
LESS Software EngineeringMike Dahlin (editor)May 15, 2000There are two ways of constructing a software design: one way isto make it so simple that there are obviously no de�ciencies andthe other way is to make it so complicated that there are no ob-vious de�ciencies. C.A.R. Hoare, \The Emperor's Old Clothes,"CACM Feb 1981.This document describes the detailed programming style for all code pro-duced by the LESS group. Much of this document has been lifted verbatimfrom the Glunix Programming Style Document by Doug Ghormley and AminVahdat, John Outsterhout's Sprite Engineering Manual, Eric Brewer's Toolsand Conventions for CS169: Software Engineering, and Tom Anderson's AQuick Introduction to C++.Most of this document deals with low-level coding standards. However,we �rst survey some high-level strategies needed for e�ective software engi-neering.1 Write Solid Code1.1 It's about attitudeBeing a productive software engineer has more to do with attitude thananything else. Demand of yourself that your code be bug free. Be embar-rassed when someone else �nds a bug in your code | you've wasted their1

time. Don't work on a new feature until the old ones are done (done meansbug-free).Perhaps by cutting corners, you can quickly slap together some codethat is \90% done." However, you will then invariably spend many days (orweeks or months) tracking down the many bugs scattered throughout yourprogram. Not only does this approach actually take longer from beginningto end than a more disciplined strategy, it is decidedly less pleasant. Afterspending a few fun weeks of apparent progress as you add new feature afternew feature, you spend months banging your head against bug after bugwith little evidence that you are making progress.Writing Solid Code by Steve Maguire is required reading for all LESSsoftware developers. You should read it within 6 months of joining the team;it is short and well written | you can read it in a few afternoons.The rest of this section touches on some key strategies to support a solidcode attitude.1.2 Find bugs as soon after you write them as possibleThe longer you wait to �nd a bug, the longer it will take to diagnose itand �x it. The following list suggests a range of opportunities to �nd bugsstarting from when the bug is in introduced and going forward in time (andupward in cost).1. Design the system so that it prevents you from introducing bugs.The cheapest way to �x a bug is to not write it.2. Make full use of compiler warnings (or lint).These tools allow you to detect bugs before you run the program. Fur-thermore these tools work automatically, requiring very little thoughtor e�ort on your part.3. Read your code.Just as you wouldn't turn in a prose conference paper or English paperwithout proofreading it, you shouldn't run \�rst draft" code that youhave not read. You will spot a surprising number of bugs this way.2

If you have an IDE, consider making it a habit to step through everyline of code you write right after you write it.4. Make use of run-time checks to automatically �nd bugs.Use assert()s liberally. Assert()s are a terri�c way to documentyour assumptions about the code and to document your understandingof how the code is supposed to behave. Put as many assert()s intoyour code as you can. The bene�t of adding an assert() is thatit might automatically �nd a bug that you would otherwise have tospend e�ort tracking down. There is almost no down side; in theunlikely event that your assert()s signi�cantly slow you down, theycan always be turned o� when you compile the production code.When someone asked one of the developers of the Microsoft Tigermultimedia server how fast it was, he replied \It executes 42,000 assertsa second." This is an example of a good attitude.Use purify or some other run-time memory checker. Purify can au-tomatically detect many common pointer errors, including crossingarray bounds, accessing freed memory, and memory leaks. These bugscan be a nightmare to track down by hand, but purify �nds themautomatically. This is a no brainer.Use run-time sanity checks. This rule is simply an extension of theassert() idea. Guard your assumptions and data structure integrityby testing them as the program runs. Even if this slows down yourprogram a little, computer time is much cheaper than programmertime.5. Use module tests and regression tests.Module tests test the behavior of a module of your system as a blackbox; regression tests do the same for the whole system. Black-boxtesting is not as nice as the earlier options | it can tell you thatsomething is wrong, but it doesn't point you to the line of the code thatis causing problems. It is still necessary so that you can systematically�nd bugs that span modules or that your internal tests don't catch.You should use module tests to test as you go. This is a hard disciplineto follow when a deadline looms; you will often feel you barely havetime to write the functional code let alone the testing code. This isa false laziness. Testing as you go almost always takes less time thantrying to debug a big mass of code.3

