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|deal World

® Standard learning assumptions:
® same distribution for training and test.
e distributions fixed over time.

® |[ID sampling.
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|ldeal vs Real VWorld
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This Talk

® Domain adaptation
® Discrepancy distance
® Theoretical guarantees
® Algorithm

® Experiments

® Drifting scenario
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Domain Adaptation

B Sentiment analysis: appraisal information for some
domains, e.g., movies, books, music, restaurants, but
no labels for travel.

Language modeling, part-of-speech tagging.
Statistical parsing.

Speech recognition.

Computer vision.

-3 Solution critical for applications.
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Domain Adaptation Problem

® Domains: source (Q, fg), target(P, fp).

& |nhput:
® |abeled sample S drawn from source.

® unlabeled sample 7 drawn from target.

® Problem: find hypothesis 2 in H with small expected
loss with respect to target domain, that is

Lp(h, fp) = E [L(h(a;), fp(a;))]

xr~ P
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Related Work

| Single-source adaptation:

® |anguage modeling, probabilistic parsers, maxent
models: source domain used to define a prior.

® relation between adaptation and the d 4 distance
[Ben-David et al. (NIPS 2006) and Blitzer et al. (NIPS 2007)].

® a few negative examples of adaptation [Ben-David et
al. (AISTATS 2010)].

® analysis and learning guarantees for importance
weighting [(Cortes, Mansour, and MM (NIPS 2010)].
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Related Work

® Multiple-source:

® related problem: same input distribution, but
different labels modulo disparity constraints
[Crammer, Kearns, and Wortman (NIPS 2005, NIPS 2006)].

® theoretical analysis and method for multiple-
source adaptation using the notion of Renyi
divergence [Mansour, MM, and Rostami (NIPS 2008, UAI
2009)].
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Distribution Mismatch

Which distance should we use
to compare these distributions!?
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Simple Analysis
B Proposition: assume that the loss L is bounded
by M, then
1Lo(hy f) = Lp(h, f)l < M Li1(Q, P).

& Proof:
Lp(h, f) = Lo(h, ) = | B [L(h), f@)] = B [L(((), f(2))]

= |3 (P@) ~ Q@) L((h(). £ (=)
<MY |P(x) - Q(x)]

But, is this bound informative!?
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Example - O/1 Loss

Lq(h, f) = Lp(h, f)] = |Q(a) — Pla)]
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Discrepancy

(Mansour, MM, Rostami, 2009)
B Definition:

- _ / B /
disc(P,Q) = max ‘Lp(h h) — Lo(W,h).

® symmetric, triangle inequality, in general not a
distance.

® helps compare distributions for arbitrary losses,
e.g. hinge loss, or L, loss.

® generalization of d A distance (Devroye et al. (1996); Kifer et
al. (2004); Ben-David et al. (2007)).
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Discrepancy - Properties

B Theorem:for L, loss bounded by M, for any § >0,
with probability at least 14,

disc(P, Q) < disc(P, Q) + 4q 9%5 ) + 5\‘{T

)

oqm
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Theoretical Guarantees

B Two types of questions:

e difference between average loss of hypothesis i
on () versus P!

® difference of loss (measured on P) between
hypothesis i obtained when training on (@, fo)
versus hypothesis 1’ obtained when training

On(P7 fP)7
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Generalization Bound

[Mansour, MM, Rostami (COLT 2009)]

B Notation:
o Lo(hy, f)=minLo(h. f
® Lp(hp,f)=minLp(h, [)

he H

B Theorem:assume that L obeys the triangle
inequality, then the following holds:

Lp(h, fp) <Lg(h,hg) + Lp(hp, fp) + disc(P, Q)
+ LQ(hZ)’ h}kg)
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Some Natural Cases
® When h* = h¥, = h,

Lolh, fr) < Lo(hh") + Lp(h*, fp) + disc(P, Q).

® When fp € H (consistent case),

ILp(h, fP) — Lo(h, fp)| < disc(Q, P).

