Proceedings of the 2002 Symposium on Operating Systems Design and | mplementation (OSDI)

ReVirt: Enabling Intrusion Analysisthrough
Virtual-M achine L ogging and Replay

Geoge W Dunlap, Samuel.TKing, Sukru CingrMurtaza A. Basrai, Peter M. Chen

Department of Electrical Engineering and Computer Science
University of Michigan
covirt@umich.edu, http://www.eecs.umich.edu/CoVirt

Abstract

Currentsystemloggershave two problems:they dependon the integrity of the operatingsystembeinglogged,and
they do not save sufficientinformationto replayandanalyzeattacksthatincludeary non-deterministi@vents.ReMirt

removesthe dependeng on the target operatingsystemby moving it into a virtual machineandlogging below the
virtual machine.This allows ReMrt to replaythe systems executionbefore,during, and after an intruder compro-
misesthe systemgvenif theintruderreplaceshetamgetoperatingsystem ReMrt logs enoughinformationto replay
along-termexecutionof the virtual machineinstruction-by-instructionThis enablest to provide arbitrarily detailed
obsenationsaboutwhattranspiredon the system,evenin the presencef non-deterministi@attacksand executions.
Re\irt addsreasonabléme andspaceoverheadOverheadslueto virtualizationareimperceptiblefor interactve use
and CPU-boundworkloads,and 13-58%for kernel-intensie workloads.Logging adds0-8% overhead andlogging

traffic for our workloads can be stored on a single disk feesd months.

1. Introduction

Improving the security of today’s computersys-
temsis anurgentanddifficult problem.The compleity
and rapid rate of changein current software systems
prevents developers from verifying or auditing their
codethoroughlyenoughto eliminatevulnerabilities.As
a result, even the most diligent systemadministrators
have to coperoutinely with computerbreak-ins. This
situation is likely to continue for the foreseeable
future—statisticsrom the CERT CoordinationCenter
shav a steadyincreaseover the past4 yearsin thenum-
ber of incidentshandled,the numberof vulnerabilities

reported, and the number of advisories posted [CERO2].

The infeasibility of preventing computercompro-
misesmakesit vital to analyzeattacksafter they occur
Post-attackanalysisis usedto understandan attack,fix
the vulnerability that allowed the compromise,and
repair ary damagecausedby the intruder Most com-
putersystemdry to enablethis type of analysisby log-
ging various events [Anderson80]. A typical Unix
installationmay recordlogin attempts,mail processing
events, TCP connectionrequests,file system mount
requestsand commandsssuedby the superuserWin-
dows 2000canrecordlogin/logoff events,file accesses,
processstart/&it events, security policy changesand
restart/shutden events. Unfortunately the audit logs

provided by currentsystemsfall shortin two ways of
what is needed: inggity and completeness.

Currentsystemloggerslack integrity becausehey
assumethe operating system kernel is trustworthy;
hencethey are ineffective against attaclers who com-
promisethe operatingsystem.Oneway currentloggers
trustthe operatingsystemis by keepingtheirlogsonthe
local file systemithis allows attaclerswho compromise
the kernelto hide their activities by deleting pastlog
recordCERO1a].Evenif theexisting log files arekept
safely on anothercomputeror on write-once media,
attaclers can forge misleadinglog recordsor prevent
sefullog recordsfrom beingsaved afterthey compro-
ise the operatingsystem.The absenceof useful log
recordsafterthe point of compromisemalesit very dif-
ficult to assesandfix thedamagencurredin theattack.
It is ironic thatcurrentloggerswork bestwhenthe ker-
nelis not compromisedsinceauditlogsareintendedto
be used when the system has been compromised!

Villains canattackkernelsin mary ways.The eas-
iest way is to leveragethe capabilitiesthat the kernel
providesto the superuseaccountAn attacler who has
gained superuserprivileges can changethe kernel by
writing to the physicalmemorythrougha specialdevice
(/dev/memon Unix), by insertinga dynamicallyloaded
kernelmodule,or by overwriting the bootsectoror ker-
nel image on disk. If an administratorhas turned off

thesecapabilities,an attacler caninsteadexploit a bug
in thekernelitself. Kernelsarelargeandcomple< andso
tendto containmary bugs.In fact, a recentstudyused
an automatedool to find over 100 securityvulnerabili-
ties in Linux and OpenBSD [Ashcraft02].

Current system loggers also lack completeness
becauseahey do not log sufficient informationto recre-
ateor understandll attacksTypicalloggerssave only a
few typesof systemevents,andtheseeventsare often
insufficient to determinewith certaintyhow the break-in
occurredor what damagewas inflicted after the break-
in. Instead the administratoiis left to guesswhat might
have happenedandthis is a painful anduncertaintask.
The attackanalysispublishedby the Honeynet project
typifiesthis uncertaintyby containingnumerouphrases
suchas“may indicatethemethod”,“it seemgeasonable
to assume”,“appearsto”, “lik ely edited”, “presumably

to”, and “not clear what serviceag used” [Hon00].

More secureinstallationsmay log all inputsinto
the system suchasnetwork activity or keyboardinput.
However, even suchextensve logging doesnot enable
an administratorto re-createattacksthat involve non-
deterministic effects. Many attacks exploit the unin-
tendedconsequencesf non-determinisnie.g.time-of-
check to time-of-use race conditions [Bishop96])—
recent advisories have described non-deterministic
exploits in the Linux kernel, Microsoft Jasza VM,
FreeBSD,NetBSD, kerberos,ssh, Tripwire, KDE, and
Windows Media Services.Furthermore the effects of
non-deterministic events tend to propagte, so it
becomesmpossibleto re-createor analyzealarge class
of eventswithoutreplayingall earliereventsdeterminis-
tically. Encryptionis a goodexampleof this: encryption
algorithms use non-deterministicevents to generate
entropy when choosing cryptographic keys, and all
future communicatiordepend®n the valueof thethese
keys. Without logging non-deterministic events,
encryptedcommunicationcan be decryptedonly if the
attacler forgets to delete thesl

The goal of ReVirt is to solve the two problems
with currentaudit logging. To improve the integrity of
the logger ReMrt encapsulatethe target system(both
operating system and applications) inside a virtual
machine then placesthe logging software beneaththis
virtual machine. Running the logger in a different
domainthanthetargetsystemprotectsheloggerfrom a
compromisedapplicationor operatingsystem.ReMrt
continuesto log the actionsof intruderseven if they
replace the tget boot block or the tget kernel.

To improve the completenessf the logger ReVirt
adaptstechniquesusedin fault-tolerancefor primary-

guest

Jest guest
application

Jest guest
application

application

guest operating system
virtual machine monitor (VMM)

host platform

Figure 1: Virtual-machine structure.

backuprecorery [EInozaly02], suchas checkpointing,
logging, and roll-forward recovery. ReMrt is able to
replay the complete, instruction-by-instructionexecu-
tion of the virtual machine, even if that execution
dependsn non-deterministicventssuchasinterrupts
and userinput. An administratorcan use this type of
replay to answer arbitrarily detailed questionsabout
what transpired before, during, and after an attack.