6. Other programmers on your team �nd your bugs.This is a huge waste of time for everyone. Think of when this happensfrom their point of view: they add a feature, test it, and �nd thatthere is a bug. They then spend hours or days banging their headinto the wall trying to �gure out what they just broke. Finally, theydecide that the bug was already there and have to search through allof the systems code to �gure out what was wrong. This takes muchlonger in total time than if the person that put in the bug had foundit. Futhermore it is really unfair { they pay for your mistakes.As more programmers get involved, the ine�ciencies mount. Now,instead of �nding each bug once (when it is written), we have to �ndthe bug as many as n times (as each developer hits it.) If developerscan't trust their colleagues to do regression tests before checking incode, then the tests need to be done n times for each update (byeach person checking out the update) instead of once (by the personchecking in the update.7. Worst: Find the bug during production use of the system.There are many variations, all of them bad. At best, you might noticean anomalous output and spend time tracking it down. It gets worsefrom there. In a multi-developer project, your bugs can waste theother developers' time because they can't know whether the bugs theyobserve start in their code or yours. In a technology demonstrationthat you ship to users, users might discount your ideas because yourimplementation is bad. In a simulation study, your bugs could causeyou to publish incorrect results at a conference.1.3 SimplicityFools ignore complexity. Pragmatists su�er it. Some can avoidit. Geniuses remove it. Alan J. Perlis \Epigrams in Program-ming"If you are going to build a complex system, your only hope for successis to make it as simple as possible. There is a bias against simplicity; somepeople seem to like to show o� their intelligence by building complex systemsthat only they can understand. If, however, you want to build solid, bug-free,4

maintainable code with minimal e�ort, simplicity should be your guidingprinciple.1. Use creativity to simplify, not to show o�.2. Avoid complexity. Design then code.3. Be extremist. Maximize simplicity. Systems always turn out to bemore complex than you expect. Guard against this by pushing for thesimplest possible design.1.3.1 Simplicity vs. PerformanceUsually, design decisions that encourage simplicity and correctness are supe-rior to design decisions that emphasize program execution speed. Computercycles are cheap and getting cheaper; programmer hours are not. Unfor-tunately, most introductory computer science courses emphasize speed oversimplicity: \What is the fastest algorithm to do X?" rather than \What isthe simplest way to do X?" and this bias can be hard for programmers toovercome. Keep in mind Ousterhout's rule of performance tuning:The biggest speedup in a system is when it goes from \not work-ing" to \working." That is an in�nite speedup. John OusterhoutFinally, remember that the 90/10 rule applies to performance tuning.It is probably better to get a system running and then study it with per-formance tools to focus your e�ort on the 10% of the code that matters toperformance than to try to squeeze every cycle out of every line of codeyou write. Furthermore, a simple system will probably be easier to sys-tematically attack with performance tools than a complex system rife withpremature \peephole" optimizations.1.4 Go from working system to working systemYou should use an incremental strategy in which you add a feature anddebug it and only move to the next feature when the previous features aretested and bug-free. 5

One of the most common causes of disasters in both software and hard-ware projects is building all of the features �rst and then trying to pull themall together and debug them. In addition to probably taking longer thanan incremental approach (because bug repair happens long after bug intro-duction), this approach is also very high risk. Whereas schedule slippageunder the incremental system means that you will have a working systemwith not quite the full feature set when the deadline arrives, slippage underthe other strategy means that you will have nothing that works when thedeadline arrives.Another advantage of the incremental approach is that it makes it easierto track progress. For example, if I am working on a project that has 10subtasks of equal complexity, and I �nished 2 last week and 3 this week, Ican guess that I'll be done in 2 or 3 more weeks. In contrast, with mostprojects it is hard to predict how long \tracking down the last few bugs"will take.1.4.1 When you observe a bug, that is the right time to dive inand �x it.When you discover a
uke, �rst determine if a whale is attachedto it. Dennis O'Connor (Intel i960(R) Microprocessor Division)It is always tempting when you see a little anomaly on the output of arun to convince yourself that it is a small problem that you can come backand �x later. There are three problems with that attitude. First, it mightnot be just a small problem (there may be a whale attached to the
uke).Second, the accumulation of these small problems eventually makes yoursystem incomprehensible as bugs interfere with other bugs. It is hard totell when you have successfully �xed a bug, and conversely, it is hard to tellwhen you have introduced a new bug. Third, as you add other stu� to thesystem, the anomaly may disappear. Bugs, however, don't �x themselves.In such a case you have traded a relatively easy problem (\What is causingbehavior X?") for a hard one (\There's a bug in there somewhere, I justhave to �nd it.")
6