B Bound of (Ben-David et al., NIPS 2006) & (Blitzer et al., NIPS 2007):
always worse in these cases.
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Kernel-Based Reg. (KBR) Algorithms

B Objective function:

Fg(h) = M|hll% + Rg(h),
where Kis a PDS kernel;
A>( is a trade-off parameter;and

R@(h)is the empirical error of h .

® broad family of algorithms including SVM, SVR,
kernel ridge regression, etc.
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Guarantees for KBR Algorithms

[Cortes & MM (ALT 201 1)]

® Theorem:let K be a PDS kernel with K (z, z) < R*

and La loss function such that L(-,y) is p-Lipschitz.
Assume that fp € H, then, for all (z,y) e X XY,

\/ disc(P, Q) + un
A Y]

[L(P'(x),y) — L(h(x),y)| < pR

where n = max{L(fo(z), fr(z)): zesupp(Q)}.
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Guarantees for KBR Algorithms
[Cortes & MM (2012)]
B Theorem:let K be a PDS kernel with K (z, z) < R*
and Lthe L, loss bounded by M. Then, for
all (z,y) € X Y,

L((@).9) — Lihla),)| < 22

(5 4 \/52 + 4)\disc(ﬁ, @))7

where = min

heH

E_[(he) - fo@)@x(@)| = E_[(h@) - fr@)0x(@)]| -

r~Q x~ P K

® § = 0 for Gaussian kernels and fp = fo continuous.
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Empirical Discrepancy
® Discrepancy distance disc(ﬁ, @)critical term in
bounds.

B Smaller empirical discrepancy guarantees closeness
of pointwise losses of h” and h.

| But, can we further reduce the discrepancy!?

Mehryar Mohri page 21|



This Talk

® Domain adaptation
® Discrepancy distance
® Theoretical guarantees
® Algorithm

® Experiments

® Drifting scenario

Mehryar Mohri page 22



Algorithm - ldea

B Search for a new empirical distribution ¢* with
same support:

AN

*

g = argmin  disc(P, q).
supp(q) Csupp(Q)

® Solve modified KBR problem:

m

Z ¢ (i) L(h(zi), yi) + Al %

1=1

1
1
min Fy- (h) = —
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Case of Halfspaces
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Regression - L2 Loss

B Problem:

E_[(W(2) = h(z))*] = E [(K'(z) — h(z))"]].

z~ P r~q

min max
oy /
supp(q)Csupp(Q) MR €H
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Discrepancy Min. - Input space

® For L, loss and H={x — w'x: |w|| <A}, can be
cast as an SDP:

minimize ||[M(z)]||2 m

subject to M(z) = Mg — Z 2 M
] i=1
M() — Z P(Xj)XjX;-r

elements of supp(@)\£:m+1

M,; = XZ'XZT,i S [1,1‘(1]

z'1=1Az>0.

=3 what about if we want to use kernels!?
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Discrepancy Min. with Kernels

B Forls;lossand H = {h € H: ||h||x <A}, it can be
cast as a similar SDP:

minimize ||M'(z)||2

m
subject to M'(z) = My, — Z ziM,
i=1

M = K'/?DoK'/?
M, = KY/?D,K!/?
z'1=1Az>0.

-3 but, cannot be solved practically even for a few
hundred points, even with best public SDP solvers.
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Discrepancy Min. SDP Algorithm

[Cortes & MM (ALT 201 1)]
B Smooth approximation [Nesterov (1983, 2005)]:

® [': z— ||M(z)||2 not differentiable.

® G,:z— L Tr[M(z)?]7 : smooth unif. approximation.