2. Virtual machines

A virtual-machinemonitor (VMM) is a layer of
softwarethatemulatedaithfully the hardwareof a com-
plete computersystem (Figure 1) [Goldbeig74]. The
abstractioncreatedby the virtual machinemonitor is
calledavirtual machine The hardwareemulatedby the
VMM is very similar (often identical) to the hardware
on which the VMM is running, so the sameoperating
systemsand applications that run on the physical
machinecanrun on the virtual machine.The hostplat-
form thatthe VMM runs on can be anotheroperating
system(the hostoperatingsystem)or thebarehardware.
The operatingsystemrunningin the virtual machineis
calledthe guestoperatingsystemto distinguishit from
thehostoperatingsystenmrunningon the barehardware.
The applicationsrunning on top of the guestoperating
systemarecalledguestapplicationgo distinguishthem
from applicationsrunningon the hostoperatingsystem
(of whichthe VMM is one). The VMM runsin a sepa-
ratedomainfrom the guestoperatingsystemandappli-
cations;for example,the VMM mayrunin kernelmode
and the guest sofeve may run in user mode.

Our researchgroup (CoVirt) is interestedin
enhancingsecurityby runningthe target operatingsys-
tem and all taget servicesinside a virtual machine
(makingthemguestoperatingsystemandapplications),
thenaddingsecurityservicesn the VMM or hostplat-
form [ChenO01].

Of coursegventhe VMM may be subjectto secu-
rity breacheskortunatelythe VMM makesa muchbet-
ter trusted computing base than the guest operating
system,dueto its narrav interfaceand small size. The

interface preided by the VMM is identical or similar to
the physical hardware (CPU, memory disks, network
card, monitor, keyboard,mouse) whereaghe interface
provided by a typical operatingsystemis muchricher
(processesyirtual memory files, soclets, GUIs). The
narrov VMM interface restricts the actions of an
attacler. In addition, the simpler abstractiongrovided
by a VMM leadto a codesizethatis several ordersof
magnitudesmallerthana typical operatingsystem,and
this smaller code size makes it easierto verify the
VMM. Aswewill seethenarrav interfaceof the VMM
also maks it easier to log and replay

Virtual machinescan be classifiedby how similar
they areto the host hardware. At one extreme, tradi-
tional virtual machines such as IBM's VM/370
[Goldbeg74] and VMware [SugermanQ1l1]export an
interface that is backward compatible with the host
hardware (the interface is either identical or slightly
extended) Operatingsystemsandapplicationghatwere
intendedto run on the host platform canrun on these
VMMs without changeAt the otherextreme,language-
level virtual machinedik e the Java VM export aninter-
facethatis completelydifferentfrom thehosthardware.
TheseVMMs canrun only operatingsystemsandappli-
cations written specifically for them.

Other virtual machinessuch as the VAX VMM
security kernel [Karger91]fall somevherein the mid-
dle—they exportaninterfacethatis similar but notiden-
tical to the host hardware [Bellino73]. Thesetypes of
VMMs typically deviate from the hosthardware inter-
facewheninteractingwith peripheralsVirtualizing the
register interface to peripheralscontrollersis difficult
andtime consumingso mary virtual machinegrovide
higherlevel methodsto invoke I/O. A guestoperating
systemmustbe portedto run on theseVMMs. Specifi-
cally, the device driversin the guestkernelmustusethe
higherlevel methodsin the VMM; e.g. a disk device
driver mightusethe hostsystemcallsr ead andwri t e
to accesshevirtual harddisk. Thework requiredto port
aguestoperatingsystento thesetypesof VMMs is sim-
ilar to that done by device manufcturerswho write
drivers for their deices.

3. UMLinux

ReMrt usesa virtual machinecalled UMLinux
[Buchacler01]! UMLinux falls in the last cateyory of
virtual machines;the VMM in UMLinux exports an
interfacethatis similar but notidenticalto the hosthard-
ware. The versionof UMLinux describedand usedin

1. NotethatUMLinux is differentfrom the similarly-named
UserMode Linux [Dike0O].

guest

uest guest
application

Jest guest
application

application

guest operating system
VMM kernel module

host operating system

host hardware

Figure 2: UMLinux OS-on-OS structure. Our version of
UMLinux is implementedasa loadablekernelmodulein the
hostoperatingsystem.The device andinterruptdriversin the
guestoperatingsystemusehostservicessuchassystemcalls
and signals.

this paperis modifiedfrom codedevelopedby research-
ersatthe University of Erlangen-Nurnbey. Our version

of theUMLinux VMM usescustomoptimizationsin the

underlyingoperatingsystemo achieve anorderof mag-

nitude speedupver the original UMLinux [King02].

3.1. UMLinux structure and operation

The virtual machinein UMLinux runs as a user
proces®nthehost.Boththe guestoperatingsystemand
all guestapplicationsrun insidethis singlehostprocess
(the virtual-machineprocess) The guestoperatingsys-
temin UMLinux runson top of the hostoperatingsys-
tem and uses host services (e.g. system calls and
signals)astheinterfaceto peripheraldevices(Figure2).
We call this virtualization stratggy OS-on-OS, and we
call the normal structurewheretarget applicationsrun
directly on the host operating system direct-on-host.
The guestoperatingsystemusedin this paperis Linux
2.4.18, and the host operating systemis also Linux
2.4.18

The VMM in our versionof UMLinux is imple-
mentedas a loadablemodulein the hostLinux kernel,
plus somehooksin the kernel that invoke our VMM
module. The VMM moduleis called before and after
eachsignalandsystemcall to/from the virtual-machine
process.

Most instructions executed within the virtual
machine execute directly on the host CPU. Memory
accesseare translatedby the hosts MMU basedon

2. Theguestandhostoperatingsystemsanalsobe different.
We usethe sameoperatingsystentor guestandhostto enable
amoredirectcomparisorbetweerrunningapplicationson the

UMLinux guest and running applications directly on the host.

Oxffffffff
host operating
system
0xc0000000
Oxbfffffff
guest operating
system
0x70000000
Ox6fffffff
guest application
0x0

Figure 3: UMLinux address space. As with all Linux
processes, the host kernel address space occupies
[0xc0000000, Oxffffffff], and the host user addressspace
occupies[0x0, 0xc0000000).The guestkernel occupiesthe
upper portion of the host user space [0x70000000
0xc0000000)andthe currentguestapplicationoccupiesthe
remainder of the host user space [0x0, 0x70000000).

translationsthat are setup via the host operatingsys-
tem’s mmap, nunmap, andnpr ot ect system calls.

Figure 3 shawvs the addressspaceof the virtual-
machineprocess Host memoryprotectionsare usedto
preventguestapplicationsrom accessinghe guestker-
nel's address space.

UMLinux provides a software analog to each
peripheraldevice in a normalcomputersystem.Table 1
shaws the mappingfrom eachhostcomponenbr event
to its softwareanalogin the virtual machine . UMLinux
usesa hostfile or raw device to emulatethe harddisk,
CD-ROM, andfloppy. Ourversionof UMLinux useghe
TUN/TAP virtual Ethernetdevice in Linux to emulate
the network card.UMLinux usesa small X application
on the hostto displayconsoleoutputandreadkeyboard
input; this applicationcommunicatesvith the guestker-
nel's consoledriver via TCR. UMLinux usesno video
card;insteadit displaysgraphicaloutputto a remoteX
sener (which would typically be the host’X serer).

