayschecksthat thebranchcountat the inter-
ruptedinstructionmatchesthebranchcountseenat that
instructionduring logging, and we have found this to
detect errors effectively while we were developing
ReVirt.

5.3. Logging and replaying overhead

Next we seekto quantify thespaceandtime over-
headof logging.We do not includethe time andspace
overheadto checkpointthe system,sincewe expect a
checkpointto be amortizedover a long periodof time
(e.g. a few days). Table 3 shows the time and space
overheadfor loggingonthePOV-Ray, kernel-build, NFS

Table 2: Virtualization overhead. This table shows the overheadcausedby running applicationsin UMLinux. Runtime is
normalized to the runtime when running directly on the host.

Workload
UMLinux runtime

(normalized to direct-on-host)

POV-Ray 1.01

kernel-build 1.58

NFS kernel-build 1.44

SPECweb99 1.13

daily use ≈ 1



kernel-build, and SPECweb99 workloads. Logs are
stored in a compressed format usinggzip.

Table3 shows that thetime overheadof loggingis
small (at most 8%).

The spaceoverheadof logging is small enoughto
save the logs over a long period of time at low cost.
Workloadswith little non-determinism(e.g. POV-Ray,
kernel-build) generatevery little log traffic. Note that
the log dataneededto replay local compilationstakes
muchlessspacethanthediskdatageneratedin compila-
tion.

The log growth rate for NFS kernel-build and
SPECweb99 is higherbecauseof theneedto log incom-
ing network packets.However, it is still not prohibitive.
For example,a 120GB disk canstorethevolumeof log
traffic generatedby NFS kernel-build for 3-4 months.If
thefile server usedReVirt, usingcooperative loggingat
the client would reducethe log volume generatedby
NFS kernel-build to that ofkernel-build.

We also used ReVirt and UMLinux as the first
author’s desktopmachinefor 24 hoursto getan ideaof
the virtualization and logging overheadfor day-to-day
use4. We experiencedno perceptibletime overheadrela-
tive to runningdirectlyon thehost,andthelog occupied
0.2 GB after one day.

Table 3 shows that workloadstypically replay at
thesamespeedasthey randuringlogging.It is possible
to replay a workload faster (sometimesmuch faster)
than it ran during logging becausereplay skips over
periodsof idle time,suchasthatencounteredduringthe
non-working hours of the daily use workload.

5.4. Analyzing an attack

Finally, we demonstratethe ability of ReVirt to
help analyzea non-deterministicattackthat involves a
kernel-level vulnerability. We re-introducedinto our
guestkerneltheptraceraceconditionthatwaspresentin
Linux kernels before 2.2.19 [CER01b]. A villain
exploits this bug by runninga setuidprocessandattach-
ing to it via ptrace. The vulnerability is non-deter-
ministic becauseit dependson a time-of-checkto time-
of-useracecondition. The attack is successfulonly if
the file is not currently in the file cache,and the file
cachestatedependson theschedulingorderandbehav-
ior of prior processes.

We exercisedthevulnerabilityuntil compromising
thesystem,thenwe addeda trojanhorseto /bin/ls anda
backdoorto /etc/inetd.conf.ReVirt successfullyreplays
the attack and allows us to find out how the attacker
compromisedthe systemand assessall damagedone
after thepoint of compromise.We wereableto stopthe
replayaftereachpoint in theattack,run guestprograms
thatexaminedthesystemstate,anddiagnosethemethod
and effects of the intrusion.

6. Related work

Bressoudand Schneider’s work on hypervisor-
basedfault tolerance[Bressoud96]sharesseveral tech-
niqueswith ReVirt. BressoudandSchneiderusea vir-
tualmachinefor thePA-RISCarchitectureto interposea
softwarelayerbetweenthehardwareandanunchanged
operating system, and they log non-determinismto
reconstructstatechangesfrom a primarycomputeronto
its backup.

