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Motivation

® Applications: distinct training and test distributions.

Sentiment analysis: appraisal information for
some domains, e.g., movies, books, music,
restaurants, but no labels for travel.

Language modeling, part-of-speech tagging.
Statistical parsing.

Speech recognition.

Computer vision.

Solution critical for applications.
This talk: regression problems.
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Domain Adaptation Problem

® Distributions: source(), target P.
| Target function(s): fgand fp, or justf.

B |[nput: training sample drawn from(@), unlabeled
sample drawn from P.

® Problem: find hypothesis h with small expected
loss with respect to distribution P,

Lp(h, fp)= E [L(h(:z:), fp(a;))].

x~ P

Learning with Imperfect Data page 3



Distribution Mismatch

Which distance should we use
to compare these distributions!?
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Discrepancy Distance

(Mansour, MM, Rostami, 2009)
B Definition:

- _ / B /
disc(Q1,Q2) = max, |LQ1(h h) — Lo, (B, ).

® symmetric, verifies triangle inequality, in general
not a distance.

® helps compare distributions for arbitrary losses,
e.g. hinge loss, or L, loss.

® can be estimated from finite samples,
Rademacher complexity bounds.
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Previous Work

B (Ben-David et al, NIPS 2006) & (Blitzer et al., NIPS 2007): bounds for
binary classification based on d4 distance and \y
term (cannot be estimated).

B (Mansour, MM, Rostami, COLT 2009): learning bounds and
analysis for general loss functions.
® based on discrepancy and optimal hypotheses.
® favorable under plausible assumptions.
® pointwise loss guarantees for kernel algorithms.

B (Ben-David et al, AISTATS 2010): series of negative results for
adaptation in binary classification.
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Theoretical Guarantees

B Two types of questions:

e difference between average loss of hypothesish
on () versus P!

® difference of loss between hypothesis /1 obtained
when training on (Q, fq) versus hypothesis A’
obtained when training on (P, fp).
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Kernel-Based Reg. (KBR) Algorithms

® Algorithms minimizing objective function:

Fg(h) = X|hll% + Ra(h),
where Kis a PDS kernel,
A>( is a trade-off parameter, and

R@(h)is the empirical error of h .

® family of algorithms including SVM, SVR, kernel
ridge regression, etc.
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Guarantees for KBR Algorithms

m Theorem:let K be a PDS kernel with K (z, z) < R?

and La loss function such that (-, y) is p-Lipschitz.
Assume that fp € H, then, for all (z,y) € X XY,

L(K(2),y) — L(h(z),y)| < uR\/ (P, Q) +

where n = max{L(fo(z), fr(z)): zesupp(Q)}.
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Adaptation Algorithm

B Search for a new empirical distribution ¢* with
same support:

AN

*

¢ = argmin  disc(P,q).
supp(q) Csupp(Q)

® Solve modified KBR problem:

m

Z ¢ (i) L(h(zi), yi) + Al %

1=1

1
1
min Fy- (h) = —
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Discrepancy Min. - Input space

® For L2 loss and H={x — w'x: ||w|| <A}, can be
cast as an SDP (Mansour, MM, Rostami, COLT 2009):

minimize |[M(z)||2

m
subject to M(z) = Mg — Z 2z M,
q 1=1
M() — Z P(Xj)XjX;-r
J=m-+1
M,; = XiXZT,?: S [1,111]

z'1=1Az>0.

=3 what about if we want to use kernels!?
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Discrepancy Min. with Kernels

B For L2 lossand H = {h € H: ||h||x <A}, proof that
it can be cast as a similar SDP:

minimize ||M'(z)||2

m
subject to M'(z) = My, — Z ziM,
i=1

M = K'/?DoK'/?
M, = KY/?D,K!/?
z'1=1Az>0.

-3 but, cannot be solved practically even for a few
hundred points, even with best public SDP solvers.
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Smooth Approximation
(Nesteroyv, 1983, 2005)

® Convex optimization problem: minimize,cc F(z).
B Smooth:

® (C'closed convex, F' Lipschitz continuous gradient.

® algorithm: O(1//¢), optimal for problem class.

® Non-smooth:
® [’ Lipschitz continuous.
® find G uniform e-approximation of F.
® algorithm: O(1/¢).
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Disc. Min. SDP Problem

® Smooth approximation:
® [': z— ||M(z)||2 not differentiable.

® G,:z— L Tr[M(z)?]7 : smooth unif. approximation.

Cl Algorithm: J = (<Mi7Mj>F)1§i,j§m-

Algorithm 2

Up < argmin, . uJu

for K > 0do
Vi < argminuec 2p—2_1(u — uk;)TJ(ll — Uk:) + VG ( ( k:))T
W — argming . 2p2 : (u— uO)TJ(u —uo) + Zz 0 1451 VGp(M(u ))Tu
Upt1 < %%Wk + k+éVk;

end for
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Convergence Guarantee

Let r rzneaécran( (z)) < max{ ,gran( )}

® Theorem:for any e > 0, the algorithm solves the
discrepancy minimization SDP with relative
accuracy € in O(\/rlogr/e) iterations.
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Experiments - Time
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RMSE

Experiments - Performance
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B Multi-domain sentiment analysis data set (Blitzer etal.
2007). books,dvd, elec,kitchen.

B Treated as regression task.
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Conclusion

B Theoretical results for DA in regression.

® new pointwise loss guarantees for general class
of loss functions.

® disc. min. adaptation extended to kernels.

| Efficient algorithm for solving discrepancy
minimization.
® shown to scale to relatively large data sets.
® empirically shown to be effective.

| Still many adaptation questions left to address!
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