UMLinux providesa software analogto the com-
puters currentprivilege level. The VMM modulemain-
tains a virtual privilege level, which is setto kernel

Host component or Emulation mecha-

event nism in UMLinux

hard disk host rav partition
CD-ROM host /de/cdrom
floppy disk host /de/floppy

TUN/TAP virtual

network card Ethernet deice

TCP to host
console o
application
video card none (display to

remote X sergr)

VMM variable

SIGUSR1 signal
timer + SIGALRM

current prilege level
system calls

timer interrupts

signal
I/O device interrupts SIGIO signal
memaory &ception SEGV signal

enable/disable interrupts mask signals

Table 1: Mapping between host components and
UMLinux equivalents.

whentransferringcontrol to the guestkernel,andis set
to user whentransferringcontrol to a guestapplication.
The VMM module usesthe current virtual privilege
level to distinguish betweensystemcalls issuedby a
guestapplicationand systemcalls issuedby the guest
kernel.

Systemcallsissuedby a guestapplicationmustbe
redirectedo the guestkernel’s system-caltrap handler
Whenaguestapplicationexecutesa system-callnstruc-
tion (i nt 0x80), the host CPU trapsto the hostker-
nel's system-calhandlerwhichthentransferscontrolto
the VMM kernelmodule.If the currentvirtual privilege
level is setto kernel, thenthe VMM knows the guest
kernelmadethe systemcall (typically to accessa host
device or changememorytranslations)In this case the
VMM checks that this system call is one that a
UMLinux guestkernelis expectedto make, thenpasses
it throughto the hostkernel.If thevirtual privilegelevel
is setto user, thenthe VMM knows a guestapplication
madethe systemcall. In this case,the VMM module
notifies the guest kernel by sending it a signal
(SIGUSR1).The VMM module passedhe registersat
thetime of the trap to the guestkernels signalhandler
The SIGUSR1signalhandlerin the guestkernelis the

equialent of the system-calltrap handlerin a normal
operating system.

SIGALRM, SIGIO, and SIGSEGYV signals are
usedto emulatethe hardware timer, 1/0 device inter-
rupts, and memoryexceptions.As with SIGUSR1,the
hostkerneldeliversthesesignalsto theregisteredsignal
handlerin theguestkernel. Thesesignalhandlersarethe
equivalent of the timerinterrupt, 1/O-interrupt, and
memoryexceptionhandlersin a normal operatingsys-
tem.

UMLinux emulateshe enablingand disabling of
interrupts by masking signals (using the si gpr oc-
mask system call).

3.2. Trusted computing base for UM Linux

All the virtualization strateies describedin Sec-
tion 2 dependon the trustworthinessof all layersbelon
theguestoperatingsystem(the VMM andhostplatform
in Figurel). For UMLIinux, the trustedcomputingbase
(TCB) is comprisedf the VMM kernelmoduleandthe
host operatingsystem.UMLinux’s TCB is larger than
the TCB for virtual machinesthat run directly on the
hardware, suchas IBM’s VM/370 or VMwares ESX
Sener. UMLinux’s TCB is similar to other virtual
machinesthat cooperatewith a host operatingsystem,
such as VMware Workstation.

A commonquestionis whethera securityservice
thatis addedto the hostoperatingsystemin an OS-on-
OS structureis more protectedrom attackthana secu-
rity servicethatis addedto the hostoperatingsystemin
a direct-on-hoststructure.For example,while the log-
ging in an OS-on-OSstructuredoesnot dependon the
integrity of the guestoperatingsystem,doesnt it still
depend on the inggity of the host operating system?

We contenathattheloggingin anOS-on-OSstruc-
tureis muchmoredifficult to attackthanthe loggingin
a direct-on-hosstructure becausahe TCB for an OS-
on-OSstructurecanbe muchsmallerthanthe complete
host operatingsystem[Meushav00]. While both OS-
on-OSanddirect-on-hosdependon the hostoperating
system the avenuesa villain canuseto attackthe host
differ greatly between the tnstructures.

Assumefor this comparisonthat the villain has
gainedcontrol over all target applicationsandcansend
arbitrary network paclets to the host. A villain can
launch attacksagninst the host operatingsystemfrom
two directions.First, a villain canattackfrom above by
causingapplicationprocesse$o invoke the hostoperat-
ing systemin dangerousvays.In a direct-on-hosstruc-

ture, the attacler has complete freedom to invoke

whatever functionality the hostoperatingsystemmalkes
available to user processesThe attacler can control
multiple applicationprocessesiccessnultiple files,and
issuearbitrary systemcalls. In an OS-on-OSstructure,
an attacler who has gained control of all application
processesanusethesesameavenuedo attackthe guest

operatingsystem.However, even if the attacler gains
control over the guestoperatingsystem,he/sheis still

severelyrestrictedin the actionshe/shecantake against
thehost operatingsystemTheguestkernelneedonly a
small subsetof the functionality available to general-
purposehostprocessesandthe VMM caneasilydisal-
low functionality outsidethis subsef{Goldbeg96]. For

example anattacler who hasgainedcontroloverall tar-

getapplicationsandtheguestoperatingsystenstill con-
trols only a single host process(the virtual-machine
process)can accesonly a few hostfiles/devices (the
virtual hard disk, the virtual CD-ROM, andthe virtual

floppy), and can makonly a fev system calls.

Second,a villain can attackthe low level of the
network protocol stackby sendingdangerousetwork
pacletsto the host(e.g. ping-of-death) As with attacks
from above, lessof thehostoperatingsystemis exposed
to dangeroupacletswith anOS-on-OSstructurethana
direct-on-host structure. Without virtual machines,
paclets traversethrough the entire network stackand
are delivered to applications;villains can thus craft
pacletsto attackary layer of the network stack.With
virtual machinespacletsneedonly traversea smallpart
of the netwark stack.

The portion of the hostoperatingsystemincluded
in UMLinux’'s TCB is the host OS codethat the guest
kernelor incomingpacletscaninvoke (plusthe VMM,
which disallovs invocationsoutsidethis portion). We
have yetto measurehe size of this coderigorously but
earlyindicationssuggesthatthis portionis significantly
smallerthanthe entirehostoperatingsystem For exam-
ple, our VMM restrictsthe guestkernel to use fewer
than 7% of the systemcalls available to generalhost
processesand network traffic to the virtual machineis
processednostly by the guestoperatingsystems TCP
and UDP stacks(only a small IP-layer paclet filter is
used in the host operating system).

The TCB of our current UMLinux prototype,
while smallerthanthe completehostoperatingsystem,
is notyetassmallasit couldbe.The hostoperatingsys-
temin our prototyperuns other processesvhich could
beattacled(e.g.the X sener),andnetwork messageto
thesehost processedraverse the entire host network
stack.Our futurework includesmeasuringandreducing

the size of the host operatingsystemusedto support
UMLinux. For example,we could further restrict the
systemcalls issuedby the guestkernelto useonly cer-
tain parametewalues,andwe could move the X sener
into another virtual machine.

4. Logging and replaying UM Linux
4.1. Overview

Logging is usedwidely for recovering state.The
basicconcepts straightforvard: startfrom a checkpoint
of a prior state thenroll forward usingthe log to reach
the desiredstate. The type of systembeing recovered
determinesthe type of information that needsto be
logged: databasdogs contain transactionrecords,file
systemlogs containfile systemdata.Replayinga pro-
cessrequireslogging the non-deterministiceventsthat
affect the process computation. Theselog records
guidetheprocesssit re-executeqrolls forward)from a
checkpoint.Most events are deterministic(e.g. arith-
metic, memory branchinstructions)anddo not needto
belogged;the proceswill re-executetheseeventsin the
same vay during replay as it did during logging.