1.5 Re
ectWhen you �nd a bug that was not detected automatically by your tools andtests, something went wrong with your development methodology. Thinkabout the bug and how to avoid or automatically detect such bugs in thefuture.2 File StructureThere are a number of regions that normally appear at the top of source�les before any procedures are declared. Those regions are:� Including .h �les.� Declaring extern variables.� Declaring macros or #define constants. However, macros and #defineshould almost never be used. See below \The C Preprocessor is Evil."� Declaring types, structs, unions, enums, etc.� Declaring global and static variables.These regions should (ideally) appear in the above order, though anyreadable ordering is �ne. When in doubt, though, use this ordering. Betweeneach of these regions, and at the end of the �le, there should be the followingsingle comment to help give visual clues as to the structure of the �le:Header �les (.h �les) should generally follow a consistent order. Systemand library �les (e.g. <stdio.h>) should precede local header �les (e.g.``FiniteCache.h''. Within each group of header �les, �les should belisted alphabetically unless a dependency precludes that order./***/Following these regions should be:7

1. Initialization routines for this module2. Cleanup routines for this module3. All other procedures for the module2.1 Nested include �lesIt is legal and desirable for one include �le to #include another. For ex-ample, the exported include �le for a module should #include any addi-tional �les needed to use the module. With this approach, clients need only#include the exported include �les of the modules they use.Use #ifdefs to make sure that each include �le is processed only once,even if it is included multiple times. For example, the �le FiniteCache.hshould begin:#ifndef _FiniteCache_h_#define _FiniteCache_h_... body of FiniteCache.h ...#endif _FiniteCache_h_3 Code StandardsEvery programmer should strive to write code whose behavior is immedi-ately obvious to the reader. If you �nd yourself writing code that wouldrequire someone reading through it to thumb through a manual in orderto understand it, you are almost certainly being way too subtle. There isprobably a much simpler and more obvious way to accomplish the same end.Maybe the code will be a little longer that way, but in the real world, it'swhether the code works and how simple it is for someone to modify thatmatters a whole lot more than how many characters you had to type.
8

3.1 Minimize scopeOne of the primary tools for producing maintainable code is minimizationof scope. All variables should have scopes consistent with their lifetime andintended use.There should be almost no global functions or constants.3.2 TypesUse classes or typedefs instead of raw types like int. If you are using an int(or some other primitive type) to represent some concept, such as dollars,hide the representation via a class or typedef:typedef int Dollars;This allows you to change the representation later on. Without this typedef,you would have to determine which ints are actually Dollars and convertthem by hand. Using the typedefs not only adds
exibility, it also improvesthe documentation.When should you use a class for Dollars rather than a typedef? Typedefsare just synonyms: if you also typedef Yen to be an int, then Dollars andYen are indistinguishable to the compiler. If you use classes, then you cancreate constructors that convert Dollars to Yen (and vice versa).3.3 ClassesThis section deals with using classes as abstract data types. Conventionsfor inheritance are discussed later.1. Only functions should be public members. With few excep-tions, all public members of a class should be functions. Public data9

members (like int x;) prevent the implementor from changing therepresentation down the road.2. Never return a pointer or reference to private data. This isa corollary to the previous rule. Returning pointers to private dataprovides full-time access to that data, even though the invariants mightonly hold during function invocation. This is worse than explicit publicdata members because the access is indirect.3. All of the types and members of a class should be explicitlydeclared public, protected, or private. They should be groupedtogether and declared in that order. Note that protected only makessense for base classes that support inheritance.4. All classes must explicitly have a copy constructor, an as-signment operator, at least one non-copy constructor, and adestructor.The copy constructor constructs a T by copying its argument, which isalso a T. In general, any class with private pointers should not use thedefault copy constructor or assignment operator. The default versionsonly copy the value of the pointer rather than the contents to whichit points. Needless to say, this can be a painful source of bugs. Re-quiring all classes to have an explicit copy constructor and assignmentoperator reminds the writer to check for pointers and explicitly copytheir contents.If you know the default version of any of these is su�cient, then indi-cate this by explicit comments for each one:// operator= use the default assignment operatorIt is also acceptable to prohibit assignment or copying. This is done bydeclaring the function private and creating a stub function that callsassert(0); (or otherwise exits with an error) if it is called. Mak-ing the function private allows the compiler to prevent clients fromcalling the routine. Since the compiler can't prevent other memberfunctions from making the call, we must also include the assert-ingstub function to fully deactivate the call.5. The copy constructor for class T should take an argument oftype const T&. 10