While ReVirt shares several mechanismswith
Hypervisor, ReVirt usesthemto achieve a differentand
new goal.Hypervisoris intendedto help toleratefaults

4. This testwasrun usingLinux 2.2.20astheguestoperating
system.

Table 3: Time and space overhead of logging and replay. Loggingslowdown shows theoverheadcausedby logging,relative
to runningUMLinux without logging.Log growth rateshows theaveragerateof growth of thelog duringtheworkload.Replay
runtimeis normalizedto theruntimeof UMLinux with logging.Replayruntimevalueslessthan1 indicatethatreplayranfaster
than logging, due to replay’s ability to skip over periods of idle time.

Workload
Runtime with logging (normalized

to UMLinux without logging)
Log growth

rate
Replay runtime (normalized

to UMLinux with logging)

POV-Ray 1.00 0.04 GB/day 1.01

kernel-build 1.08 0.08 GB/day 1.02

NFS kernel-build 1.07 1.2 GB/day 1.03

SPECweb99 1.04 1.4 GB/day 0.88

daily use ≈ 1 0.2 GB/day 0.03



by mirroring the stateof a primary computeronto a
backup.ReVirt takessomeof the techniquesdeveloped
for fault toleranceandappliesthemto provide a novel
securitytool. Specifically, ReVirt is intendedto replay
the complete,long-term execution of a computer. To
illustrate the differencebetweenthesegoals,compare
theusefulnessof checkpointsfor eachgoal.Recovering
a backupto a prior point in time canbe accomplished
eitherby checkpointingthe primary’s stateperiodically
or by logging the primary’s operations.On the other
hand,checkpointsarenot sufficient for intrusionanaly-
sis becausethey do not show how the systemtransi-
tioned betweencheckpoints;checkpointscan only be
used to initialize the replay procedure.

Besides a difference in goals, Hypervisor and
ReVirt also differ in several designchoices.Because
Hypervisoronly seeksto restorethe backupto the last
saved stateof the primary, it discardslog recordsafter
eachsynchronizationpoint. In contrast,ReVirt enables
replayover longperiods(e.g.months)of thecomputer’s
execution,so it mustsave all log recordssincethe last
checkpoint.Anotherdifferenceis thatHypervisordefers
thedelivery of interruptsuntil theendof a fixednumber
of instructions(calledan epoch),while ReVirt delivers
interruptsassoonasthey occur(or whentheguestker-
nel re-enablesinterrupts).Hypervisor also logs more
information than ReVirt (e.g. Hypervisor logs disk
reads).

Thereareseveral virtual machinesthataresimilar
to UMLinux. User-Mode Linux [Dike00] sharesmany
of the same goals as UMLinux [Buchacker01]. We
choseUMLinux becausethe virtual machineis con-
tained in a single host process,whereasUser-Mode
Linux usesa separatehostprocessfor eachguestappli-
cation process (this speeds up context switching
between guest processes).SimOS’s direct-execution
modeis alsosimilar to thesesystemsbut is targetedat
an architecturethat is easierto virtualize than the x86
[Rosenblum95].

ReVirt sharesa similar philosophy of securitylog-
ging with S4 [Strunk00].Both ReVirt andS4 add log-
ging below the target operatingsystemto protect the
loggingfunctionalityanddatafrom compromisedappli-
cationsandoperatingsystems.ReVirt addsloggingto a
virtual machine,while S4addsit to diskdrives.Thelog-
ging in ReVirt capturesdifferent information than the
logging in S4.ReVirt enablesreplayof the entirecom-
puter’s execution,while S4 logs andreplaysdisk activ-
ity. ReVirt andS4save differentdatato the log (ReVirt
savesnon-deterministicevents,S4savesdisk data),soa

comparisonof log volume generatedwill dependon
workload.

7. Future work

Our near-term work is to make checkpointing
fasterand more convenient.We plan to acceleratethe
disk copy done during checkpointingusing copy-on-
write. We planto enabletheVMM to checkpointa run-
ning virtual machineby saving and reconstructingthe
host-kernel state for the virtual-machine process
[Plank95].

We also plan to build higher-level analysistools
that leverageReVirt’s ability to replay detailed,long-
term executions.Whereascurrent techniquesin com-
puterforensicscanonly analyzetheevidenceleft behind
by carelessintruders,ReVirt allows ananalystto watch
any intrusion in arbitrary detail.