Non-deterministiceventsfall into two cateyories:
time andexternalinput. Time refersto theexactpointin
the executionstreamat which an eventtakesplace.For
example,to replayaninterrupt,we mustlog theinstruc-
tion at which the interrupt occurred. External input
refersto datareceved from a non-loggedentity, suchas
ahumanuseror anothercomputer Externalinput enters
the processowia a peripheraldevice, such as a key-
board, mouse, or nebsk card.

Note that outputto peripheralsddoesnot affect the
replayingprocessandhenceneednot be saved (in fact,
output to peripheralswill be reconstructedduring
replay). Non-determinismin the micro-architectural
state (e.g. cache misses, speculatie execution) also
neednot be saved, unlessit affects the architectural
state. Replaying a shared-memory multiprocessor
requiressaving the fine-grainedinterlearing order of
memory operationsand is outside the scope of this
paper [LeBlanc87].

4.2. ReVirt

This sectiondescribeshow we apply the general
conceptsof logging to enablereplay of UMLinux run-
ning on x86 processorskReMrt is implementedasa set
of modifications to the hoseknel.

BeforestartingUMLinux, we checkpointhe state
by making a copy of its virtual disk. We currently
require replay to start from a powered-of virtual

machine,so the virtual disk comprisesall statein the
virtual machine We ervision checkpointingoeingarare
event (once every few days), so copying speedis not
critical.

Log recordsareaddedandsavedto diskin a man-
nersimilarto thatusedby theLinux sysl ogd daemon.
The VMM kernel module and kernel hooks add log
recordsto a circularbuffer in hostkernelmemory anda
userlevel daemon(r | ogd) consumeshe buffer and
writes the data to a log file on the host.

ReMrt mustlog all non-deterministiceventsthat
canaffect the executionof the virtual-machineprocess.
Note that mary non-deterministichost events do not
needto be logged,becausehey do not affect the execu-
tion of the virtual machine For example,hosthardware
interrupts do not affect the virtual-machine process
unlessthey causethe hostkernelto deliver a signalto
the virtual-machineprocess.Lik ewise, the scheduling
orderof otherhostprocessesloesnot affect the virtual-
machineprocesshecausedhereis no interprocescom-
munication betweenthe virtual-machine processand
other host processegno sharedfiles, memory or mes-
sages).

ReMrt doeshaveto log asynchronousirtual inter-
rupts(synchronousxceptiondik e SIGSEGVaredeter-
ministic and do not need to be logged). Before
deliveringa SIGALRM or SIGIO hostsignal(represent-
ing virtual timer and I/O interrupts) to the virtual-
machineprocess ReMrt logs sufficient information to
re-deliver the signalat the samepoint during replay To
uniquelyidentify theinterruptednstruction,ReMrt logs
the programcounterand the numberof branchesexe-
cutedsincethelastinterrupt[Bressoud96]Becausghe
x86 architectureallows a block memory instruction
(repeatstring) to beinterruptedin the middle of its exe-
cution, we also mustlog the register (ecx) that stores
the numberof iterationsremainingat the time of the
interrupt.

x86 processorgrovide a hardware performance
counterthatcanbeconfiguredo computethe numberof
branchesthat have executed since the last interrupt
[Int01]. The branch_retired configurationof this
performancecounter on the AMD Athlon processor
countsbrancheshardwareinterrupts(e.g.timerandnet-
work interrupts), faults (e.g. page faults, memory
protection faults, FPU faults), and traps (e.g. system
calls). We useanothethardwareperformancecounterto
count the numberof hardware interruptsand subtract
this from the branch_reti red counter Similarly,
we instrumentthe hostkernelto count the numberof
faults and traps and subtract this from the

branch_retired counter We configure the
branch_retired counterto count only userlevel
branchesThis makesit easierto countthe numberof
branchegrecisely becausat keepsthe countindepen-
dent of the code executedin the kernelinterrupt han-
dlers.

In additionto logging asynchronousirtual inter-
rupts,ReMirt mustalsolog all input from external enti-
ties. These include most virtual devices: keyboard,
mouse, network interface card, real-time clock, CD-
ROM, andfloppy. Note thatinput from the virtual hard
diskis deterministicbecaus¢hedataonthevirtual hard
disk will be reconstructedand re-readduring replay
Onecanimaginerequiringthe userto re-insertthe same
floppy disk or CD-ROM during replay in which case
readsfrom the CD-ROM and floppy would also be
deterministicand would not needto be logged. How-
ever, we do not expectdatafrom thesesourceso be a
significantportionof thelog, becausé¢hesedatasources
are limited in speedby the users ability to switch
media’

The UMLinux guestkernel readsthesetypes of
input data by issuing host systemcalls r ecv, r ead,
andget ti neof day. The VMM kernel module logs
theinputdataby interceptinghesesystemcalls.In gen-
eral,ReMrt mustlog any hostsystemcall thatcanyield
non-deterministic results.

The x86 architectureincludesa few instructions
thatcanreturnnon-deterministigesults,but thatdo not
normally trap whenrunningin usermode.Specifically
the x86 r dt sc (readtimestampcounter)andr dpnt
(readperformancemonitoring counter)instructionsare
difficult for usto log. To make the virtual-machinepro-
cesscompletelydeterministicduring replay we setthe
processorcontrol register (CR4) to trap when these
instructionsare executed We remove the guestkernels
r dt sc instructionsby replacingthemwith agetti m
eof day host systemcall (and scaling the result); it
would alsobe possibleto leave thesecalls in the guest
kernel,thentrap, emulate,andlog ther dt sc instruc-
tion. We disallow r dpnt in the guestkerneland guest
applications.

During replay ReMrt preventsnew asynchronous
virtual interruptsfrom perturbingthe replayingvirtual-
machineprocessReMrt plays backthe original asyn-
chronousvirtual interruptsusingthe samecombination
of hardware countersand host kernel hooksthat were

3. If the CD-ROM is switchedby anautomatequkebox,then
the jukeboxcanparticipatein replayand CD-ROM readscan
be considered deterministic.

usedduringlogging.ReMrt goesthroughtwo phasego
find the right instructionat which to deliver the original
asynchronousirtual interrupt.In thefirst phase ReMrt
configures the branch_retired performance
counterto generatean interruptafter most(all but 128)
of thebranchegn thatschedulingnterval. In thesecond
phaseReMVirt usesbreakpointdo stopeachtime it exe-
cutesthe tagetinstruction. At eachbreakpoint,ReMrt
comparesthe current number of brancheswith the
desiredamount. The first phaseexecutesat the same
speedasthe original run andis thusfasterthanthe sec-
ondphasewhichtriggersabreakpoineachtime thetar-
getinstructionis executed.The secondohaseis needed
to stopat exactly theright instruction,becauseheinter-
ruptgeneratedby thebr anch_r et i r ed counterdoes
not stopexecutioninstantaneouslgndmay executepast
the taget number of branches.

Replay can be conductedon ary host with the
sameprocessotypeastheoriginal host.Replayingon a
different host allows an administratorto minimize
downtime for the original host.

4.3. Cooper ative logging

Most sourcesof non-determinisngenerateonly a
smallamountof log data.Keyboardand mouseinputis
limited by the speedof humandataentry. Interruptsare
relatively frequent,but eachinterrupt generatesonly a
few bytesof log data.Of all the sourcesof non-deter-
minism, only receved network messageshave the
potential to generate enormous quantities of log data.