6. The assignment operator for class T should have the followingsignature:T& T::operator=(const T& rhs);It is important to return T& so that assignments can be chained (a =b = c). Declaring the argument as const allows the compiler to verifythat you don't update the right-hand side and may also lead to betteroptimization. There may be additional (overloaded) versions of theassignment operator that have a di�erent argument type.7. The assignment operator must return *this. This rule ensuresthat assignments can be chained together correctly.8. The �rst step of every assignment operator should be:if(this == &rhs){return *this;}This simple rule ensures that x = x works correctly. Leaving it outcan be painful. For example, if the class has a dynamically allocatedarray, the operator will normally delete the storage for the left handside, allocate storage for a copy of the right hand side, and then copythe array. If the two sides are the same and this case is not detected,the array for the right hand side is deleted before it is copied.9. All �elds of a class must be assigned (or copied) in the orderof declaration. This is tricky to ensure since it is relatively easy toadd �elds to a class and then forget to check the assignment operatorand the copy constructor. The only thing that works is discipline: ifyou add a �eld, check all of the methods.For methods that must touch all �elds of the class (assignments, com-parisons, etc.), I �nd it is useful to begin the method by assert-ingthat the sizeof(TheClass) equals the sum of the sizeof() valuesfor all of the �elds. If I add a �eld without updating the method, theassertion will fail the �rst time I call it.
11

3.4 Procedures and methods1. Prototype all functions. All functions exported from a module orexported to other �les within the same module should be prototypedin a header �le. Functions only used within a single �le should beprototyped at the top of the �le (do not rely on de�nition-before-use).All prototypes should list the function arguments in the prototype. Ifthere are no arguments to the function, then the argument list shouldbe identi�ed as void in both the prototype and the procedure de�ni-tion:void waitForSignal(void);voidwaitForSignal(void){}Each procedure declaration will start with the return value on its ownline, the prototype for the function on one (or more lines), and thenan opening brace on its own line. If the procedure does not return avalue, you must explicitly specify void:intmain(int argc, char **argv){}2. Declare returns explicitly. Procedures should always have a returntype explicitly declared. They should also always have explicit returnstatements, even if the return type is void.3. Declare arguments, methods, and procedures const wheneverpossible. Declaring an argument or function as constant allows betteroptimization, documents the code, and allows the compiler to detectunintended modi�cations. Member functions that do not change anobject should be declared constant by adding const after the closingfunction parenthesis but before the semicolon or left brace. Note thatonly const members can be invoked on const objects of the corre-sponding class. 12

4. When passing an array, use array notation, not pointer no-tation. E.g. int foo[] rather than int *foo. The latter hides thefact that there are multiple ints.5. Don't return pointers or references unless they are 1) this,2) a passed in pointer or reference, or 3) a newly allocatedobject.3.5 Statements1. Individual C statements should be simple and straightfor-ward. The following is an example of what not to do:numEmptyBuffers =(curBufPtr->currentData + curBufPtr->incomingData) ? 0 :MAX_BUFFER_SIZE - (curBufPtr->waitingData +curBufPtr->incomingData + (curBufPtr->numBytesRequested -curBufPtr->currentData));This could be improved by assigning the \else" portion of the ? oper-ator to a temporary variable with a meaningful name and using thatvariable in the above expression.2. goto statements are illegal.3. Spurious sub-scopes (i.e., not the body of an if, for, etc.)should not generally be used.4. The operators ++ and --- should not appear in complex state-ments, only as a command by itself. The statementbuf[ctr++] = x; // Illegal!should be written asbuf[ctr] = x;ctr++;5. The body of a control statement is always enclosed in braces.The following statements should have braces, even if there is onlya single statement within the body: if, else, do, while, for,switch. 13

if(x < min){min = x;}For an empty while or for statement, do not use braces and put thesemi-colon on the next line, indented by 2 spaces. There should neverbe a do-while loop with an empty body; in such a case, use a whileloop.for(x = 0; x < y; x++);6. Use parenthesis rather than rely on order of evaluations. Incomplex comparisons involving OR's (||) and AND's (&&) together orusing arithmetic or logical operations, you must use parens to make thegroupings explicitly. This rule helps both correctness and readability(even if you know the order will come out okay, assume you're writingthe code for someone who isn't as smart as you are.)3.6 Constants� Use const as often as you can. Be a const zealot. Declaring avariable or function as constant allows better optimization, documentsthe code, and allows the compiler to detect unintended modi�cations.Member functions that do not change an object should be declaredconstant by adding const after the closing function parenthesis butbefore the semicolon or left brace.� Prefer const to #define.In C++ don't declare constant values by #defining them (see below:\The C Preprocessor is Evil".) Instead, declare const variables of theappropriate type so that the compiler can do type checking.#define BUF_SIZE 1024 // ERROR!Should be written:const int BUF_SIZE = 1024;14