Finally, we plan to useReVirt asa building block
for new securityservices.ReVirt’s ability to recover to
an arbitrary statemay enableus to recover a system
automaticallyandto analyzeor preventkey eventsin an
attack.

8. Conclusions

ReVirt appliesvirtual-machineandfault-tolerance
techniquesto enablea systemadministratorto replay
the long-term,instruction-by-instructionexecutionof a
computersystem.Becausethe target operatingsystem
and target applicationsrun within a virtual machine,
ReVirt canreplaytheexecutionbefore,during,andafter
the intrudercompromisesthesystem.This capabilityis
especiallyusefulfor determiningandfixing thedamage
the intruder inflicted after compromisingthe system.
BecauseReVirt logsall non-deterministicevents,it can
replaynon-deterministicattacksandexecutions,suchas
those that trigger race conditions. Finally, because
ReVirt can replay instruction-by-instructionsequences,
it can provide arbitrarily detailed observations about
what transpired on the system.

ReVirt addsreasonabletime and spaceoverhead.
Theoverheadfor virtualizationrangesfrom impercepti-
ble for interactive and CPU-boundapplicationsto 13-
58% for kernel-intensive applications.The time over-
headof logging rangesfrom 0-8%, and logging traffic
for ourworkloadscanbestoredonasingledisk for sev-
eral months.

9. Acknowledgments

We aregratefulto theresearchersat theUniversity
of Erlangen-Nürnberg for writing UMLinux andsharing



it with us.In particular, KerstinBuchacker andVolkmar
SiehhelpedusunderstandanduseUMLinux. Wewould
alsolike to thankBrian Noble,LandonCox, theanony-
mousreviewers,andour shepherdJayLepreaufor their
helpful feedback.This researchwassupportedin partby
NationalScienceFoundationgrantsCCR-0098229and
CCR-0219085and by Intel Corporation.SamuelKing
wassupportedby a NationalDefenseScienceandEngi-
neering Graduate Fellowship.

10. References
[Anderson80]JamesP. Anderson. Computer Security

Threat Monitoring and Surveillance.
Technicalreport,JamesP.AndersonCo.,
April 1980. Contract 79F296400.

[Ashcraft02] Ken AshcraftandDawsonEngler.Using
Programmer-Written Compiler Exten-
sionstoCatchSecurityHoles.In Proceed-
ings of the 2002 IEEE Symposium on
Security and Privacy, May 2002.

[Bellino73] J.Bellino and C. Hans.Virtual Machine
or Virtual OperatingSystem?In Proceed-
ings of the 1973 ACM Workshop on Virtu-
al Computer Systems, pages 20–29, 1973.

[Bishop96] Matt BishopandMichael Dilger. Check-
ing for RaceConditionsonFile Accesses.
USENIX Computing Systems, 9(2):131–
152, 1996.

[Bressoud96]ThomasC. Bressoud and FredB.
Schneider.Hypervisor-basedfault toler-
ance. ACM Transactions on Computer
Systems, 14(1):80–107, February 1996.

[Buchacker01]Kerstin Buchackerand Volkmar Sieh.
Frameworkfor testingthe fault-tolerance
of systemsincludingOSandnetworkas-
pects.In Proceedings of the 2001 IEEE
Symposium on High Assurance System
Engineering (HASE), pages95–105,Oc-
tober 2001.

[CER01a] CERT/CC Security ImprovementMod-
ules:Analyzeall availableinformationto
characterizean intrusion. Technical re-
port, CERT Coordination Center, May
2001.

[CER01b] Linux kernel containsracecondition via
ptrace/procfs/execve.Technical Report
Vulnerability Note VU#176888, CERT
Coordination Center, March 2001.

[CER02] CERT/CCOverviewIncidentandVulner-
ability Trends. Technical report, CERT
Coordination Center, April 2002.

[Chen01] PeterM. ChenandBrianD. Noble.When
virtual is betterthanreal. In Proceedings
of the 2001 Workshop on Hot Topics in
Operating Systems (HotOS), pages133–
138, May 2001.

[Dike00] Jeff Dike. A user-modeport of theLinux
kernel.In Proceedings of the 2000 Linux
Showcase and Conference, October2000.