We canreducethe amountof loggednetwork data
with a simple obsenation: one computers receved
messageis another computers sent messagelf the
sendingcomputeris beingloggedvia ReMrt, thenthe
recever need not log the messagedata becausethe
sendercanre-createthe sentdatavia replay This tech-
nique is usedcommonlyin message-loggingecovery
protocols[Elnozaty02] andcanbeviewed asexpanding
the domainof the replay systemto include othercom-
puters.Thus the recever neednot log datasentfrom
computerghatcancooperatéan thereplay;therecever
needonly log a uniqueidentifier for the messagde.g.
the identity of the sendingcomputerand a sequence
number).

Cooperatie logging can reduce the amount of
loggednetwork datadramaticallyin certaincasesFor
example,if all computerson a LAN participate,then
only traffic from outsidethe LAN needsto be logged,
thusreducingthe maximumlog growth ratefrom LAN
bandwidths to WWN bandwidths.

While cooperatindogging canreducelog volume,
it complicateseplayandrequireshatcooperatingzom-
puterstrust eachotherto regeneratehe samemessage
dataduringreplay We have not yetimplementedcoop-
eratve logging in ReVt.

4.4. Alternative architecturesfor logging
and replay

We consideredereralstratgjiesfor building alog-
ging/replay system before settling on the virtual-
machine approachdescribedabove. In particular we
startedby implementinga direct-on-hossystemwhere
the host kernel logged and replayedall its host pro-
cessesAs discussedn Section3.2, the direct-on-host
approachs notassecureasa virtual-machineapproach.
We alsofound it to be much more difficult to log and
replayall hostprocessethanto log andreplaya virtual-
machine process. Interestingly the narrav interface
(betweenUMLinux andthe hostkernel)that makesan
OS-on-OSapproachmore securethan a direct-on-host
structure also makes an OS-on-OSsystem easierto
replay

The generalapproachfor replaying a direct-on-
hostsystemis similar to thatusedin ReMrt: the system
must log and replay all non-determinism.The same
types of non-determinismexist for multiple host pro-
cessesas for our virtual-machineapproach(interrupt
timing, external input).

However, it is much more challengingto log and
replaya direct-on-hosstructurethana virtual-machine
process,becausea direct-on-hoststructure involves
multiple host processesvhile an OS-on-OSapproach
involvesonly a singlehostprocess(While the schedul-
ing orderbetweenguestprocessein UMLinux is non-
deterministic,this is an abstractionabove the virtual
machineandis replayeddeterministicallyasa resultof
deterministicsignaldelivery to the virtual-machinepro-
cess.)

Replayingmultiple hostprocesseganbe donein
two ways,both of which areproblematic First, onecan
replaythe communicationchannelsdbetweenprocesses,
but replayinga shared-memorgommunicatiorchannel
requirescomple instrumentatiorof the executingcode
and adds significantverhead [Netzer94].

Second, one can replay the scheduling order
betweenhost processe$Russinwich96]. This stratgy
is difficult becausea host processcan be interrupted
while executingin kernelmode (e.g.while executinga
systemcall). It is hardto identify the pointin the kernel
whereaninterruptoccurred yetidentifying this pointis

critical for replayingthe exact schedulingorder The
hardware performancecounterswe usedto identify the
exact interrupt point in ReMrt do not work well when
theinterruptpointis in thekernel,becauseave configure
themto countonly usermodeinstructions.Configuring
them to count both user and kernel instructionsalso
leadsto difficulties—thekerneldoesnot executedeter-
ministically, sothe instructioncountswould differ dur-
ing replay

A few solutions are possible, though none is
appealing.First, one could changethe host kernel to
only allow interruptsat a few well-definedpoints and
log which of thesepoints was interrupted.This would
requirewidespreacchangego the hostkernel. Second,
onecouldtry to replaythe entirehostkernel. Thiswould
requirechangingtheinterrupthandlergo log andreplay
hardware interrupts,and adjustingthe hardware perfor-
mancecountergfor the differentcodepathsexecutedby
the interrupt handlers during logging and replay

In addition to coping with scheduling order
between multiple host processes,a direct-on-host
approachmustcopewith a large numberof non-deter-
ministic interfaces.Therearea large numberof system
calls, including some (e.g. i oct|) that have a very
wide variety of possibleparametersReplayinga direct-
on-hostsystemrequiresoneto identify, log, andreplay
non-determinisnin eachof thesesystemcalls. In con-
trast,ReMrt only needsto handlethe few systemscalls
used by UMLinux.

4.5. Using ReVirt to analyze attacks

ReMrt enablesanadministratotto replaythe com-
plete executionof a computerbefore,during, and after
the attack.Two typesof tools canbe built on this foun-
dation to assistthe administratorto understandthe
attack.

The first type of tool runsinside the guestvirtual
machine.ReMrt supportsthe ability to continuelive
(i.e. non-replaying)executionat ary pointin thereplay
An administratorcan usethis ability to run new guest
commandso probethevirtual machinestate.For exam-
ple, the administratorcan stop the replay after a suspi-
ciouspoint andusenormalguestcommandgo edit the
currentfiles, list the currentprocessesand dehug pro-
cesses.However, the virtual machine cannot switch
backto replayingafter being perturbedin this manney
becausethe instruction counts will not apply to the
revised state.To continuethe replay beyond the per-
turbedpoint, the analystshouldcheckpointthe process
before perturbingit or startthe replay over and let it
continue to the later point.

Secondools suchasdeluggersand disk analyz-
ers canrun outsidethe guestvirtual machineand ana-
lyze the state of a virtual machine (addressspace,
registers,anddisk data). The advantageof theseoff-line
tools is that they do not dependon the guestkernelor
guestapplications.For example, an off-line tool can
inspectthe contentsof a directory even if the attacler
hasreplacedhe commandhat normallylists the direc-
tory.

A particularly useful tool that runs outside the
guestis onethat re-displaysthe original graphicalout-
put. Recallthat UMLinux usesa remoteX sener (per-
hapsrunningon the host) asits graphicaldisplay The
replaying virtual-machine processfaithfully recreates
thestreamof network pacletsbeingsentto the X sener.
However, the X sener is not underthe control of the
replaysystemandwill likely sendbackdifferentpaclets
to the virtual machine (e.g. due to different mouse
movements). The paclets being sent to the virtual
machine do not affect replay becausethe replaying
machinegetsits input paclets from the log. However,
the TCP protocol at the X sener may expect different
repliesto the pacletsit sendgo thevirtual machineand
may be confusedby the virtual machines resentpack-
ets.We addresghis with a simple X proxy on the host
thatopensanew TCP connectiorto the X sener. The X
proxy’s goalis to actasa new X client thathappengo
sendthe samedisplay message$o the X sener asthe
virtual machine did during logging. The X proxy
accomplishesthis by receving the paclets being
(re)sentfrom the replaying virtual machine,stripping
off the Ethernet,|P, and TCP headerdrom thesepack-
ets,reconstitutinghe X window datastreamandsend-
ing the datastreamto the X sener. Fortunately the X
protocolis largely deterministicanddoesnotrequirethe
client to reply to messagesentfrom the X sener (the
sole exceptionis the X authenticatiorprotocol,andthe
X proxy canbe written to navigate throughthis proto-
col).