Due to compiler constraints, the exception to this rule is when theconstant is to be used to specify the size of a static array.{ In C, you must use #define to specify a symbolic name to useto indicate the size of an array.{ In C++, if you are not using the Gnu compiler, you cannot setthe value of a class's member variables outside of their construc-tors. To achieve the same e�ect, use enums whose values are setexplicitly.class AnArray{private:enum maxSize {MAX_SIZE = 1024};static char buffer[MAX_SIZE];};This syntax is more portable but less readable than the constsyntax. If portability is a concern, you may wish to use thissyntax even if you have no immediate plans to use a compilerother than gcc. If you are certain that you will not need to portthe code, the const syntax may be better.� Prefer enum to const. When creating a list of possible values, it istraditional to de�ne a series of integer values for the di�erent possibil-ities. It is better to use an enumeration so that the type system canhelp you.//// Compiler can't distinguish different ints.// XXX Dont do this. XXX//const int DISK_STATE_SEEKING = 0;const int DISK_STATE_READING = 1;const int DISK_STATE_IDLE = 2;const int CPU_STATE_ACTIVE = 0;const int CPU_STATE_IDLE = 1;int state;state = DISK_STATE_SEEKING;if(state == CPU_STATE_IDLE){ // Error but no compiler warning15

...//// Better.//enum disk_state{DISK_STATE_SEEKING,DISK_STATE_READING,DISK_STATE_IDLE};enum cpu_state{ CPU_STATE_ACTIVE,CPU_STATE_IDLE};enum disk_state state;state = DISK_STATE_SEEKING;if(state == CPU_STATE_IDLE){ // Compiler detects this error...Note that you can explicitly set the values for enumerated types ifneeded.3.7 Dangerous language featuresIf programming in Pascal is like being put in a straightjacket,then programming in C is like playing with knives, and pro-gramming in C++ is like juggling chainsaws. Anonymous.Tom Anderson has written a document specifying a subset of C++that can do most of what one wants to do while avoiding features that aredangerous or di�cult to understand. See http://http.cs.berkeley.edu/~tea/c++example/ for his take.3.8 C and C++ language features to use with caution3.8.1 InheritanceThe downside of inheritance is that it tends to spread implementation detailsacross multiple �les; if you have a deep inheritance tree, it can take someserious digging to �gure out what code actually executes when a memberfunction is invoked. 16

The question to ask yourself before using inheritance is: what's yourgoal? Is it to write your programs with the fewest number of characterspossible? If so, inheritance is really useful, but so is changing all of yourfunction and variable names to be one letter long (\a", \b", ...).When is it a good idea to use inheritance and when should it be avoided?A rule of thumb is to use inheritance only for representing shared behaviorbetween objects and not to use it for representing shared implementation.In C++, you can use inheritance for both concepts, but only the �rst willlead to truly simpler implementations.One way to control inheritance is to restrict yourself to using inheri-tance from only abstract classes. Abstract classes de�ne interfaces to purevirtual functions, but they explicitly do not de�ne implementations of thosefunctions.class CacheMissHandler{public:virtual void add(Event *event) = 0;virtual Time predictMissTime(Id id) = 0;};Note that the pure virtual functions are de�ned to be 0.We can now de�ne subtypes of CacheMissHandler that simulate a localdisk, an NFS server, and an HTTP server. These �le systems would sharea common interface but not share any implementation.If there is a piece of functionality shared by a set of sibling classes, tryde�ning that functionality in a separate class and instantiating that class inthe siblings.3.9 TemplatesThe principle problem with templates is that they can be di�cult to debug.Templates are easy to use when they work, but �nding a bug in them canbe di�cult. In part this is because current generation C++ debuggers don'treally understand templates very well. Nevertheless, it is easier to debug a17

template than two nearly identical implementations that di�er only in theirtypes.The best advice is | don't make a class into a template unless therereally is a near term use for the template. And if you do need to implementa template, implement and debug a non-template version �rst. Once thatis working, it won't be hard to convert it to a template.3.10 C and C++ language features to avoid like the plagueC++ is a wildly over-complicated language, with a host of features that onlyvery, very rarely �nd a legitimate use. It's not too far o� the mark to say thatC++ includes every programming language feature ever imagined and more.I'm sure that each feature has its advocates, but there are compelling reasonsto avoid these features | they are easy to misuse, resulting in programs thatare harder to understand. In most cases, the features are also redundant |there are other ways of accomplishing the same end. Why have two ways ofaccomplishing the same thing? Why not stick with the simpler one?If, despite these warnings, you �nd yourself tempted to use these features,a careful code review is in order. Talking through the design with someoneelse might bring to light a better strategy.3.10.1 The C preprocessor is evilIt has been observed that almost every macro demonstrates a
aw in the programming language, in the program, or in theprogrammer. Bjarne Stroustrup The C++ Programming Lan-guage 2nd Edition p. 138Don't use it.1. Macro functions are better done with inline functions. Thelatter are type checked and evaluate their arguments exactly once.2. Use const variables rather than using #define. Again | we gettype checking from the compiler.18