[Elnozahy02]E. N. Elnozahy,LorenzoAlvisi, Yi-Min
Wang,andDavidB. Johnson.A surveyof
rollback-recoveryprotocols in message-
passingsystems.ACM Computing Sur-
veys, 34(3):375–408, September 2002.

[Goldberg74]RobertP. Goldberg. Survey of Virtual
MachineResearch.IEEE Computer, pag-
es 34–45, June 1974.

[Goldberg96]IanGoldberg,DavidWagner,RandiTho-
mas,andEric A. Brewer.A SecureEnvi-
ronment for Untrusted Helper
Applications.In Proceedings of the 1996
USENIX Technical Conference, July
1996.

[Govil00] Kinshuk Govil, Dan Teodosiu, Yong-
qiang Huang, and Mendel Rosenblum.
Cellular disco: resourcemanagementus-
ing virtual clusters on shared-memory
multiprocessors.ACM Transactions on
Computer Systems, 18(3):226–262,Au-
gust 2000.

[Hon00] Reporton the Linux HoneypotCompro-
mise.Technicalreport,HoneynetProject,
November 2000. http://project.honey-
net.org/challenge/results/dittrich/evi-
dence.txt.

[Int01] The IA-32 Intel Architecture Software
Developer’sManual, Volume 3: System
ProgrammingGuide.Technicalreport,In-
tel Corporation, 2001.

[Karger91] PaulA. Karger, Mary Ellen Zurko,
DouglisW. Bonin, AndrewH. Mason,
andClifford E. Kahn.A retrospectiveon
the VAX VMM security kernel. IEEE
Transactions on Software Engineering,
17(11), November 1991.

[King02] SamuelT. King. OperatingSystemExten-
sionsto SupportHost-BasedVirtual Ma-
chines. Technical Report CSE-TR-465-
02, University of Michigan, September
2002.

[LeBlanc87] T. J.LeBlancandJ.M. Mellor-Crummey.
DebuggingParallelProgramswith Instant



Replay. IEEE Transactionson Comput-
ers, pages 471–482, April 1987.

[Meushaw00]Robert Meushaw and Donald Simard.
NetTop:CommercialTechnologyin High
Assurance Applications. Tech Trend
Notes:Previewof Tomorrow’s Informa-
tion Technologies, 9(4), September 2000.

[Netzer94] RobertH. B. NetzerandMark H. Weaver.
Optimal TracingandIncrementalReexe-
cutionfor DebuggingLong-RunningPro-
grams. In Proceedings of the 1994
Conferenceon ProgrammingLanguage
DesignandImplementation(PLDI), June
1994.

[Plank95] JamesS. Plank, Micah Beck, and Gerry
Kingsley. Libckpt: TransparentCheck-
pointing under Unix. In Proceedingsof
the Winter 1995 USENIX Conference,
pages 213–224, January 1995.

[Rosenblum95]MendelRosenblum,StephenA. Herrod,
EmmettWitchel,andAnoopGupta.Com-
pletecomputersystemsimulation:theSi-
mOS approach. IEEE Parallel &
Distributed Technology:Systems& Ap-
plications, 3(4):34–43, January 1995.

[Russinovich96]Mark Russinovich and Bryce
Cogswell.Replayfor concurrentnon-de-
terministic shared-memoryapplications.
In Proceedingsof the1996Conferenceon
ProgrammingLanguageDesignand Im-
plementation (PLDI), pages 258–266,
May 1996.

[Strunk00] JohnD. Strunk, GarthR. Goodson,
MichaelL. Scheinholtz, CraigA.N.
Soules,and GregoryR. Ganger.Self-se-
curingstorage:Protectingdatain compro-
mised systems.In Proceedingsof the
2000 Symposiumon Operating Systems
Designand Implementation(OSDI), Oc-
tober 2000.

[Sugerman01]JeremySugerman,GaneshVenkitacha-
lam, and Beng-Hong Lim. Virtualizing
I/O Devices on VMware Workstation’s
HostedVirtual MachineMonitor. In Pro-
ceedingsof the 2001 USENIXTechnical
Conference, June 2001.