5. Experiments

This section validatescorrectnessand quantifies
virtualization and logging overheadfor our modified
UMLinux andthe ReMrt loggingandreplaysystemAll
experimentsarerun on a computemwith a AMD Athlon
1800+ processqr256 MB of memory and a Samsung
SV4084 IDE disk. The guestkernel is Linux 2.4.18
portedto UMLinux, andthe hostkernelfor UMLInux is
amodifiedversionof Linux 2.4.18.Thevirtual machine
is configuredto use192MB of “physical” memory The
virtual harddisk is storedon araw disk partitionon the
hostto avoid doublebuffering thevirtual disk datain the

guestand host file caches,and to prevent the virtual
machinefrom benefittingunfairly from the hosts file
cache.

We evaluate our systemon five workloads. All
workloadsstartwith a warm guestfile cache POV-Ray
is a CPU-intenste ray-tracingprogram.We renderthe
benchmarkimage from the POV-Ray distribution at
quality 8. kernel-build compiles the complete Linux
2.4.18kernel (make clean,make dep, make bzimage).
NFS kernel-build is the sameas kernel-build with the
kernelstoredon anNFSsener. SPECweb99 is a bench-
markthatmeasuresvebsener performancewe usethe
2.0.36 Apacheweb sener. We configuredSPECweb99
with 15 simultaneousonnectionsspreadover two cli-
ents connectedto a 100 Mb/s Ethernetswitch. Both
workloadsexercisethe virtual machineintensvely by
making mary systemcalls. They aresimilar to the I/O-
intensve andkernel-intensie workloadsusedto evalu-
ate Cellular Disco [Govil00]. We alsousedReMrt and
UMLinux asthe first authors desktopmachinefor 24
hoursto get an idea of the virtualization and logging
overhead for day-to-day use.

Each result representghe averageof threeruns
(exceptfor the daily-usetest,which represents single
24-hour period). ¥riance across runs is less than 3%.

5.1. Virtualization over head

Our first concernis the time overheadthat arises
from running all applicationsin the UMLinux virtual
machine.We comparerunning all applicationswithin
UMLinux with running them directly on a host Linux
2.4.18kernel. The hostand guestfile systemshave the
same versions of all software exercisedin the tests
(based on RedHat 6.2).

Table 2 shavs the results.UMLinux with our host
optimizationsadds very little overheadfor compute-
intensive applicationssuch as POV-Ray. We also per-
ceive no overheadwhenusingUMLinux for interactve
jobs suchase-mail, editing, word processingandweb
browsing.

The overheaddor SPECweb99, kernel-build, and
NFS kernel-build are higher becausethey issue more
guestkernelcalls,eachof which mustbetrappedby the
VMM kernelmoduleandreflectedbackto theguestker-
nel by sendinga signal. In addition, kernel-build and
NFS kernel-build causea large numberof guestpro-
cessedo be created eachof which mapsits executable
pageson demand Eachdemand-mappedagecauses
signalto be deliveredto the guestkernel, which must
then ask the hoseknel to map the mepage.

Workload UM Linux r_untime
(normalized to direct-on-host)
POV-Ray 1.01
kernel-hild 1.58
NFS kernel-tuild 1.44
SPECweb99 1.13
daily use =1

Table 2: Virtualization overhead. This table showvs the overheadcausedby running applicationsin UMLinux. Runtimeis
normalized to the runtime when running directly on the host.

We believe the overheaddor usingUMLinux are
low enoughto be unnoticeabldor normaldesktopuse.
While overheadsare higher for workloadsthat usethe
guestkernelintensiely, we believe that even an over-
headof 58% s not prohibitive for sitesthatvaluesecu-

rity.

For referenceYMw areWorkstation3.1 hasa nor-
malizedruntimeof approximatelyl.25for kernel-build,
UMLinux without our modificationsto the hostkernel
hasa normalizedrunningtime of 26, anda recentver-
sion of UserMode Linux (configuredto protect the
guestkernelmemoryfrom guestapplicationshasanor-
malizedruntime of 14. The low overheadof VMware
and its acceptancen productionsettingsindicate that
virtualization can be madefast enoughto enableser-
vices such as Re.

5.2. Validating ReVirt correctness

Our next goalwasto verify thatthe ReMrt system
faithfully replaysthe exactexecutionof the original run.
For theseruns,we addextensve error checkingto alert
us if the replayingrun deviated from the original. At
every systemcall andvirtual interrupt,we log all regis-
tervaluesandthebr anch_reti r ed counterandver-
ify that thesevalues are the same during replay In
addition, ReMrt’'s mechanismfor replaying interrupts
verifiesthatthe branchcountat the interruptedinstruc-
tion matchesthe branchcount seenat that instruction
during logging.

We first run two micro-benchmarksén the virtual
machine to verify that virtual interrupts are being
replayedat the samepoint at which they occurreddur-
ing logging. The first micro-benchmarkunstwo guest
processeshat sharean mmap’edmemoryregion. Each
guestprocessincrementsa sharedvariable 10,000,000
times, prints the resultingvalue, thenrepeatsBecause
thetwo guestprocessesharethis variable the outputof

processA dependson how mary iterationsprocessB

executedby the time processA prints the value. The
second microbenchmarkruns a single processthat
incrementsa variablein an infinite loop. The process
prints the currentvalue whenit receives a signal. This

testverifiesthatthe guestkernelre-deliversthe signalat

the same point as during logging.

We ran eachmicro-benchmark$ times,andeach
time the outputduring replay matchedthe original out-
put, and all error checks passed.

We next run a macro-benchmarko verify that
ReMrt faithfully playsbackinputfrom externalsystems
andto exercisethe systemasawholefor longerperiods.
During the macro-benchmarkwe boot the computey
start the GNOME windonv manager(displaying on a
remoteX sener), openseveralinteractve terminalwin-
dows, and concurrentlybuild two applications(f r ee-
ci v andrmup) onaremoteNFSsener. Theloggingrun
of this benchmarkgeneratesl5,000,000systemcalls
and 55,000virtual interrupts.ReMrt replayedthis run
without ary deviation from the original run.

For the othertestsusedin this paper we disable
the extra error checking mentionedabove. However,
ReMrt alwayschecksthatthe branchcountat the inter-
ruptedinstructionmatcheghe branchcountseenat that
instruction during logging, and we have found this to
detect errors effectively while we were developing
ReMrt.

5.3. Logging and replaying over head

Next we seekto quantify the spaceandtime over-
headof logging. We do not include the time and space
overheadto checkpointthe system,since we expecta
checkpointto be amortizedover a long period of time
(e.g. a few days). Table 3 shaws the time and space
overheador loggingon the POV-Ray, kernel-build, NFS

Workload Runtimew_ith Iogging (nor m_alized Log growth | Replay rqntime_(normglized
to UMLinux without logging) rate to UMLinux with logging)
POV-Ray 1.00 0.04 GB/day 1.01
kernel-huild 1.08 0.08 GB/day 1.02
NFS kernel-tuild 1.07 1.2 GB/day 1.03
SPECweb99 1.04 1.4 GB/day 0.88
daily use =1 0.2 GB/day 0.03

Table 3: Time and space over head of logging and replay. Logging slovdown shavs the overheadcauseddy logging, relative
to runningUMLinux withoutlogging. Log growth rateshavs the averagerate of growth of thelog duringtheworkload.Replay
runtimeis normalizedto the runtimeof UMLinux with logging. Replayruntimevalueslessthanl indicatethatreplayranfaster
than logging, due to replag/ability to skip @er periods of idle time.

kernel-build, and SPECweb99 workloads. Logs are
stored in a compressed format usym p.