3. Bit manipulation. If you need bit operations |- usually a sign ofpremature optimization |- use the C++ bit �eld constructs ratherthan carefully constructed constants combined with bitwise operators(like &).4. Use templates rather than macros for polymorphic functions.If you must use polymorphic functions, templates are better thanmacros.There exist two permitted uses of the C preprocessor:1. Conditional compilation to avoid reprocessing a .h �le that is #include-ed multiple times.2. #define-ing a value to indicate the size of a statically-allocated arrayin a C (not C++) program.3.10.2 Multiple inheritanceIt is possible in C++ to de�ne a class as inheriting behavior from multipleclasses (for instance, a dog is both an animal and a furry thing). But ifprograms using single inheritance can be di�cult to untangle, programswith multiple inheritance can get really confusing.3.10.3 Operator overloadingC++ lets you rede�ne the meanings of operators (such as + and >>) forclass objects. This is dangerous at best, and when used in non-intuitiveways, a source of profound confusion, made worse by the fact that C++does implicit type conversion, which can a�ect which operator is invoked.Unfortunately, C++'s I/O facilities make heavy use of operator over-loading and references, so you can't completely escape them, but think twicebefore you de�ne '+' to mean \concatenate two strings."
19

3.10.4 Pointer arithmeticRunaway pointers are a principle source of hard-to-�nd bugs in C programs,because the symptom of this happening can be mangled data structures ina completely di�erent part of the program. Depending on exactly which ob-jects are allocated on the heap in which order, pointer bugs can appear anddisappear, seemingly at random. For example, printf sometimes allocatesmemory on the heap, which can change the addresses returned by all futurecalls to new. Thus, adding a printf can change things so that a pointer thatused to (by happenstance) mangle a critical data structure now overwritesmemory that may not even be used.The best way to avoid runaway pointers is (no surprise) to be very carefulwhen using pointers. Instead of iterating through an array with pointerarithmetic, use a separate index variable, and assert that the index is neverlarger than the size of the array. Optimizing compilers have gotten verygood, so that the generated machine code is likely to be the same in eithercase.3.10.5 Casts from integers to pointers and backDon't do this.3.10.6 Using bit shift in place of multiply or divideThis is a clarity issue. If you are doing arithmetic, use arithmetic operators;if you are doing bit manipulation, use bitwise operators. If I am tryingto multiply by 8, which is easier to understand, x << 3 or x * 8? In the70's, when C was being developed, the former would yield more e�cientmachine code, but today's compilers generate the same code in both cases,so readability should be your primary concern.
20

4 NamingChoosing names is one of the most important aspects of programming. Goodnames clarify the function of a program and reduce the need for other doc-umentation. Poor names result in ambiguity, confusion, and error. Thissection gives some general principles to follow when choosing names, thenlists speci�c rules for name syntax such as capitalization, and �nally de-scribes how we use pre�xes to highlight the structure of the system.1. Names should have meaning.When choosing names, play devil's advocate with yourself to see ifthere are ways that a name might be misinterpreted or confused. Hereare some things to consider:(a) Is someone who sees the name out of context likely torealize what it stands for, or could they easily confuseit for something else? Ousterhout provides the following ex-ample: \Our procedure for doing byte-swapping and other refor-matting was originally called Swap Buffer. When I �rst saw thatname, I assumed it had something to do with I/O bu�er man-agement, not reformatting. We subsequently changed the nameto Fmt Convert."(b) Does the name look a lot like another name that is usedfor a di�erent purpose in the same context? For example,it is probably a mistake to have two variables named proc andprocess, both referring to processes in the same piece of code: itwill be di�cult for readers to remember which is which. Instead,add a bit more information to the names to distinguish them; forexample: masterProc and slaveProc.(c) Is the name so generic that it doesn't convey any infor-mation? What can I expect to �nd in the variable tmp?(d) Use the same name to refer to the same thing every-where. For example, you might use the name filePtr eachtime you have a pointer to an open �le.2. Pre�x globally-visible names with module abbreviations. Any-thing globally-visible (procedures, variables, classes, structures, etc.)21