Cl Algorithm: J = (<Mi7Mj>F)1§i,j§m-

Algorithm 2

Up < argmin, . uJu

for K > 0do
Vi« argming .o 22 (u — ug) J(u — up) + VG, (M(ur))'u
wp, « argming, .o & (u—uo)' J(u — uo) + Sk o FVG,(M(w;)) u
Upt1 < %%Wk + k+éVk;

end for

Mehryar Mohri page 28



Convergence Guarantee

Let r rzneaécran( (z)) < max{ ,gran( )}

® Theorem:for any e > 0, the algorithm solves the
discrepancy minimization SDP with relative
accuracy € in O(\/rlogr/e) iterations.
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Experiments - Time
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Experiments - Performance

X
=
n

adaptation
to books

® Multi-domain sentiment analysis data set (Blitzer et
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al. 2007): books,dvd, elec, kitchen.

® Treated as regression task.
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Generalized Discrepancy

®m Definition: given two distributions D and D’
over X x ), the Y-discrepancy is defined as

follows:

diSCy(D, D/) — sSup ‘,CD/(h) — ,CD(h)
heH

)

where Lp(h) = (wny)JND[L(h(x), ).
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Drifting PAC Scenario

[MM & Munoz, 2012]

®m Model:
$1 yl 372,y2 $T yT

A\ 4
-~

training
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Drifting PAC - Guarantee

B Theorem: assume that the loss L is bounded by M.
Let D1,..., Dry1 be a sequence of distributions and
let H, = {(x,y) — L(h(x),y): h € H}.Then, for
any 0 > 0, with probability at least 1 — 9,

Lo (h) < 7 37 L), ) + 2% (He) +

t=1
log %
2T

T
1 Z .
T dlSCy (Dta DT_|_1) + M

t=1
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Drifting Tracking Scenario

[Bartlett, COLT 1992]
® Model: perpetual training and testing.

a:l y1 5172,y2 $T 1, YT— 1 CUT yT

® tracklng Sllp{ E [L(hi—1(2z7,yr)]: Vt,discy(Ds, Dir1) < A} < inf Lp,.(h) +e.
(Dy) a:l%/T) he H
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Drifting Tracking Scenario

B Expected mistake:

Mz (D) = Es~p[Mr] = Es~p[L(hr_1i(z7), yr)].

e supremum over all distributions D = (X) D; :

—~ t=1
Mt = Sup M7 (D).
diSCy(Dt,Dt+1)<A

® Algorithm A (A, e€)- tracks H if for T sufficiently
large,

S

Mr < inf Lp.(h) +e.
he H
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Drifting Tracking - Guarantee

B Theorem: H hypothesis set with VC-dimensiond

andRr(Hr) <O0(\/d/T); sequence of distributions
such that discy (D, Diy1) < Afor allt. If A=0(de?),
there exists an algorithm that (A, €)-tracks H.

® improvement over previous L result of (Long,
(1999).
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General On-Line to Batch

B Theorem:assume that the loss L is bounded by M
and that it is convex with respect to its first
argument. Let hq, ..., hr be the hypotheses
returned by algorithm A andh = 3/, w;h,.Then,
with probability at least1 — 4,

1
L(h¢(xe), ys +Zwtd186y(Dt,DT+1)+M\|W||2\/21Og6

t=1

IIMﬂ

[’DT+1

. R
< _
EDTH(h) < hlglf;ﬁ(h) + T +

T
: 2
ZwtdISCy(Dt, Driq) + M|lw —ug||1 + 2M||w||24/ 2 log 5

t=1
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Drifting Algorithm
B |dea: find best mixture weight.

T
m“i,n A|wl[3 —I—Zwt (discy (D¢, Dry1) + L(he(t), yt))
t=1

subject to: (Zwt = 1) A (Yt e [1,T],ws > 0).

® deterministic setting:
diSCy(Dt, DT_|_1) S diSC(Dt, DT_|_1).

® estimation of discrepancies using independent
samples.
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Experiments
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® base on-line algorithm:Widrow-Hoff.

® uniform weights, uniform over last 100, and
weighted algorithms.
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Conclusion

B Recent and upcoming:

® theoretical properties of discrepancy minimization.

® explicit learning guarantees in terms of size of
unlabeled data.

® adaptation with small amount of labeled data:
analysis, theory, and algorithmes.
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