Table3 shaws thatthe time overheadof loggingis
small (at most 8%).

The spaceoverheadof logging is small enoughto
save the logs over a long period of time at low cost.
Workloadswith little non-determinism(e.g. POV-Ray,
kernel-build) generatevery little log traffic. Note that
the log dataneededto replay local compilationstakes
muchlessspacehanthedisk datagenerated compila-
tion.

The log growth rate for NFS kernel-build and
SPECweb99 is higherbecausef theneedto log incom-
ing network paclets.However, it is still not prohibitive.
For example,a 120 GB disk canstorethe volumeof log
traffic generatedy NFS kernel-build for 3-4 months.If
thefile senerusedReMrt, usingcooperatie logging at
the client would reducethe log volume generatedoy
NFSkernel-build to that ofkernel-build.

We also used ReVirt and UMLinux as the first
authors desktopmachinefor 24 hoursto getanideaof
the virtualization and logging overheadfor day-to-day
usé. We experiencedo perceptibldime overheadela-
tive to runningdirectly onthe host,andthelog occupied
0.2 GB after one day

Table 3 shows that workloadstypically replay at
thesamespeedasthey randuringlogging.lt is possible
to replay a workload faster (sometimesmuch faster)
than it ran during logging becausereplay skips over
periodsof idle time, suchasthatencounterediuringthe
non-working hours of the daily useaskload.

4. Thistestwasrun usingLinux 2.2.20asthe guestoperating
system.

5.4. Analyzing an attack

Finally, we demonstratehe ability of ReMrt to
help analyzea non-deterministiattackthat involves a
kernel-level vulnerability We re-introducedinto our
guestkernelthe ptraceraceconditionthatwaspresenin
Linux kernels before 2.2.19 [CERO01b]. A villain
exploits this bug by runninga setuidprocessandattach-
ing to it via pt r ace. The vulnerability is non-deter-
ministic becauset depend®n atime-of-checkto time-
of-use race condition. The attackis successfubnly if
the file is not currently in the file cache,and the file
cachestatedependn the schedulingorderandbeha-
ior of prior processes.

We exercisedthe vulnerability until compromising
the systemthenwe addedatrojanhorseto /bin/ls anda
backdoorto /etc/inetd.confReMrt successfullyreplays
the attack and allows us to find out how the attacler
compromisedthe systemand assessall damagedone
afterthe point of compromiseWe wereableto stopthe
replayaftereachpointin the attack,run guestprograms
thatexaminedthe systemstate anddiagnosehemethod
and efects of the intrusion.

6. Related work

Bressoudand Schneidess work on hypervisor
basedfault tolerance[Bressoud96haresseveral tech-
nigueswith ReMrt. Bressoudand Schneiderusea vir-
tual machinegfor the PA-RISC architecturdo interposea
softwarelayer betweenthe hardwareandan unchanged
operating system, and they log non-determinismto
reconstrucstatechangedrom a primary computeronto
its backup.

While ReMrt sharesseveral mechanismswith
Hypervisor ReMirt usesthemto achieve a differentand
new goal. Hypervisoris intendedto help toleratefaults

by mirroring the state of a primary computeronto a
backup.ReMrt takessomeof the techniquesieveloped
for fault toleranceand appliesthemto provide a novel
securitytool. Specifically ReMrt is intendedto replay
the complete,long-term execution of a computer To
illustrate the differencebetweenthesegoals, compare
the usefulnes®f checkpointdor eachgoal. Recorering
a backupto a prior point in time canbe accomplished
eitherby checkpointingthe primary’s stateperiodically
or by logging the primary’s operations.On the other
hand,checkpointsare not sufiicient for intrusionanaly-
sis becausethey do not shav how the systemtransi-
tioned betweencheckpoints;checkpointscan only be
used to initialize the replay procedure.

Besides a difference in goals, Hypervisor and
Re\irt also differ in several designchoices.Because
Hypervisoronly seeksto restorethe backupto the last
saved stateof the primary; it discardslog recordsafter
eachsynchronizatiorpoint. In contrast,ReMrt enables
replayoverlong periods(e.g.months)of thecomputers
execution,so it mustsave all log recordssincethe last
checkpointAnotherdifferenceis thatHypervisordefers
thedelivery of interruptsuntil theendof afixednumber
of instructions(called an epoch),while ReMrt delivers
interruptsassoonasthey occur(or whenthe guestker-
nel re-enablesinterrupts). Hypervisor also logs more
information than ReMirt (e.g. Hypervisor logs disk
reads).

Thereareseveral virtual machineghatare similar
to UMLinux. UserMode Linux [Dike00] sharesmary
of the same goals as UMLinux [Buchacler01]. We
choseUMLinux becausethe virtual machineis con-
tained in a single host process,whereasUserMode
Linux usesa separatéostprocesdor eachguestappli-
cation process (this speeds up contet switching
between guest processes).SimOSs direct-eecution
modeis alsosimilar to thesesystemsbut is targetedat
an architecturethat is easierto virtualize thanthe x86
[Rosenblum9s].

Re\irt sharesa similar philosoply of securitylog-
ging with S4 [Strunk00]. Both ReMirt and S4 add log-
ging belov the target operatingsystemto protectthe
loggingfunctionalityanddatafrom compromisedppli-
cationsandoperatingsystemsReMrt addsloggingto a
virtual machinewhile S4addsit to disk drives.Thelog-
ging in ReVirt capturesdifferent information than the
loggingin S4.ReMrt enableseplay of the entirecom-
puters execution,while S4logs andreplaysdisk activ-
ity. ReMrt and S4 save differentdatato thelog (ReMirt
savesnon-deterministievents,S4 savesdisk data),soa

comparisonof log volume generatedwill dependon
workload.

7. Futurework

Our nearterm work is to make checkpointing
fasterand more corvenient. We plan to acceleratehe
disk copy done during checkpointingusing copy-on-
write. We planto enablethe VMM to checkpointa run-
ning virtual machineby savzing and reconstructinghe
host-lernel state for the virtual-machine process
[Plank95].

We also plan to build higherlevel analysistools
that leverageReMrt’s ability to replay detailed,long-
term executions.Whereascurrent techniquesin com-
puterforensicscanonly analyzetheevidenceleft behind
by carelessntruders,ReVirt allows ananalystto watch
ary intrusion in arbitrary detail.

Finally, we planto useReVirt asa building block
for new securityservices.ReMrt’s ability to recover to
an arbitrary state may enableus to recover a system
automaticallyandto analyzeor preventkey eventsin an
attack.

8. Conclusions

ReMrt appliesvirtual-machineandfault-tolerance
techniquesto enablea systemadministratorto replay
the long-term,instruction-by-instructiorexecutionof a
computersystem.Becausehe target operatingsystem
and tamget applicationsrun within a virtual machine,
ReMrt canreplaythe executionbefore,during,andafter
the intrudercompromiseghe system.This capabilityis
especiallyusefulfor determiningandfixing the damage
the intruder inflicted after compromisingthe system.
BecauseReMrt logsall non-deterministi@vents,it can
replaynon-deterministi@ttacksandexecutions suchas
those that trigger race conditions. Finally, because
ReMrt canreplay instruction-by-instructiorsequences,
it can provide arbitrarily detailed obsenations about
what transpired on the system.