must be pre�xed by the module abbreviation, and an underscore.Idle processList global variableIdle getProcessList() global procedurestruct Idle ProcessEntry f...g global structureVariables that are intra-module but which are visible to multiple �leswithin that module should be treated as though they are global.3. Variables which are only visible within one �le or procedureshould omit the pre�x. Such variables should also be de�ned asstatic if they are at the global scoping level.static int localVariable; local variablestatic int localProc(void); local procedure4. Method names omit the pre�x. Their module is documented bylooking at the class of the variable they are associated with.5. Variables, methods, and procedures begin with lower-caseletters.6. Classes, Modules, Types, and Structures begin with upper-case letters.7. CONSTANT variables should be named with all caps.8. Capitalize trailing words in multi-word names. All multi-wordnames should have trailing words capitalized, but with no internalunderscores except the one immediately following the module abbre-viation. The exception to this rule is multi-word constants; separatetheir words with underscores.5 Low-level Formatting Details1. Indentation is 2 spaces. All editors we know of can be set to thissetting.2. Each C statement will end with a semi-colon with no preced-ing space.3. There should be no space separating the following keywordsfrom the following open parenthesis or brace: if, for, while,do, switch, case. 22

4. Curly-braces don't normally stand alone. Opening braces ap-pear on the same line as the statement that is opening the scope. Theclosing brace appears on a line by itself, lined up with the statementwhich opened the scope.if(filePtr->length == 0){return -1;}The exception to this rule is procedure declarations: both the openingand closing brace should be on their own line
ush left. For example:static voidcountToTen(void){ int i;for(i = 1; i <= 10; i++){printf("%d\n", i);}}5. All comma-separated argument lists should have a single spaceafter each comma in the list.6. All assignment statements and comparisons should have asingle space before and after the symbol(s). Examples:x = 4;a |= b << 2;if(y < x){7. No line should be longer than 80 characters.6 CommentsThe most important thing to remember in documenting your code is \qual-ity, not quantity." A few carefully chosen words in the right place may be23

more helpful than a page of drivel. This section lists a few things to con-sider in order to improve the quality of your in-line documentation and thenprovides standard formats for di�erent types of comments.6.1 Document things with wide impactThe most important things to document are those that a�ect many di�erentpieces of a program. Thus, it is essential that every procedure interface,every structure declaration, and every global variable be documented clearly.If you haven't documented one of these things, it will be necessary to lookat all the uses of the thing in order to �gure out how it's supposed to work.This will be tedious and error-prone.On the other hand, things with only local impact may not need muchdocumentation. For example, in short procedures I don't usually have com-ments explaining the local variables. If the overall function of the procedurehas been explained, and if there isn't too much code in the procedure, and ifthe variables have meaningful names, then it will be easy to �gure out howthey are used.6.2 Don't just repeat what's in the code.The biggest mistake made in documentation is simply to repeat what's al-ready obvious from the code, such as the trivial (but exasperatingly com-mon) example://// Increment i.//i ++;Documentation should provide higher-level information about the overallfunction of the code | what a complex collection of statements really means.For example, the comment// 24

// Probe into the hash table to see if the symbol exists.//Is likely to be more helpful than//// Mask off all but the lower 8 bits of x, then index into// table t, then traverse the list looking for a character// string identical to s.//6.3 Be creative.Draw a picture of what's going on. Give an example of how the mod-ule/procedure is supposed to be used.6.4 Document things in exactly one place.Systems evolve over time. If something is documented in several places, itwill be hard to keep the documentation up-to-date as the system changes.For example, I put the documentation of each structure right next tothe declaration for the structure, including the general rules for how it isto be used. I don't explain the �elds of the structure again in the codethat accesses the structure; people can always refer back to the structuredeclaration for this.The other side of the coin is that every major decision needs to be doc-umented at least once.6.5 Comment formats1. Figure 1 shows the header comment that should be placed atthe top of each �le.2. Figure 2 shows the trailer comment that should be placed atthe end of each �le. 25

/** LESS Group** filename.cc|h ---** Description of the purpose and function of this file.** $Date: 1997/07/29 14:59:57 $ $Id: eng.tex,v 1.2 1997/07/29 14:59:57 dahlin Exp dahlin $** Copyright (c) 1997 by <author list.>** Permission to use, copy, modify, and distribute this software and its* documentation for any purpose, without fee, and without written agreement is* hereby granted, provided that the above copyright notice appear in* all copies of this software.**/Figure 1: Standard �le header./** Change History** $Log: eng.tex,v $* Revision 1.2 1997/07/29 14:59:57 dahlin* Added a few more quotes.**/Figure 2: Standard �le trailer.26