ReMrt addsreasonabldime and spaceoverhead.
The overheador virtualizationrangesrom impercepti-
ble for interactve and CPU-boundapplicationsto 13-
58% for kernel-intensie applications.The time over-
headof logging rangesfrom 0-8%, and logging traffic
for our workloadscanbe storedon a singledisk for se/-
eral months.

9. Acknowledgments

We aregratefulto the researcherat the University
of Erlangen-Nurnbeyfor writing UMLinux andsharing

it with us.In particular KerstinBuchacler andVolkmar
SiehhelpedusunderstanénduseUMLinux. We would
alsolik e to thankBrian Noble, LandonCox, the anotry-
mousreviewers,andour shepherdlayLepreaufor their
helpfulfeedbackThis researctwassupportedn partby
National ScienceFoundationgrantsCCR-009822%nd
CCR-0219085and by Intel Corporation.SamuelKing
wassupportedy a NationalDefenseScienceandEngi-
neering Graduate Feliship.

10. References

[Anderson80Pames”. Anderson. Computer Security
Threat Monitoring and Surveillance.
Technicalreport,JamesP. AndersonCo.,
April 1980. Contract 79F296400.

Ken Ashcraftand DawsonEngler.Using
Programmer-Written Compiler Exten-
sionsto CatchSecurityHoles.In Proceed-
ings of the 2002 IEEE Symposium on
Security and Privacy, May 2002.

J.Bellino and C. Hans. Virtual Machine
or Virtual OperatingSystemn Proceed-
ings of the 1973 ACM Wor kshop on Virtu-
al Computer Systems, pages 20-29, 1973.

Matt BishopandMichael Dilger. Check-
ing for RaceConditionson File Accesses.
USENIX Computing Systems, 9(2):131—
152, 1996.

[Bressoud96]ThomasC. Bressoud and FredB.
Schneider.Hypervisor-basedault toler-
ance. ACM Transactions on Computer
Systems, 14(1):80-107, February 1996.

[BuchackerO1Kerstin Buchackerand Volkmar Sieh.
Frameworkfor testingthe fault-tolerance
of systemsdncluding OS andnetworkas-
pects.In Proceedings of the 2001 |IEEE
Symposium on High Assurance System
Engineering (HASE), pages95-105,0c-
tober 2001.

CERT/CC Security ImprovementMod-
ules: Analyzeall availableinformationto
characterizean intrusion. Technical re-
port, CERT Coordination Center, May
2001.

Linux kernel containsrace conditionvia
ptrace/procfs/execveTechnical Report
Vulnerability Note VU#176888, CERT
Coordination Center, March 2001.

CERT/CCOverviewlncidentandVulner-
ability Trends. Technical report, CERT
Coordination Center, April 2002.

[Ashcraft02]

[Bellino73]

[Bishop96]

[CERO1a]

[CERO1b]

[CERO2]

PeterM. ChenandBrian D. Noble.When
virtual is betterthanreal. In Proceedings
of the 2001 Workshop on Hot Topics in
Operating Systems (HotOS), pagesl33—
138, May 2001.

Jeff Dike. A user-modeport of the Linux
kernel.In Proceedings of the 2000 Linux
Showcase and Conference, October2000.

[EInozahyO2]E. N. EInozahy,LorenzoAlvisi, Yi-Min
Wang,andDavid B. JohnsonA surveyof
rollback-recoveryprotocolsin message-
passingsystems.ACM Computing Sur-
veys, 34(3):375-408, September 2002.

[Goldberg74]RobertP. Goldberg. Survey of Virtual
MachineResearchlEEE Computer, pag-
es 34-45, June 1974.

[Goldberg96]lan Goldberg,David Wagner,RandiTho-
mas,andEric A. Brewer.A SecureEnvi-
ronment for Untrusted Helper
Applications.In Proceedings of the 1996
USENIX Technical Conference, July
1996.

Kinshuk Govil, Dan Teodosiu, Yong-

giang Huang, and Mendel Rosenblum.
Cellular disco: resourcemanagementis-

ing virtual clusters on shared-memory
multiprocessors ACM Transactions on

Computer Systems, 18(3):226-262,Au-

gust 2000.

Reporton the Linux HoneypotCompro-
mise.Technicalreport,HoneynetProject,
November 2000. http://project.honey-
net.org/challenge/results/dittrich/evi-
dence.txt.

The 1A-32 Intel Architecture Software
Developer'sManual, Volume 3: System
Programmingsuide.Technicakeport,in-
tel Corporation, 2001.

PaulA. Karger, MaryEllen Zurko,
DouglisW. Bonin, AndrewH. Mason,
and Clifford E. Kahn. A retrospectiveon
the VAX VMM security kernel. IEEE
Transactions on Software Engineering,
17(11), November 1991.

SamuelT. King. OperatingSystenExten-
sionsto SupportHost-Basedvirtual Ma-
chines. Technical Report CSE-TR-465-
02, University of Michigan, September
2002.

T. J.LeBlancandJ. M. Mellor-Crummey.
DebuggingParallelProgramsawith Instant

[Chen01]

[Dike00]

[Govil00]

[Hon0O]

[Int01]

[Karger9l]

[King02]

[LeBlanc87]

Replay. IEEE Transactionson Comput-
ers, pages 471-482, April 1987.

[MeushawO0ORobert Meushaw and Donald Simard.

[Netzer94]

[Plank95]

NetTop:CommercialTechnologyin High
Assurance Applications. Tech Trend
Notes: Previewof Tomorrow’s Informa-
tion Technologies9(4), September 2000.

RobertH. B. NetzerandMark H. Weaver.
Optimal Tracingand IncrementalReexe-
cutionfor DebuggingLong-RunningPro-
grams. In Proceedings of the 1994
Conferenceon ProgrammingLanguage
Designand Implementatior(PLDI), June
1994.

JamesS. Plank, Micah Beck, and Gerry
Kingsley. Libckpt: TransparentCheck-
pointing under Unix. In Proceedingsof
the Winter 1995 USENIX Conference
pages 213-224, January 1995.

[Rosenblum95MendelRosenblumStepherA. Herrod,

EmmettWitchel,andAnoopGupta.Com-
pletecomputersystemsimulation:the Si-
mOS approach. IEEE Parallel &
Distributed Technology:Systems& Ap-
plications 3(4):34-43, January 1995.

[Russinovich96Mark Russinovich and Bryce

[Strunk0OQ]

Cogswell.Replayfor concurrentnon-de-
terministic shared-memoryapplications.
In Proceeding®fthe1996Conferencen
ProgrammingLanguageDesignand Im-
plementation (PLDI), pages 258-266,
May 1996.

JohnD. Strunk, GarthR. Goodson,
MichaelL. Scheinholtz, CraigA.N.
Soules,and GregoryR. Ganger.Self-se-
curingstorageProtectingdatain compro-
mised systems.In Proceedingsof the
2000 Symposiunmon Operating Systems
Designand Implementation(OSDI), Oc-
tober 2000.

[Sugerman01Jeremy Sugerman,GaneshVenkitacha-

lam, and Beng-HongLim. Virtualizing
I/0 Deviceson VMware Workstation’s
HostedVirtual MachineMonitor. In Pro-
ceedingsof the 2001 USENIX Technical
ConferenceJune 2001.