/*** ProcedureName ---* Description of purpose and function of the procedure (e.g. policy* rather than mechanism).** Arguments:* type1 arg1 - a description of argument 1* type2 arg2 - a description of argument 2** Results:* A description of the results returned by the function, either* in the return value or in pass-by-reference arguments.** Side effects:* Any changes in the state of the program or its environment* that may be visible to the program or the user.***/Figure 3: Comment format for procedures, functions, and method declara-tions.3. The preface comment format for all procedures, functions,and method declarations is shown in �gure 3.4. Code comments occupy full lines. Comments used to documentcode (as opposed to declarations) should occupy full lines, rather thanbeing tacked onto the ends of lines containing code. Tacked-on com-ments are hard to see. Use proper English in your comments (e.g.,capitalize the �rst word of the comment, and structure your commentsin sentences.)Full-line comments should be indented to the same level as the sur-rounding code. The comment lines should begin with lined up doubleslashes with a blank comment line before and after the comment textand a blank separator line before the comment.headPtr = getHead(); 27

//// Move the hint out of the way so it won't get// invalidated by the deletion.//if(first.lineIndex > 0){...If comments are indicated with the C syntax, the comment lines shouldbegin with lined up stars, the open and close comment symbols appearon separate lines from the text, and a blank separator line appearsbefore the comment./** This is also a legal code comment.*/5. Declarations comments are side-by-side. When you documentdeclarations for procedure arguments and structure members, placecomments on the same lines as the declarations. Place the commentsto the right of the declarations with all left edges of the commentslined up. When a comment requires more than one line, indent theadditional lines to the same level as the �rst line, with close-commentcharacters (if using the C syntax) on the same line as the end of thetext. typedef struct Floater{File *filePtr; // File to which floater// belongs.Position *point; /* Where it is located. */} Floater;7 ToolsUse tools to make your life easier. 28

7.1 CompilerIf you use g++, then all code should compile without warnings using the-Wall
ag.If you use cc, then all code should compile without warnings under lint.7.2 PurifyPurify is a run-time tool to detect memory bugs | uninitialized memory,array out-of-bounds, reading freed memory, memory leaks, etc. All codeshould run without warnings under purify.To compile with purify, add the following to your make�le:###### PURIFY###PURIFY=/lusr/bin/purify -cache_dir=./purifyThen, for the main compilation line (that links the objects into an exe-cutable), prepend $(PURIFY) to the command (before the $(CC) commandname.$(TARGET): $(OBJS)$(PURIFY) $(C++) $(C++FLAGS) $(LIBDIRS) $(OBJS) $(C++LIBS) -o $(TARGET)You can deactivate purify by commenting out the PURIFY = ... linewhile leaving the compilation command unchanged.7.2.1 QuantifyThe Quantify tools is also shipped with Purify. You invoke it the same wayyou do with purify (except substitute \quantify" for \purify"). It providesa simple way to get performance data. Use this tool before you spend timeoptimizing your code for speed. 29

7.3 cvsCVS, concurrent versions system, is a powerful tool for managing sourcecode. It can integrate changes from many developers, can keep track of allold versions, and can give symbolic names to speci�c versions (e.g. \betarelease"). All code developed for LESS should be checked into a CVS repos-itory on a regular basis. CVS's documentation is relatively complete, but itis sometimes di�cult for beginners. We will develop a tutorial in the nearfuture.7.4 Other recommended toolsIf you're not familiar with these, it is worth your time to use them.etags Emacs support for navigating large source trees.gdb DebuggerAt the current time we are also examining a promising gnu tool forautomating regression testing.We need a tool for tracking bugs; Calvin has one that might be good.8 Acknowledgements and ReferencesMuch of this document has been lifted verbatim from the Glunix Program-ming Style Document by Doug Ghormley and Amin Vahdat, John Outster-hout's Sprite Engineering Manual, Eric Brewer's Tools and Conventions forCS169: Software Engineering, and Tom Anderson's A Quick Introductionto C++.The following references provide more information:C.A.R. Hoare, \The Emperor's Old Clothes." Communications of theACM, Vol 24, No 2, Feb 1981, pp. 75{83.Steve Maguire, Writing Solid Code, Microsoft Press.30

Steve Maguire, Debugging the Development Process, Microsoft Press.Steve McConnell, Rapdi Development: Taming Wild Software Schedules,Microsoft Press.Scott Meyers, E�ective C++ and More E�ective C++, Addison Wesley.Bjarne Stroustrup, The C++ Programming Language

31

